t:
The elementary
Hint.
a;
the
=
double
a
--
equal to V
rft/i
o
By the Guldm
distance
of
the
is
force
of
(force
,
centre
tlu>
2
H -
D flt,=
2
theo-
1751.
v
vt' ^
t
.
2
i
-lnl+--.
1752.
-
The coordinate axes are cho-
Hint.
the altitude
the
1
"
2
71
with
a triangle
2Jtx
I/ f
r
r
o
coincides
jc-axis
/
4
M=
o
---
elementary
L./-*dr
1
of the
An elementary
h = 2a
a tube,
and since the mass
e density of the sphere,
t
densit y
into
sphere
a is its altitude.
the
is
Y
the given diameter.
is
the
is
r
where
'
partition
which
axis of
2nrhdr, where
=
We
Solution.
.
the
tubes,
r
^)
\
-f
1754.
is
gravity)
the
equal to
the volume of a layer cf thickness dx, that is, dF = where y is the weight of unit volume of water. Hence, the elex} dx, where x is the water level. mentary work of a force dA ynR'* (H
weight
= ynR
1757.
of
2
water in
dx,
A=ryR
2
H
2 .
l^&
1759.
A = ynR*H.
on
mass
a
m
is
1760.
equal to
of the earth. Since for r
1758.
^=
F= k
=R
A ---^ R*TM
^
tn0h
j-
where
,
A=
When/i = oo we have A
f
The
7
kgm.
force
acting
the distance from the centre
r is
F=mg + R
m^-
Solution.
/lo.-mg/?.
;
we have
sought-for work will have the form
^Q 79-10* -0 79- 10
it
follows that
kM=gR
2
The
.
h.
\
J
kr-dr *
= mgR.
1761.
kmM 1.8-10
-
{ -^-
.
,
)
\KK-\-nJ
4
ergs.
=
Solution.
__ Answers
The
7
force of interaction of charges
is /
433
= ^i
work
dynes. Consequently, the
-J-=S Jd.x
= *o*i(/ --- \ = 1.8-10 X X / isothermal process, pw = p 1
1
*' 4
)
*
4=800 nln2
1762.
ergs.
kgm. Solution. For an
2
\
tV The work performed
in the
expansion of a gas
v\
from volume v
volume v
to
A=
is
l
\
J
p di>=p
In
i>
^
A
1763.
.
UQ
an
For
Solution.
adiabatic
the Poisson
process,
i>i
*^1.4,
holds
A=
Hence
true.
=5=
15,000
kgm.
^0
( J
law
pv
k
= pj>^
where
t
k
P
-Ms -^dvk k v
I
4
4=~jiu.Pa.
1764.
the pressure
Solution.
on unit area
a
If
of the
the base
the radius of
is
support p
=
p z
The
.
3ta a
by
frictional
.
forces
Therefore,
on
a
of
revolution
complete
A=^x
work
the complete
force
a
-^~rdr. The work per-
is
one
in
ring
frictional
2uP
ring of width dr, at a distance r from the centre,
formed
them
of a shaft,
f
r*
dr
=
is
JifiPa,
a
Solution. j M# = ^~da where dK=^L2
1765.
2
.
t
from
the
axis
of
The da
rotation,
kinetic
an element
is
the
is
Q
of
a
of
energy
particle
area, r
surface
of
the disk
the distance of
is
= -^j.
Q
density,
it
Thus,.
R
Whence 1767.
K = ^/?
2
co
2
= 2.3-10
K-^J,-*-^ 8
kgm. Hint. The amount
to the reserve of kinetic energy. 1768.
1770.
P = abyxh.
1772. 633
Igm
1771.
P = ^-_
1773. 99.8 cal.
p = -^-. o
(the vertical
1774.
M^~
1769.
,
of
766
work required
p^fo +
component gf
* = | X M*W.
.
fe
^fr)
b
.
1776.^-
__ 1777 15-1900
Solution.
n
-
Q==
cm. 1775.
^^-^ 2
3
10>r
(k
is
the
a
Q= (v2nrdr = .
^n
equat ,
directed upwards).
is
a
gravitational constant).
is
a6
2 f( a
8
UJ A Hlnt
-
r*)rdr
Answers
434
along the large lower side of the rectangle, and the y-axis,
perpendicular to
ua it
in
middle.
the
S=\J
Solution.
1778.
a
on the other hand,
dv,
7^=a, at
vt t'a
whence
1780.
=
dt
dv,
M*=:
\
and
acceleration time
the
consequently,
(xt)ktdt + Ax=j(l'x*).
/=l- = S.
is
1781.
Q =0.12 TRI*9
S=
-
Hint.
cal.
Use the Joule-Lenz law. Chapter VI
V=
1782.
2 (i/
x 2 )*.
1783.
(x
+
/"4z
t/)
Oje//
1786.
/<*,
x2 )
= \+x-x
replace
~
by
x.
_,
Then .
;
It
z
_
1=^;
1789.
f (x,
y)
in the
form
=
T
4
^ Ri
Solution.
o~~^
= x~\+V"y. * === (a
In
Hint. 2
~|-
1
)
and,
Solution.
the
f
J
x
2
Then
and
y.
+1
and
+ y~u,
1790. / (a)
*=1+/(VT
/(w)=:w
When *=1
a)
+
= l/V
Designate
v, x
identity
hence,
-
z
f (x)
/(-=M= I/
remains to name the arguments u and
then
1788.
.
(xy) 2
UV
-
^=
=
.
Hint. Represent the given function
/?
1787.
2
-}-3
_...
-f. j^S.
2
2
we
1791.
-}-2a.
have
the "
1)
put
/()
=
identity
/
Single circle
with centre ai origin,
=
^
=
*; c) halfincluding m the circle (x y 1); b) bisector of quadrantal angle # #==0 (x y>Q)\ d) strip contained plane located above the straight line * lines ( between the straight lines (/= 1, including these e) a 1 and /= 1, includsqua're formed by the segments of the straight lines l
+
+
K#<1);
#=
(Kx^l,
(x^y^x
<
=
+
y=
t
*<
>
x
=
,
+
_ __ Answers
=
435
~y > 0); ,k) the entire j/-plane; 1) the entire *t/-plane, x*(x* parabola y with the exception of the coordinate origin; m) that part of the plane located above the parabola y* x and to the right of the (/-axis, including the points of the t/-axis and excluding the points of the parabola (*:^0, y > V x)\ 0; o) the n) the entire place except points of the straight lines *=1 and t/ x2 + y 2 n (2k + 1 ) ( = 0, 1, 2, ...). family of concentric circles 2n k 1793. a) First octant (including boundary); b) First, Third, Sixth and Eighth octants (excluding the boundary); c) a cube bounded by the planes x= 1, 1, including its faces; d) a sphere of radius 1 with centre y~ 1 and z
+
=
=
<
<
1794. a) a plane; the level lines are at the origin, including its surface 0; b) a paraboloid of revostraight lines parallel to the straight line *-f */ lution; the level lines are concentric circles with centre at the origin; a hyperbolic hyperbolas; paraboloid; the level lines are equilateral c) d) second-order cone; the level lines are equilateral hyperbolas; e) a parabolic 0; t/rf- 1 cylinder, the generatrices of which are parallel to the straight line x the level lines are parallel lines; f) the lateral surface of a quadrangular pyramid; the level lines are the outlines of squares; g)_level lines are parabz C ]fx i) the level Ifnes olas y^-Cx h) the level lines are parabolas y 2 2 2*. 1795. a) Parabolas are the circles C (* (C y ) 0); b) hyper2 2 C 2 d) straight lines y ax-{-C; bolas xy^C(\ C 1); c) circles jt -f*/ lines y-=Cx(x^Q). 1796. a) Planes parallel to the plane c) straight 0, x-\-y-\-z^=Q\ b) concentric spheres with centre at origin; c) for u one-sheet hyperboloids of revolution about the z-axis; for u 0, two-sheet hyperboloids of revolution about 2 the same axis; both families of surfaces 2 za are divided by the cone * 4-r/ 1797. (u 0). b) 0;c) 2; a) 0; k not limit does limit e does not exist. Hint. In Item(b) exist; f) d) e) coordinates In Items and to consider the variation of x (f), (e) pass polar kx and show that the given expression and y along the straight lines y may tend to different limits, depending an the choice of k. 1798. Continuous. 1799. a) Discontinuity at je 0; 0, y b) all points of the straight line of line of is the circle x c) (line y discontinuity); discontinuity 2 the tines of the coordinate axes. l; d) discontinuity are
=
+
\
;
=
+
|<
>
y^Cx*
=
=
;
>
<
=
=
\
=
1800 is
=
Hint. Putting y
=y
l
continuous everywhere,
when
=
f/ 1
q^M^O.
^0,
2v u (y) = is
since
we
for
get the function (?,(*)
yl
^
discontinuous at the point
=
the denominator * 2
when
Similarly,
jt
From
everywhere continuous.
is
2
function z
=^ const,
(0, 0)
= *, = const,
,
2
-|-f/
the
^0, and function
the set of variables x, y, the
since there
is
no limz. Indeed, X
=
which
-*
r cos cp,f/ r sin if x and y -+ in such manner that (p const (Os^qx; 2rc), 2(p. Since these limiting values of the function z depend on the direction of cp, it follows that z does not have a limit as x and y -+ 0.
evident that then z -* sin 1801.
~^3(jc 2
1803.
^=
1805
dx
ay),
^ = 3(#
^
dy
= (
x*
+
z
3
l*'
dy
2
=
Answers
436
.-s,^i/ ox
xy*
x
x*
dz
V2x'-2y*
yx*
cos^.
x
dy
*
ln
,810.
ox
x
dz
V2x*-2y*
oz 4813.
1815.
-- -
1820.
/;(1,2,
= 4,
0)
1821. r.
5^-.
1828.
-.
tan p
x-=zxtf2*"
-5-=x2*"ln2,
-r-=i/2*'ln2,
tan Y =-~- 1829
=
1827.
cp (x).
2-^
tana = 4, tanp=co,
1)
^=y *
-
= arc tan ^ +
1826. z
^(1,2,0) = !
= ~,
fy (\, 2, 0)
1,
1814. r
.
1'
If^T'
to see that the function is equal to zero over the entire x-axis and the entire i/-axs, and take advantage of the definition of partial derivatives. 1831. A/ Be convinced that f'x (0, 0) ^(0, 0) 0. 4Ax+ A(/ 2Ax 2 2 4dx &\ -f 2AxAi/-t-Ax Ar/; a) A/ b) A/ df dy\ d/=- 0.062. df 2 1833. dz'^3{x*y)dx 3(y*x)dy. 1834. dz 2xy*dx 3x*y dy. 1835. de
Check
+
2 \**
I
v
i. 2
(xy
dxx
=
=
y dy). 1836. dz
= sin 2xdx
+
+
=
=
+
sin 2(/di/.
1837. dz
=
/
y.
18401 dz
2
=
= +
=
= 0.
1838. dz
1841. d0
=-
=
2
-
x
(xdx
d
+ ydy). dx
1839.
^=
1842.
.
*
d/(l,
1)
=
dx
sin
x 1843.
du =
1845.
du=xy +
t/z
dx
+/x dy + xy dz.
y^. (5dz
3dx
y
1846.
1844.
;
4di/).
1848. d/
live to inner dimensions).
r/dx
:74
= 0.062
1850.
=
=
r
(x
dx
+
y dy
+ z dz).
zdx+\-xzdy +
+
~
dw-
du
-r-
+ xdt/--dz.
x
1847. d/ (3, 4,
cm; A/==0.065 cm. 1849. 75
cm. Hint. Put the differential
cm 3
5)-
(rela-
of the area
o
the sector equal to zero and find the differential of the radius from that. 1851. a) 1.00; b) 4.998, c) 0.273. 1853. Accurate to 4 metres (more exactly,
of
4.25 m).
1854.
n ag ~Ef.
1855.
da==-^
77
(dy cos
a
dxsia
a).
1856.
^=
Answers
-sin*
In sin*). 1861.
d*
-.
=_.; x'-l-y
= 0.
z)[^(x,
i/.
y)
1865.
l867 -
S=^
-j)
+
dx
=W: *
dx
ty'v (x,
^l-
.l.
_ 221 66
+ /^(*,
1862.
dx -,--,. 1+x 1
1
= 2x/,
1863.
1864
437
( *-
The
1873.
y)
>+<
"
increases
perimeter
at
a rate of 2 m/sec, the area increases at a rate of70m*/sec. 1874.
20/52 V5 km/hr.
1875.
_
- 9 ^3
1876.
1877.
.
1878.
1.
J^..
1879.
O
A
68
c) (7,2,1).
1884.
cosa=s-r-, o
cos p
cp
-^QQOQ-r ^=83 37.
9/-3/
=
j (5/-3/). 1886. 6/-f 3/ +
1885.
COSY =
,
1891.
I7 1/1
9 = -7=. y 10
= 1894.^=0. 1895.^ ^ xd^ ^x
.
r
r
dy dz A
= mn;
^
0)
v (0,
and
tiation
_
the
,,
irp-yi+^i [~2 that For x ticular,
fj,,(0,
2 f/
cos
(0.
0)
2
/y
1
= /i(n
and
for
0)=
of
1
+ yvj
(when
any 1.
1899.
2jc sin (xy).
(jry)
definition
4\
grad a|=6;
1889. tan (p^= 8. 944;
,897.
^yi^
|
^-;= ^'
'
1898.
1887.
3
1888. cos
-O-.
^ ^=
lfiol
2A?.
(/,
1902. Hint.
1).
a
partial
A'
+
/^ (0,
Similarly,
1 J/
y.
MO.
)
Whence
find that
0)
verify that
f",IJC
=
and
-
.
= m (m
Using the rules
derivative,
?4 0)'
y)^ we
(0,
y
r
of
differen-
f' x (x,
1;
in par-
0) = 1.
1903.
,
"i-i-
-g^r--/ii\". 1904.
-if
/("'
0)
+ 4*0/
Jll ,
(M,
y)4-*
2
/
w (,
y) =3
consequently,
fxlt (Q, y)=
\Q,
1);
u).
o);
438
_
Answers
1905.
= q>W + t915. + * (y). 1916. d*z=e*y x (*, /)=*cp d*u = 2(xdy dz + ydzdx + zdx dy). 1917. + x dy)* + 2dx dy]. Y* X 1919. dz = d*z = 4
1914. u(*.
X
I(y
1>().
!/)
((/)
dx
1918.
=
(f
= a M (a, o) x x 1921 dz = (ye*f'v + eVf"uu + <2ye +yf'nv + y*e* w dx* + + 2 (&f'u + e*f'v + xe*yfuu +e x + y +xy f + ye* x fo dx dy + 1922. d'z = e* (cos y dx* + (xeyfu + x*e*yfuu + 2xe*+yfuv + e**Q dy\ 1923. d'z = 3 sin y dx dy 3 cos y dx dy + sin y dy # cos x d* 1924. d/(l, 2) = 0; d f(l, 2) = 3sinxdx*dy 3cosy dxdy + xsiny dy*. 2
2
1920. d z .
f'
)
(\
2
2
)
tlv
8
9
-
).
2
z
d 2/
1925.
+ C.
1926. xy
^?+p + C.
1931.
1927.
y ln(^ +
2
2
1929.
a=
1932.
1,
|/
0)=
0,
(0,
+ 2arc
)
6=
z
1,
^,=
1938.
1.
Hint.
Xdx+Ydy.
expression
2
condition
1939.
f^f'y
of
1940.
.
+C
'
l933
total xy
C.
-
JC
2 //2
+ y + 2 +C f
1937.
the
~+
1930.
2z-j-C. 1935.
t/z
the
+ C.
tan
+ 2^ + 3x2 + ^ 1936. + + + c.
Write
1928.
o
=
8 1934. x
.
~ + sin x + C.
x't/
for the
differential
a=f(z)d2 + C.
=
1941.
a
=
-^y
;ri= dx2
a2
^I=-T-I. dx* a*y*
2 a5^1; y*
of straight equation of a pair r
dx 2
=
1946 1943
1945
.
=
=3
I
The equation M defining// &
^= ^
ln
-1;
or
x^ *
1944
*%2
=8
is
the
= ^ dx y _
or
*
1
-8.
.
axy'
dz_x <9jc
1943.
lines.
(\-y)* dy
^42.
2
xf/
2
'
%~~
dx
(axy)*
dz_Gy
yz z
'
dx 2 2
3
3xz2 (xt/
z
'
a )
^^
dz_zsinx
x
'
dx 2
cosy
,
x2
dz
'
dx
cosx
t/sinz*
d/y
'
_
Answers d*z
^
d*z :
dx*~
a*b*z>
:
dxdy
*;*;
1954. d2
439
1953.
:
dy*''
=
dx 2
2
dw; *
i/
-^^dr/ 2*
f .
1955. d2
= 0;
d 2 2=
).
Tc(^ IO
1961.
a
-r-
=
+
2 rf l/
l956
)-
T"
r-^
1;
=
dy);
z
=00;
dxfy
dz
-
11111
"^"*
= 0.
T~9
=
1964.
dw
=
-
u
:^; 1965.
=-
,966. a)7
dz
c cos y
1967. ,-
.
sin
|).
1971.
a)
-20; pp^-.
sina
1974.
/
q,^. 1969.
,
=F;(r,
cos
q>
9)^.
- +
+ ^O.
b)
g-0.
~=0.
1975.
tt
cp)
cos
dz 1968.
dx 1970.
-
1972.
~-. z== 0.
1976.
^
-
Answers
440 3*
1983.
=
+ 4j/-H2z
/ a 2 -f &2
2
169
= 0.
+ 4y + 6z =
1985. x
21
1986.
the tangent planes are the points (1, 1. 0), -f and (2, 0, 0), to the j/z-plane. parallel to the xz-plane; at the points (0, 0, 0) There are no points on the surface at which the tangent plane is parallel to c
Ai
1987
_
l
the x#-plane. 1991.
-^
* Projection on the
on the xi/-plane:
1994. Projection
.
._w_ )=0
=
(
<
/z-plane:
_ ~n
1.
3y*
on
Projection
I^Q
2
the
xz-plane:
= |
3x 2
\
4-z
|
A 1=0. ,
2
Hint. The line of tangency of the surface
with the cylin-
projecting this surface on some plane is a locus at which the tangent plane to the given surface zis perpendicular to the plane of the projection 2 ax + 2bxy 1996. /(* k) /t, y cy*-{- 2(ax + by)h + 2(b* + cy) k i-ah 2 2 1997. (xH-2) /)=! /(*, 2(jc-f2)(t/~l)-f3((/ -f 26/ifc-K/z 1)2,
der
i/)
= 2/i + fc-M + 2/i/e-f/i
-_1)H2(*-1)
(2
/(^
2001.
z)-f
(/,
,
+
2
A/(x,
1998.
+ =
=
+
+
2[/i(x~t/
*.
1999.
^
r
+
i
2005
>
[(jt
-
+ =
2
I)
4-
y
+ k,
I)
(//
z+/)
z) .
+
1)
2
f(x
+ (y
+
2003.
Dl
Un?^
a)
.
= (x + H,
/ (x, y, z)
2000.
-z) + k(y-x
2004.
1).
+
+
(*/-!)--(-- l)(z-l).
+ x,+.2002.
-!)(!/-
2
b)
+
Hint. Apply Taylor's formula for 2006. a) 1.0081; b)J).902. r in the neighbourhood of the point (1,1); the functions: a) f(x,y)=\ x y* in the neighbourhood of the point (2,1). 2007. z= 1 -}-2(x~-l) b) f (x, y) 2 when x=l, 10 ( X -l)(y-l)-3 (y- !)'+.. 2008. z mm -(t/-l)~-8(x~l) 2010. z min -= 2011. z max =108 1 whenx=l, 0=0. i/=0 2009. NocxVcmum. (3 n z_4M)p2j
yy
=
=
+
= 3,t/ = 2.20l2. z min = There
is
8
when x =
no extremum
Y^ y =
for
1^2
x=j/ = 0.
when
and
2013.
2 max
^
at the
=
^
jc
=
= = 0. i/
1"\ at points
2017.
min
=
T^ 2015.
y==
,
a"d
""Ff
zm i n
of the circle
4 3-
a
and*=
X^-TTL, t/---^
points
when
b
a
.
.
=
*2
when x =
y==
'~'Vf'
x=0 = 0;
wne "
21
+y = 2
-j
,
1.
/
2016. zmax
=
,
2 14 '
F?'
nonrigorous
= 1^3 whenx=
z=l.
3
ab
b
* ==
=
at
V
3 the points
x
2018.
w min
;?Tnax
"=1
maximum 1,
=
y
=4
1.
when
=Y
J/1' z== ^ 2019. The equation defines two functions, of which one has a maximum (z m ax 8) when *=1, f/=2; the other has a minimum 2jwhenx 1,0 = 2, at points of the circle (x 1) 2 + (t/ -f 2 2 -^ 25, (Zimn =
JC
=
functions has a boundary ext-emum (z 3). Hint. tions mentioned in the answer are explicitly defined by the
eacn
of
these
;
The
func-
equalities
__ Answers
e=3
441
2 1^25 (x\)* (f/-f2) and consequently exist only inside and on 2 2 the boundary of thecircle (x 25, at the points of which both I) -|- (l/ 2> functions assume the value 2 3. This value is the least for the first function and is the greatest for the second. 2020. One of the functions defined by the the other has a 2, 1, r/ equation has a maximum (*max"-~~~ 2) for x minimum (2 min 1) for x 2, both functions have a boundary extremum 1, y
=
+
=
=
=
=
at the points of the curve
*=#=-. 2023.
=5
2022. 2 max
2
s
12*
4i/
x=l,
for
=
*
for
imta
4jt
= 2;
2 min
2024.
max
f/
~. ^~.
,
+ 16r/
.
33=0. 5
----
9
x
for
=
=
(f 2,
1)
f
z
=
j/
r
f
fl
2)
=2
x==
for
/"T
^^ T
I/
-IT;
b) greatest
= 0,
2030.
2).
=
1,
x
= 0.
2=
j/
value
1.
y
=
2
ll m,
,
m 2 -f m,
i>
-rp 3
=
y
of
~T
the
ellipsoid.
2046
2
Major
-
=
for
=
/""2"
j
value
= =
x
for
^
for
V
^
smallest
y-^0;
1,
Y
t/
(in-
x
j/2V,
44 a
+
2b
^2V*
s=s3i
j/
= 6,
^
f
.
,
-|- J
The dimensions
2 Q43.
of
the
c
= = 26+2V,
2a
Isosceles
2041. Jgaa
.
2c
2044. *
2036.
2
"T^' where V 3
V
axis,
+
b
--
>/a. 2039. Ai
\/a
>
~p,~/>, and
7^-* 3
,
J/2V,
\/a
\/a
2Q42
Y
axes
*=
for
1
x==
for
y=l; ,
1
*2a
parallelepiped are
TFT
= 0,
y-~Q (boundary minimum). = 2, y = 1 (boundary maximum); smallest (boun(internal minimum) and for x = 0, y =
\
Cube. 2038. a
1a -i-
2
z== "~
2032. Greatest value 2
are 2040. Sides of the triangle fe
v
2031. a) Greatest value
value
=
2034. Cube. 2035.
dary minimum).
27
for
2
smallest
;
t/=
2 for x
triangle. 2037.
2.
f T)'--(f =3 Greatest value
3
=
?
2025. r/
a)
ternal maximum); smallest value 13 for x 2033. Greatest value 2
value
r
I/
f T)=
2,
(1,
"3
for x
= 5 + *:i, /
/^ \
#--2
1,
4
b) smallest value 2
y
f
I)' (41,
(2,
=
for
=-j
= 2, 2 = = 2, 2= 2, "max^ 9 *=1, = 2 = 0; Wmin^C for x = t/=0 2^C. *= at the points .6Mor x = 2, y=4, 2=6. 2028. u max -4 1,
2026. MMIX -=fl 2 2.4 2027. w max
x
for
2 max
-j/
=
2021.
minor
b,
a,
*
and
= --
axis, 26
= 2.
c
are
2045.
Hint.
the
x=
semi-
-
The square
,
of
the distance of the point (x,y) of the ellipse from its centre (coordinate origin) 2 2 The problem reduces to finding the extremum of the function is equal to x -f-r/ 2 2 9. 2047. The radius of the base of the cylinder 5t/ x*-\-y* provided 5* Bxy .
+
+
=
Answers
442
~
is
|/2 + -~=,
R
the altitude
must connect the point
sphere. 2048. The channel
/
with
the
^ 14
2049.
1^2730.
the ray passes a
a
cos
the ray J
of
the
of
point
sin
p
BM=^
,
of the function /(a,
a
=
a=p.
function
/^/ji/^
2052.
7 2 , / 8)
f (/
must
lie
ft
which
at
between A, and B t ;
to finding * the
-
1
01
t/2
:
-5t\2
AI
:
~ provided that a tan COS p
-5-
Find
Hint.
.
the
minimum
a + b tanp = c.
minimum
the
of
Kl
= /J/?; + /*# +
that provided second kind
/J/? t
2
The isolated point
M,
is
B^M = b tan p. The duration of motion
-- --
UjCOS 2051.
length
j
The problem reduces r
.
-5
y 2 cosp
|J)
its
;
into the other,
A,M =a tan a,
-
1
a, cos
,
)
Uj
-- --
is
(
"T
7 V^L -
5 \
1 1
Hint. Obviously, the point
medium
one
the radius of the
is
the parabola (-o-
of
-^-
EE^^!
2050.
frm
line
straight
R
--^=, where
|/2
+/ +/
/!
2
8
-/.
2055. Tacnode (0, 0). 2056. Isolated point (0, 0). 2057. Node (0, 0). 2058. Cusp of first kind (0, 0). 2059. Node (0,0). 2060. Node (0, 0). 2061. Origin is isolated point it if a>6; is a cusp of the first kind if a and a node if a b. 6, 2062. If among the quantities a, b, and c, none are equal, then the curve does not have any singular points. If a b
2053.
2054.
(0, 0).
of
Cusp
(0, 0).
=
<
a
of the 2
-f-
^
/3
kind. 2063.
first
=
y=x.
/ ''.
2067.
whose equations,
2068.
if
z
2064.
2
A
+
2066. **/
pair of conjugate equilateral hyperbolas,
x#^=-^-S. the axes of symmetry
coordinate axes, have the form
y^R.
2065.
y ^2px.
of
the
ellipses
g
xy~
~
2069. a)
are
taken
as
the
The discriminant curve
the locus of points of inflection and of the envelope of the given y of the envelope is the locus of cusps and family; b) the discriminant curve y Q is the locus of cusps and is not an enof the family ;c) the discriminant curve y velope; d) the discriminant curve decomposes into the straight lines: * (locus is
=
of nodes)
2073.
x^ a (envelope).
and
1/~3V
1).
2074.42.
2079. a) Straight line; b)
2082. 4/
2
(*
for
f:=0,
A;
= 2cos_^,
0=1/^13
z?=-2y+3ft,
;
f/
for
y=~ *8
2075.
parabola;
+l). 2083. ^ = 3 cos
= 4/ 2084. + 2ycos/-l-3Ar;
2070.
#=4
c) ellipse;
/
= 2sin/, any
w=
/;
2i;
for
XQ
e
+Z
Q.
= 3/
^^-
t
^
11
2080.
= Q, v--=4j, w=.
(screw-line);
-2/cos
2072.
2077.
d) hyperbola.
(ellipse); for
w=
i ^
2076.
5.
sin
2071. 7
.
2v 2
2ysin
=
t\
2
u=
3/; fo
2/sinH
w2tor
any
^
Answers
x=cosacoso);
2085.
a
co/ sin
of
sin
uy
+
=
a>
2
r
2 2088. 0"|/ a
.
screw
=
(*
-y-
= --
-
1
/
[(sin
,
2
/
a cost
are
2090. T
.
sin
t
a
cos
*
=
+
-
(*
x + 2z
COS(T,
0./J*.
^
acos/ ,
^
sin
/
cos p
=
==
+ 4r/-f-12z
114
2096.
=
p
=
(normal
M
2
|,
(4, .
ing
(tangent); j
-_ cipal normal);
,
=
:
2V
y
_
z
=y+ =
plane);
(tangent); x
I
(tangent);
u
.
,
*
(principal normal);
-, 1
z=
/2
of
= sin/; plane);
x
(tangent);
+
plane).
(pri "~ t
cosv,
= 0.
\
^ilx*
(binormal);
.
/
^
cosp 2 =
1
=-=;
cos|J 1
=_ 2 ^
/4
.
b
(oscu^ating
2
TT~
2
z
^-~j-
2
1
cosines
(osculating
~T?T
= _
^.=^l = i^l
2097.
= cos/;
=
8
6r/-f-z
^
cos Y
;
u
_
= __t>r
2
2
12*
plane);
= j
=^T
*"T
=
...
=
f
=
(rectifying plane). 2095.
v
(binormal)
a
directi on
The a cos
=
=
2093.
asint
normal)'
a =--===
k]\
p
/\
- zbt
.
VI
/;
cos(v,z)=0.
^r&cos/r = y
.
.
^ sin
=
+
-;
"; P^=. /5
/105 ..
v
1^3^
=
2)
=
5
a>/
cos t)J
The direction cosines of the principal normal are cosa, 1 z 2094. 2* 0. cos YI (normal plane); y
=
art
cof
+ *);
+
t
(sin
^ cos
t
cos a sin
cousin a cos
the angular speed of rotation of the
is
(o*
[(cos
^--
smt
tangent
2aa>u sin
.,
y-
t
cos
i
\ *> (tangent); /
b
x -acost
i
v= a cos CD/
(circle); 2
co /
|;
,
^"
;
co
|
where w = -
2
+ cosO /+(sin
-
the
/i
v
;
T= --
2091.
fc).
2092. t
cos
+
V aV + u
2089.
.
= u=K
CD*
2086.
.
= sincof w +
sin acoscof; z
y cos
cofc
443
jc
"""3"'
+ = (osculat= + 2- = z--2 i/
2
i/
-g
2098. a)
(normal plane); b) __
(tangent); x (tangent);
+ # + 4z-10 =
2_>^3 2|/*2^=0.
x
+
r/
2
a)
6 2 )ejz
-=
c)
^|
1
Z
2/*3z =
2101.
c) b*x\x a*yly + (a ~ = ing plane);
(normal plane);
2
O
2
2
(a
6 2 ).
^
3
2
==
~~A""J: f 3
+ y = 0. 2100. x = 18 = 0; 6y + 2z 2102. 6.r8/z + 3 = (osculat-
(normal plane); 2099. x 9x 0; # z 9 b)
4*
=a6
f
=^"' 2
(P rinci P al normal);
Answers
444
* +6 J 3y
=o
+
(
binormal )
(osculating
TSBS
;
= 0.
\i
-
fl>
2107.
when
M .
/=!,
2
= =u
1
'
>
(principal normal);
}
/+ *
v== /
>
J7*
t
K
K= 99
/C=4-1/T7 / r 14
w,
2jc
-
+
=*
= 0,
/"To
2106
_
2108. a)
When i
w w =2;
;
V~i\ b)
a)
2112.
.
plane);
|7^=i
/
19z~27
2111.
#
*=0
bx
(binormal). 2103.
= -^=.,
oy x
2,
=2
wn
= 0,
/~TQ
I/
~
.
*
'
"^ j^
Chapter VII 9 2113.
2120.
x=l;
9^
44. O -. O
x
2114.
= ^r
*=-!;
2125.
*
/
= 0; t/=y25
= 2.
J*Jf(*. f/
1
;
=
2117. 50.4. 2118.
y
6;
x = 0;
x
It 00 y)d(/.
= 2.
= 3.
2122.
2126.
2129.
2
2
.
=x
2
=
2
r/
2JC
JC
+3
2Af
72
f (x,
12 '
2I32
'
2
;
/ (x,
2130. 1
2119.2.4.
;
21
00
X
f(x,y)dy.
t/
^^
J dj/ J
(
12
J/^
dy
^2
ix = JdxJ/(*. 00
10
00 42
2131.
i/)rfx
*
t
1
y
y\
2127.
11 2128.
x=2
1;
TT/7*
44
2116.
\JL
4
= 3.
~.
2115.
L**
2121. ^
9
7t
ln~
,/T y T
t/
= + 9; A:
Answers
2133.
dx
j
Vl -
t
f (x,
j
""
i/)d
d*
y)dy =
f(x,
-K 4 -*
+J
d
"
dx
*,
j
~
a
r
f
dy
\
J ~
2
\
1
dx
r dy
\
j
-
-V*--tp
y
c/
~yr^p
vr~^y~*
V* -X*
2
y)dx +
f(x,
J
* -
2134.
/(*,*/)
J
x*
-
i
+j
445
Kl+
2
JC
2
/(Jt,
-
-
f(x,y)dy=
J V* -n*
,
!/)
^+
*
U. y)d^+
f
f
dy
-vihT
a
I-A:
i
-
2135.
1+ Kl
(x,
r e) \
J
\)
-
+ 2aa r
dy
\
J
K
48
2136.
dx. 2137.
_
'
l dlj
jc
a
-
I
1
f (x,
\
y)
dy=
*j
i/
-
a
f(*>y)** +
\
f (x t
%)
-
1
1
81
dy
f (x,
y)
dx
+
_ 1
y*
dy
\
*
JL
12
2138
o^
-
ao
Ji
Vu
_
Vx
i
22 f (x, y)
dt/
2
o
20
*
l
1
ax oo
2
w "
a
y) dx\ d)
dx
\
-V i^Kr~7^
/a
/(AT,
rfy
o
1
1
Jf
f
=
-4f/ a
2
-
y) dy
Vci* - v*
a
i-#
i
/ (*,
_o^
r~; - x?
dx
a)
f(x,y)dy-
j
-^rn?
!
]*y
Va?
J
-
y*
f(x.y)dx.
d[/
/
(x t y) dx*
t/)
d
444
__ Answers
x
*=0
bx
(binormal). 2103.
(osculating
plane);
=
\
'
>
__ Q
(principal normal);
v,y.
,
30
+
= 0.
192-27
2107.
9100 2109.
-
21
2108. a)
.
- n -K-e
.1 a)
fl
flfj*
n
-
Q
when
OC
2113.
4~.
2120.
~,
1*
2114.
2121.
= ^-
#=3
2123.
2125
t/
y
2115.
= x\
= 0'
y\
/=10
r,
1^*25
x*'
11
t/
=
1
y
= 0;
y = 4.
= 0*
x
=3
2122.
TT/7.^
2124.
y)d
,
u
.
2119.2.4.
2 ;c
;
t/
= * + 9;
= ~\
=x
z'
y
= 2x;
u
21 = /U. 00 dr
y) dy.
2-0
oo
2130.
y)dy.
=
y
2126
V)
2129.
^y /
ZX + 9
2
f
dx
/ (x.
2X
1
72
12
y_
y = 2.
6;
X
J
10
00 42
= 2,
1
oo
*
t
K
X
1
1
= 0,
12 */(*' 00 jc
*/(*. )dx = d*/(x, o
7=
-nM b) P R-Q-
.
2127.
2128.
;
Chapter VII Q 2116. -~ 2117. 50.4. 2118.
x=2
1;
4
= 3.
x
jc
~ jf
Ing.
/
,
K=
^=
/=!,
O
jc==l;
When
2112.
-
i^i
^=2;
K~=-
>^2; b)
a)
f(x,y)dx.
y
i
r
r 2131.
\
dy
\
/(^,
i/)^+
\
^
f(x,y)dx=
\
\
dx
-i
\
f(x
t
y)dy+
-*
12 /.
2132.
^
dx Ja
2JC
f (x,
y)dy=\dy
\
f (x t
y)dx.
Answers
445
1
2133
.
4-
J<*x i
J " ~~ *
dx
(x.
dx
f (dx
\
C
c/
y) dy
=
dy
j
+J "
y) dy
/ (x,
J
y) dy
/(*,
y)dy =
+
f
dx
\
/(x, y)
dx+
\
C
dy
dy
f(x,
j
rr
J
f (x,
f(x,
y)
y)dx +
j
t/
i/
+J
dx
Vl + *
2
f (x,
dx
y)
/ (x,
J
V9 -X*
2
\
dx
V&~^
/ j -vr^*>
2134.
+J
dy
/ (x, y)
j
r
r
dy
\
J
/(x,
\
J
\y f (x,
j
2135.
y)dx.
a)
- x*
dx
b)
y)
dy
=
dy
\
1
/ (x,
a
[/
^
48
2136.
2138.
f dy
j
dy
/ (x, y)
'
!L
- x*
f(x>
dx. 2137.
+j
a
a
ta
\
dy
o
2(j
dy
\
J
*
2a
SI
T
<
dx
-
1
*. ffMir.
Ji
y)
-
a
12
f (x,
Vx d*
y) dx c)
*
JL
j
_
2a
2
S
\
y) dxt
y) dx; d)
ax oo
+ 2u
f (x.
Jdy J
i
f (Xt
-1
2
=
-
Ki~^
-
dy
y)
f (x,
-t/'
* ~a
P
'a
Va*
a f (x>
j
_L.
EHi 2
J
dx
f (x,
y) dx
+
\ 2
dy
\
JL 3
/ (x,
y) dx.
/ (x,
y) dXr
Answers
446
+ dy(f(x,y)dx J
( J
2139.
o
2 fl a
.
a
20 za
P
P
/(*, */)dx
j
+ jd*/ o
o
2141.
yf1
J
10J
f(x,y)dx +
J
2d
20, 2a
di/
j o
a+Vtf^H*
_
T
11-*
8
f(x,y)* + jdxj
dx
VT
V
2
1
^
o
2 i/
2~~
p
[dy
f(x,y)dx.
\
c/
Va*
a
_ ]/ aG a2 _ y* yl
r
2140
dy
\
J
V8
a
a_
a
a
a
a
2
00
VT
i
f(x,
dx
2142.
y)*.
VT^lfi
^I*
VR*-y*
2
/(A:,
2143.
t/)efy.
/ (x,
J j 00
f(*,y)dx.
dy
1
2
arc sin
jt
2144.
fdf/
arc ^in
o
2149.
2153.
-p
/(A:,
f/)dx. 2145.
2146.
.
.
~ a.
2147.
2148.^-
-^
-g-
y 15jt
1.
2150.
6.
y
f
In 2
2151.
8
a)
dx
2154.
.
2152.
;
-|
xr/dt/
=
^
b)
16 ;
c)
2
.
1"
_
2155.
.
o
i
2JT/?
//
=
/
1
Hint,
2156.
C
|-Ji/?'.
j
//
dx
== dr/
/?(1-COS/)
*Jl
\
o
o
(S)
=
C dx
cosO^
/?(!
\
ydy> where
the
last integral
is
obtained from
o
o
D4
the preceding one
2159.
by
flf
the
substitution
+i--
216
x=R
(*
sin t).
2157.
1
2158. --
.
-
o
Jt
1
^
T"
sin q>
^T
no T [(p
\
J
r/(rcos9, rsin(p)dr.
2161.
\
J o
cos
(p
.
Answers jn
i
sin
\
sin
*Ji
i
T
sin (p
a /COS
4
2164.
\
\
(tan
f
r/ (r cos
r sin q>)
cp,
r dr.
+
dr
5Jt
a /COS
\
dq>\
2
a cos
2165.
f J
f J
2171.
~nab.
r/ (r cos
dcp
r2
Hint.
-sin(pdr=-^.
2166.
The Jacobian
= abr.
I
is
1.
= u(\ u
as
v
1
2172.
^
v)
and
cfu
\
The
0);
the
when
=
c,
/(w
\
of u:
when x
limits of integration are
wy,
uv}udu.
Jacobian x=r-0,
Limits
.
I
is
uv^au
(1
t;),
\
/
2173.
.
2~y dv
Of
\
whence
=
i
fr \
-TT
variation
of
the
define
whence of
a
=
since
v:
1;
= ^-^
+a
;
for
y
= ftx
we
find
dw
"1
f
(2
'
"~9~)^
u
Hint '
^
ablf? 2 L\/i
-r]arctan^-r-
k2 J
ter
chan S e
^
variables, the equa-
^
tions of the sides of the square will be u
2174.
= u. We
^
B
4-
We
Solution.
u(l~u)=0,
1
i
^
-
o
y--^uv\
functions
follows that
wr^axjt
u=r-r-5
dr.
i-
+p q
(since
q>)
g
P i
2167
4-*-
3
x
r sin
2
limits
2(J)
T
""T"
have
\
\
dq>
2
\
d
+
/(tanp)dcp
cs a
n r dr
\
/ (tan q>) dcp
\
\
o
n_ 4
4-
oo
2163.
r/(rcosq>, rsinq>)dr.
(f
cos 2
4
\
d
sin
,
t_
4
2162.
447
bli
+ -Ahk
.
\
= v;
Solution.
w
+ u = 2;
u
u
The equation
= 2; of
u the
=
w.
curve
448
__ Answers
r4 **/*
2
[
rj-cos*(p-- rrsin
4ht upper
follows that
we
r= y
limit,
cos 2
p-
to the
sin
pDue
to
2
sin 2
T^
cp
^2
cp
limit
whence
0;
the
entire
of
first
\
quadrant:
dxdy = 4
\
.
a)
4-g-;
-;
a)
j
^dy 2
b)
dx ~
+
~
1
jJia
2184.
.
Vy
+ ^dy
j
a *-
2177
T5.
2180.
2183.
2
6.
2188.
1(6 o
1188.
,.96.
2202.
2205.
2209. Hint.
2214.
*.
;
^dx 2179
flZ -
-
a-- + -.
dy.
^
*
w
-
Hlnt
-
-
2182.
Change the variables
x2y = u,
I(R o
a )ln-.
2187.
a).
2193.
A.
abrdr.
~.
2194.
^.
d
2195. ~-
.
4
2197.
iia'(a
J.
2,98.
o
2206.
(
2
.19..^. 2200.^. 220,.^.
^"2"~ 1)-
2207.
nafrc.
2^'
|-
IB (!--). 2210. Change
~^
2203.
P).
^.
4(m
2l78
-
u=di/(l-^^=:C^r(l-x)dy.
the 1
ft)/?
2217. 8aarcstn
3 .
2218.
-~ a
-i O
2204.
(6
J~
2211.
L
yT
xt/
2
= u, ~=f.
-1^(3 /"T o
to polar coordinates. 2221.
o
=
1).
.
2212.
2
|-jw
\(
(2
L
~-
2213.
2219.
(
V
"2
1).
3
^a
.
2
Hint. Integrate in
.
'
2208.
5).
ft
variables
2215.
.
.
Q
Paas
-
a)(p
IX
^-^-
dx\ b)
Hint.
lOjt.
sin'cp
aVa*~x*
2181.
2185.
ourselves
_
\
o
_j>
Vy
i
1175.
- b* -
dy
\
(S)
cos'
^
it
real,
quadrantal angle
confining
fa*
y
be
integration relative
of
integral,
ak
the
first
region
^
tan
must
r
for the
of the
arc
fo
and
be
r will
for
Since
.
q>
symmetry
we can compute
axes,
lower
the
J,
2 rr cos
q>
ak have fan
whence
cp
2 2 /"a 6
KT-1).
+6 c +c a 2 2
2
the j/z-plane. 2216.
8a 2
.
1+5LV
2220.
1
I
3na2
.
4
2
2 .
Hint.
Hint. Pass to
__ 2222.
coordinates.
polar
-5-
2223. 8a arc tan
8aa
Hint. Pass to polar coordinates.
and
a
a
r
C
.
fl
T T
V2 L
-
i
Integrate by parts, and then
ya
9 2
x'
=?
9 2
+c
a
8fl
arc sin
\
J
\r
^^
variable
the
change
2 Vb* + c*-a }/a + c
b
^-
,
a
C
ady
Hint.a=\J dx\J
-^5
the answer. 2224
449
a1
/.__
2
Answers
2
sin
^
In
Iransform
t\
'-=)
Hint.
.
^
Pass to polar coordinates -
H=0.
2228
/x
2231.
2226.
m
^ ^=
=4
2232.
-
2229 /t
a)
"'
^J; lz
o
^=
'
L.
2225.
!
2227. *==*?,"" o (4
.
J*
*-;lr-o.
-
-
(D*-d4 );
b)
A
=
a4
2234.
.
|-
-3-
/=- f
Hint.
a*.
2230.
/^ Voj?
a
2233.
;
JT)
^
f
-K^I 16 In
2235. x
=
is
(/
29 ~
.
d=
to
equal
V of the straight line.
The distance
Hint.
-JL and 2
2236. 7
=
is
by means
found
5
^fca
of the point (x, y)
[7
/~T+3
In
from the straight lint
of the
normal equation
(}^"2~+l)],
where k
is
the
proportionality factor. Hint. Placing the coordinate origin at the vertex, the distance from which is proportional to the density of the lamina, we direct the coordinate axes alonjj the sides of the square. The moment of inertia is determined relative to the x-axis Passing to polar coordinates, we have jt_
_jt_
a sec
4
/x =
oo I
d
2238. /o
=
\
^--
a cosec
2
(jp
kr
(r sin q>)
2
r
dr
+
\
dq>
n_
~
jia
4 .
VR*~^7*
a
2242. a
-1
=
Hint. For the variables of integration take
( dx )
-*
dr 2237. /
Jg
Jifl
4 .
T 2239.
y (see Problem 2156). 2240.
2241.
(r sin q>)V
d
i
R
kr
\
H
\
J
dy
x \
J
/ (*,
0, x)di
/
and
Answers
450
VT=T*
i
2243.
^1 -*'-/, dy
J
/(*,,
J
-y
-i
1
2244.
2248 .lln21
4n# 15
i
5
_^
-
u
,
2254.
-
2258.
-
.
=f-
2253..
2252. -jutfc.
2257.
2249.
|.
-~a2
2255.
/?.
??fl%. 9
2259. 10
(
2256.
.
~ Jia
2260.
?c
|
|-r 3
Selut ion.
.
v
4
2acos(p
C
C dx
f
40
dz
= 2fdq>
f
Q
L
L 20 COS
2
r'dr
=
"25"
00
-T^^T-
2
3
f(2acoscp)*
1
^
1
2na 8
nnot
,
226h
Hint.Pass
3
19
2263.
4).
=0;
t/
4
the cylinder the jq/-plane
_ =0;
^(a + b +
2265.
2266.
c).
_
=0, 2=0.
Introduce
Hint.
a.
2269.
~ iz
coordinates.
a2
2
^(6c
6 2 ).
2
(3a
+
coordinates.
spherical
2
4/i ).
Hint.
For
the axis of
we t^ke the z-axis, for the plane of the base of the cylinder, The moment of inertia is computed about the x-axis. After the
passing to cylindrical coordinates,
rdydrdz
to cylindrical
2
2=-^D -
*=~, o
2268.
nabc.
2264.
_
_ x
Pass
-^-jt.
~(3jt
2267.
Hint.
2262.
coordinates.
to spherical
from
the
x-axis
is
equal
to
square of the distance of an element r z sin 2
+z
q>
2 .
2
2270.
(2/z
+ 3a
2 ).
Hint. The base of the cone is taken for the xr/-plane, the axis of the cone, for the 2-axis. The moment of inertia is computed about the x-axis. Passing to cylindrical coordinates, we have for points of the surface of the cone: r
= j-
2);
(/
and the square
of
the distance of
the element
2 2271. 2jtfcQ/i (1 the x-axis is equal to r 2 sin cp-f z 2 proportionality factor and Q is the density. Solution. .
cos a),
rdydrdz from where
The vertex
k
is
the
cone is taken for the coordinate origin and its axis is the z-axis. If we introduce spherical coordinates, the equation of the lateral surface of the cone will be a,
\|)r=--
and
the
equation
of
the
plane
of the
base will be
2t
From
the
follows that the resulting
r=-sin
-. ip
stress is directed along the
symmetry The mass of an element of volume dm = p/ 2 cos dcp dtydr, where Q the density. The component of attraction, along the z-axis, by this element it
z-axis. is
of the
of unit
tj)
mass lying at the point
is
equal to
j
sin
ip
=
Q
sin
i|?
cos
ty dtp dq>
dr.
Answers
451
L-a The resulting attraction
oo
equal to
is
h cosec
2
27i
\
\
dq>
\f
Q sin
\
d\|?
\f
cos
dr.
\|>
o
2272. Solution. We introduce cylindrical coordinates (Q, cp, z) with origin at the centre of the sphere and with the z-axis passing through a material point whose mass we assume equal to m. We denote by % the distance of 2 be the disfrom the centre of the sphere. Let r= >^Q 2 -h(| z) tance from the element of volume dv to the mass m. The attractive force of the element of volume dv of the sphere and the material point m is directed
this point
along
and
r
equal to
numerically
is
kym
density of the sphere and dv qd^dQdz jection of this force on the z-axis is ._,
dF
/\
kmydv
=
y=
where
,
Q
the
The
pro-
-^
... dQ
z
H
f
kmy *^~
is
la
the element of volume.
is
=
c s (rz)
^
2
dz.
d
Whence
R 4
But since -x-ynR'
M,
follows that
it
F=
kMm
(p>
2275. a)
p
2273.
for
w
P
p
>
a; c)
(p
> Q);
Hint. Differentiate L. 2277.1. 3
n2
p
dye~ x
y*e~*y
-^-^ A !'?
d)
P~1~P
.
> 0)
(p
7
00
2276.
\
J
5
---
b)
0);
P
?.
*5
.
C-^f/= J
2278.
twice.
P
ln~. a
o
2279. arc tan
--
arc
tan
2282. arc cot
2280.
n (l+a). -^l 2,
2284. -1
2285. -5.-
.
24
AW
AW
2283.
4--
1.
p
polar coordinates.
from S
=
\
\
In
-^
2288.
.
~ o
coordinate
the
consider 7
2287.
V
x*
n
-^ 4a-
2286.
V
(
'
a2
1
its
that
e-neighbourhood,
+ y*dxdy, where the eliminated region
is
at
=
JJ o6o \d(p
Whence
\ r
the
Passing to polar
origin.
271
1
Inr
lim 7 8 e->o
dr=
--=.
round the straight
\
we have
coordinates,
1
JL^
-5-
In r
le^JJ rfcp~2jt(-j~-Q-lnen
\
rrfr
\ *
-T-). * /
^
e
-5L. 2290. Converges for 2 line
is,
a circle of
(S 6 )
radius e with centre
Pass to
Hint.
.
1).
2289. Converges. Solution. Eliminate
with
together
origin
.
2281.
(/
=*
with
a
a>
narrow
1.
strip
2291. Converges. Hint. Sur-
and
put
I
- =a
i
^
J.' (S)
K(* K v
2 I/) y/
Answers
452
i-
.
2292.
t
2
2297.
l-2-^! arc
2301.
1).
~ll
)
|-[(I+4Ji
2298.
.
^
tan
M*
2302. 2jra
2
^(lOVTO
2303.
.
/7~
a*V 2. 2300.^(56
2299.
.
Hint.
1).
ftl
be interpreted geometrically as the area of a cylindrical sur-
may
y)ds
.
d
flu \
5m
fot
Converges
c face with generatrix parallel to the z-axis, with base, the contour of integra tion, and with altitudes equal to the values "of the integrand. Therefore, o
/
S=
xds, where
\
C
the
is
OA
arc
parabola t/=--x 8
of the
e (0, 0)
and
a V~3. 2305. 2
(4,6). 2304.
V
V
V^ + u
2306.
2308.
2ita
2
2
r
V
f ji
fl
a)
+ 4jTu
^aTT^
"
2
-5-;
o
b) 0;
c)
2309.
Use the parametric
To
;
a
2
b
,/
V
(a
.
J
+&
2
equations of a
fl
(-q
.o a
2311.
cases 4. 2314.
all
2315.
circle.
.
)
/
V
2jta
2 .
30
)
4;e)4. 2313. In
d)
2307.
2310.40-
.
2
h*\
a
2
fl
"*"
4-|rln
10
4 2312.
2
l/~a 2
^
arc sin
r
b*-\
[
that connects the
a *b
/ points
2
-r-a& o
2
2316.
.
Hint.
2rc.
2
sin 2.
xa
2317.
2318.
0.
a) 8;
12;
b)
c)
2;
d)
A
;
2
e)
\n(x
+ y);
//a
+ J{
ty (y)
dy-
2319.
2
2322.
a) 62;
b)
+ ln2;
c) -L
1;
4
+
1
d)
Y
f 9(jc)rfjc-f J
f)
2.
2320.
y\
Vl-fft e*~ y (x + .
c)
2325.
1
fi-
y)
+ C\
d) ln|Jt
+ j^"M //,
2328.
JJ
x2
a)
8 -
+ |/| +
2326
4o
+ 3xy
-
a>
2329
-
2
2f/
C.
+ C;
b)
2na(a +
2323.
~ 20
b>
0^ 233
^r-^
1;
-
c)5 4--
z
x8
x y-{-x 2 2 n/? cos b). 2324.
a
K
=
d) 0.
2;
2331
-
2327. /
2332
-
-
d
a ) Ol
(S) 2/iJi.
Hint In Case (b), Green's formula is used in the region between the b) contour C and a circle of sufficiently small radius with centre at the coordinate origin 2333. Solution. If we consider that the direction of the tangent coincides with that of positive circulation of the contour, then cos(X,n)==
= cos(y, 0=/. as
S
is
hence,
(X, n)
ds= J
ds =
the area bounded by the contour C. 2335.
not applicable. 2336. nab.
2337. -| Jia
o
2 .
Hint. Green's formula
4.
2338. 6jia
2334. 2S, where
2 .
2339.
-|a *
2 .
Hint.
is
Put
__ Answers
45$
for 2341. n(R + r) (/? + 2r); 6n y=tx where t is a parameter. 2340. ~. R r Hint. The equation of an epicycloid is of the form x = (R -f r) cos f r ~rcos^JL. *, y = (/?-f-r)sin/ rsin^J^/, where / is the angle of turn of 2
%
radius
the
2342. Ji(/? is
cycloid
Problem 2345.
V c)
a
of
r)(#
~ nR
2r),
drawn
circle
stationary 2
for
2
6
-^-(a
2
where k
),
work,
mgz,
/
potential,
mg(z
=
a
is
2 2 );
l
L(jc
of
the
+ + *)
work, 4r (#
f
2346.
= -ii-,
/
potential,
epicycloid 2344. mg(z,
FR.
factor,
proportionality
b)
tangency. the hypo-
of
corresponding 2343.
r
of
point
The equation
Hint.
'=-7-
obtained from the equation 2341) by replacing r by
the
to
2
r
(see z 2 ).
Potential,
a) -
work, 2
2347.
).
-|jta*.
2348.
^
!
2353.
2354.
a.
/J*"
/i*.
51)
V
10 (5
^
2355. a)
0;
b)
-{(
(cos
a
J
+ cos p
j
2356. 0. 2357.
.
na\
2358.
4;i.
2359.
=
2360.
a*.
(V)
2365. 3a4
2366.
-^ 2
2378. grad(rr)
/'(/)
the vector
=---
COS
(
f
2385. a)
>r)
/
^=0
;
r ot
r) t
2387.
2388. div grad
2392.
2a)/i
U= 2
a)
5^
=
for
j~Ji/?
(/(r)<7) ,
where
2
57
2
z
.
= lgrad(y|
= ^-^cxr. is
The
3y
3Jfe;
~
c)
;
b)
div
rot (/r)
=
a=^
2380.
/ (r)
+
~= /'
(r).
.
-^-;
2386. div tf=-0;
c)
div
rotv = 2co,
where
unit vector parallel to the axis oi rotation.
a
2 );
when a = 6 = c. 2383.
div(r^)-=~,
b)
+ 2//
points except the origin.
= c 2 2376. grad (/ (>1)=9/ x = y = z. 2377. a) ~; b) 2r ,
2382.-?-.
IJ_r.
^+^+^
//(3/?
2
the level surfaces are planes perpendicular to
7^,
/i
2371. Spheres; cylinders.
2363.
.
= xy\
= c;
divr=3, rotr=0;
= LW( Ct co=co/f
2379.
c.
5
+/=c *
d)
Jia
O
2373. Circles, x 2
2372. Cones.
~
2367.
.
;
rot
~ n/?
2
//
grad 2 (
flux is equal to
U = 0.
+ 2//
2 ).
2391.
2393.
4jtm. Hint.
2
3;i/? //.
divF=Oat
When
all
calculating
454
__ Answers
the
flux,
use
theorem.
the Ostrogradsky-Gauss
2394.
_ ~~TtD
2395.
2n*h*.
.
r
2396.
/=f
rf(r) dr. 2397. .
2398.
.
.
-L.
.
1
2402.
24 8
potential;
U=xyz + C',
b)
2400. Yes.
Chapter 2401
No
a)
.
2403.
^
VIII
2404.
.
.
2405. -
.
24 06.
-
2416. Diverges. 2417. Converges. 2418. Diverges. 2419. Diverges. 2420. Diverges. 2421. Diverges. 2422. Diverges. 2423. Diverges. 2424. Diverges. 2425. Converges. 2426. Converges. 2427. Converges. 2428. Converges. 2429. Converges. 2430. Converges. 2431. Converges. 2432. Converges. 2433. Converges. 2434. Diverges. 2435. Diverges. 2436. Converges. 2437. Diverges. 2438. Converges. 2439. Converges. 2440. Converges. 2441. Diverges. 2442. Converges. 2443. Converges. 2444. Converges. 2445. Converges. 2446. Converges. 2447. Converges. 2448. Converges. 2449. Converges. 2450. Diverges. 2451. Converges. 2452/Di2455. Diverges. 2453. Converges. 2454. Diverges. 2456. Converges. verges. 2457. Diverges. 2458. Converges. 2459. Diverges. 2460. Converges. 2461. Di2462. Converges. 2463. Diverges. 2464. Converges. 2465. Converges. verges. 2466. Converges. 2467. Diverges.
k- > !
2468. Diverges. Hint,
2470. Con-
1
verges conditionally. 2471. Converges conditionally. 2472. Converges absolutely 2473. Diverges. 2474. Converges conditionally. 2475. Converges absolutely. 2477. Converges absolutely. 2478. Converges 2476. Converges conditionally. absolutely. 2479. Diverges. 2480. Converges absolutely. 2481. Converges conditionally. 2482. Converges absolutely. 2484. a) Diverges; b) converges absolutely; c) diverges; d) converges conditionally. Hint. In examples (a) and (d) CO
consider the series
2
( a 2k-i
+ a zk)
anc
^
in
examples
and
(b)
(c)
investigate
2486
Converges
fe=i 00
separately the series
2a k=i
00
2k-\ and
2 a^' k=i
2485<
Diver ^ es
-
-
absolutely. 2487. Converges absolutely. 2488. Converges conditionally. 2489. Diverges. 2490. Converges absolutely. 2491. Converges absolutely. 2492. ConCD
verges absolutely. 2493. Yes. 2494. No. 2495.
*
1
7.9*1
f9n_iv
^T
-
3/2
;
converges. 2496.
n=l converges.
2497. Diverges.
2499.
Converges. 2500. Converges.
fi=i
Hint. The remainder of the series
a
geometric
progression
may
exceeding
be evaluated this
by means
remainder:
Rn
'
of the
an
"9*
sum ,
of
+
__
Answers
455
--
-'' 2504.
m + "-=~
-f
2505
-
For tne
<.<.
iven series
it
is
Solution.
to find the
easy
exact value of the remainder:
Solution.
We
multiply
-:
by
*"+ 2
/
1
\
M+ "
Whence we obtain is
nv nv .
=n
/
1
\ zn
VTj
/
.
v n+
m
* .
A
1
"**,
. '
I
I
= / + 16 T5
4 /
+\
i
r
}_
16
From
this
the series
we
find the
above value
Rn
of
Putting /i=0, we find the sum of
2507. 2;
2506. 99; 999.
S-=(pY-
.
3;
5.
2508.5=1.
Hint.
when x < 0; S-=0 when > 0, S= 2511. Converges diverges for x< Converges absolutely for x> for 0l, converges absolutely ^" for conditionally forx>*, converges 2512 absolutely Converges 0, diverges for x<0. Solution. 1) <~; and when x > the series with general term ^.converges; 2)^5^1
^~ x = Q. 2510.
an
2509.5-1 when
x
1
1.
1,
x.
-
.
.
.
,
oo, since from cosn*->0 xs^O, and cos n.x does not tend to zero as n thus, the necessary condition for converwould follow that cos 2n.v -* when 2/m < x < gence is violated when x<0. 2516. Converges absolutely
for
1
it
;
it diverges. 1, 2, ...); at the remaining points <(2fc + l)ji(fc=sO 1 for x ^ 0. 2519. x 2518. absolutely Converges Diverges everywhere. f
2517.
> x< 2523. x < 4,
2520.
x>3, x
x>l,x<-l.
2521. 2524.
x^l,
x
-Kx<
i-,
2522.
x^5j,
y
Hint.
1.
.
For these values
*
00
1
of x,
both the series
x k and
the series
^
converge>
When '^l^
1
__
456
and
when
x
|
\
^
=-
the
,
Kx<0,
2525.
Answers
term of the series does not tend to zero
general
0
l
2526.
\
2528.
1
2532.
4
2536. 2540.
2530. !<*
~ <*<
2538.
o
.
.
-5-
2542.
^
6
\
2541.
2
2527.
K V oo
2533. 2537.
_ 1
e
The diver-
1
x 1 of the series for is obvious (it is interesting, however, to note that the divergence of the series at the end-points of the interval of converthe aid of the necessary condition is detected not only with 1 gence
gence
|
|
x=
by means
of convergence, but also
d'Alembert
of the
<
When|x|
test).
1
we
have
=
lim
x
n\
n
nIn
lim
n
-
|(rt+l);t
|
oo
lim n-* oo
1
x
,
|
readily obtained by means of 1'Hospital's rule). 2543. l<;x^l Hint. Using the d'Alembert test, it is possible not only to find the interval of convergence, but also to investigate the convergence of the given series at the extremities of the interval of convergence. 2544. Hint. Using the Cauchy test, it is possible not only to find the interval of convergence, but also to investigate the convergence of the given series at the extremities of the interval of convergence. 2C45. 2 x 4. 2548. 2. 2547. 2549. 2546. (this equality
is
l
< <
2
2550. x
=
2554.
3
3
e
3
2558.
0
7
2551.
3
2555.
3.
2559.
1
2
4
l
1
2552.
.
1
1
-j^^ ~ \
series
2561. 2566.
diverges,
lim n -+
oo
e
.
|
(~-l< x
-ln(l-A:)
ll n
lf(|xl)
2579. .
arc
2577.
tan x
sum 2586.
^ farctanx--
In
x of
3.
the series
2587.
ax
x
3
\^}
x
|<
(|xl<1)
(\x\<
1).
2585.
2580. .
-
I
z
z
|
I
<
1
(-
In(l-f-x) 1)..
2563.
1
2570.
_
-
2583
^---^
.
Hint. Consider the
x*
^-+-=
=l+
(|
2
2560.
1
|
2582>
2384.
^
ye 1<*<3 2562. l
2576.
2578.
since
\
...
(see
^
Problem
_ 00
2579)
for
2688. sin
jc=~^=: x
+
-
'
=
Answers
xsm
/
cos (jc-|-a)=cos a
2589.
457 **
gating
the
1
1
)""
+ --^5S A
,
*
.
-j-
~2
Hint.
When
investi-
7*
use
remainder,
theorem
the
on
integrating
a
power
series
2592
r
(
_ l\"-
on-i
n=o oo
< *<
e**=
2595.
oo
1
+V
^
oo< x <
,
oo
2596.
n=i
(_-oo
oo
2599.
.
(-!)"
2600.
2608.
oo)
oo
(-3
rn-
T (-0" H
04/1-S y2n
2609.
(-OO
* 2611. 2-f
22^11
+3
2610. 8
~
-|.._ +
2601.
(2rz) |
.
**
2s 32 -
...
2591
o.
+(-o^ 3Z ^Z + TTi-"
x*
^ cos a + %r sma+'-rr cos a
a
-
2!
"*"
2W
-
-4-
3"
""
1
f
^ (=
l
W JC
(~oo
1
I)""
vn
458
Answers
*
<-<
V
1
2612.
g
/
1
+V
f|
-
(l+2- n )
I
l)
(
+ o7rFT
*"
(
'
~ 2 < * < 2)
'
2614.
).
2615. ln2
1
Ti
2616.
(-.i
V(-.l) x =o
(-D n+I
2018.
(I*KD.
'"
2622.
e(
T+S-;2624.
219.
c+
1-^4-...).
262S
-(^+75+^+---)
J
-
x
!+
2623.
+
+...
+ x* + jx>+... 2626. Hint. Proceed= &sin
ing from the parametric equations of i/ pute the length of the ellipse and expand the expression obtained in a series 2 of 2628. *' e. 2x* 5x 2= 78 59 (x-H) 14(x of powers 2629. / (je 5x 8 4* 2 4) ( oo
+ + =
+ +
< <
;
2630.
Ar
n -1
V(
l)
^"^
(0
2631.
n=i
V
00
2632.
(
V
1)" (*
(
1)"
(Q
< x < 2).
AI=O 00
(n
+
6
(x
1)
2).
+ \) n
(
2
< x < 0).
2633.
2634. /l=0
(,<. 1.3(^-4)' r 4-6 2
L3.5(*-4) 4.6-8
2"
2J(-D"
n=i
n=i
(0
U
X
2637.
4-i
"T---TI
JL
(2 ttll)!
2636.2+^-1^ 1.3.5...(2n-3)(x-4) 4.6-8...2n
O^K
00 )-
""^
*""
2638.
~+
Answers
Make
Hint.
the substitution
=
.
45J>
and
t
expand
\RI<<1.
2641.
2642.
T
-
\nx
|
in
of
powers
1
R \<
.
t.
~
2643.
p r ve that
exceed 0.001, it is necessary to evaluate the remainder by means of a geometric progression that exceeds this remainder. 2644. Two terms, that is, 7
X2 1
TT.
x*
Two
2645.
terms,
Z
2647. 99; 999. 2648.
*J<
0.7^68.
2659.
1
|
-"
r
_
/y
_
\2 .
I
0.005. 2650. 2.087. 2651.
<0
0621
2656.
+ V (-l)JfZ^L.
2660.
|
R \<
x |<0 39; \x\
0.608
2655.
2646. Eight terms, i.e.,
.
o
2649. 4.8
U|< 0.22. 2652.
0.39;
2fi54.
1.92
i.e.,
1
~-
x
~~ 03 Z
2657.
Z
0.2505
V-L jL*
!
2658.
0.026.
i
/
(2/0'
00
2661.
V n=
1
(
i
JO
2662.
a
1-1-2
V
x)";
(//
l-^-y +
J
ry
i/1
<
j
Hint.
1
x^
2663.
geometric progression
Hinl.
lJC
= (l-.^)(l-y).
yW
|T^^=- + !
i
I
^
(_
2664.
~~
K//<1).
Hint, arc tan -j
i
2665.
/ (Jt
+
2
\-2bh-\-ck
.
/i,
#+
2666.
A;)
~^-=arc tan x + arc
tan (/(for
A^y
= ax* + 2bxy + cy* + 2 (a* + fy) + 2 (bx + cy) /i
f(\+h,
2-\-k)
f(\
t
2)
=9/i
21/r -f3/i
-2^.2667.
2669.
l+x+-
+
-+...
n\
\x"< 0.69; -^ 0.4931.
\ o o
(-00
Y
18 2653.
1-f
2670.
i
Answers
460
%-l n=o
(n)=^=%.
^ + 4^(-l)";S(
2873.
n)
= n. 2674.
n=i
X
[^-
L2a
y
x ^4
V tr^! + <*a* +
(fl
n
cos n*
sin
n*) 1
rt
l>fl
l)
(
|tlyl
?
m nf
a*
S (+
;
Ji)
= cosh an.
2 Sln 2675.
a
is
nonintegral; sin ax
if
a
is
an integer;
gn
n
J
X
5(n) = 0.
n=i 2676. Ji
2a
I
L
S(
integer;
2678.
Jl )
+ jL* y _i )B (
if
or
n=i
= cosan.
a
is
nonintegral; cosa*
t\r
J 2677.
= :
CO
2680.
V
tin
.
sin
"-
^
if
a
is
an
Answers
2689
461
slnn/t .
/
2691
i_
.
2694.
4n-l
Solution.
2 P --
H
\
1)
2a
= -~
f /(*) cos 2/i* dx
/
(*
-jj-
W
cos 2/ix d
Ji
/ (x)
cos 2nx dx.
we make
If
the
x
substitution t**-=
in
the
first
Jl integral and
identity (n = 0,
t
=x
second, then, taking advantage of the assumed
in the
z
/(-^+< 1,^2,
)
= -/
will
<
(^
)
=
&,
f
(y +
/ (^) sin
=/
/
)
2nx dx =
f
2697.
~. T
sin
Sin
-|-
Case
as in
(\^
(1),
with
account taken
^ leads to the equalities 6 2II
t
of
=
the assumed
(/i=l,
2, ...).
'
/cos sinh
o 2n =0
n
t
T
The same substitution Identity
that
be seen
...);
n 2)
readily
~
J
/
[t /IJTJC
n
> (-1)"
2698.
cos
sin-
4
_8_
where
1 ^
nx
-16\\-1)"-'
-~,
(2'?
1^1
_-!? ,(2'H-l)Jix o
-il
2702.
b) 1)2
n=i
_ A V ^ J 2 1+ 1
n=o
S
!)
n*
2
9
2'mx
.
1
rs
2
mx
Answers
462
Chapter IX 2704. Yes. 2705. No. 2706. Yes. 2707. Yes. 2708. Yes. 2709.
no.
Yes;
a) b) = 0. 2716. = 0. 2715. 2xy' = Q. 2717. = = x 2xyy'. 2720. xyy (xy*+ 1)= y' = y. 2719. 3y = 0. 2724. / 2721. w=-xr/'ln~. 2722. 2xy" + y'=Q. 2723. 2725. #" 3f/V -^0. ^"'^O. 2728. (1 +y' )y"' + = 0. 2726. = 0. 2727. 2X = cos*. 2732. r/== 2730. 2731. x = 25. 2729. y = xe ^^.r^Sg-^ + g^ 4g 2X 2738. 2.593 (exact value y = 2739. 4.780 [exact o = 3(e 1)]. 2740. 0.946 (exact value y=\). 2741. 1.826 (exact value value 2742. cot //-tan x + C. 2743. ^= y = 0. 2744.
Yes.
2710.
/
2714. / 0. 2718.
xi/'
;u/'
2{/
2
r/
f
2
1.
(/"
2r/
i/'
I/
2
2
2//'
f/"
t/
2
2
.
//
/
e).
).
i/
2
2
..
V
= lnCx
2
2745.
.
2
= a + -^-. 2746. tan y^=C (1 -~
-
-
2748. 2e
y
=1^6 (l+e x 7|
= C. ment
.
2
2760.
2762. if
8x 5x
2752. 2754.
=
*=2px. 2761.
t/
x
;
= 0. 2747. = C sin i/
jc.
2751.
y=l.
2750.
.
|
or
hyperbola #
+^
2 J/
= ax
2
Hint.
.
to
respect
x,
=
2758
.
^2
2 -
I/
By
hypothesis
we
get
a
The
Hint.
seg-
= C. 2759. = r/
differential
equation.
-*.
y=V 4
^2
*
+ 21n-
^
Family
of circles x
2
2764.
.
Pencil of lines y^=kx. 2765. Fa-
+ y = C 2766. Family of hyperbolas x y = C. =~ ~ 2769. + (y b) = b 2768. = xln~. x x & z
mily of similar ellipses 2x* 2767.
8
)
+ 2y+l=2tan(4x + C). 2753. + 10y + C = 31n lOx 5y + 6| 2755.
f/^Cx
t/
with
twice
x
9
equal to
is
e
i+^srrf-j.
2749.
).
2757. Straight line
Differentiating
2763.
= C.
of the tangent
= Ce a
;
+ if
1
2
2
2
.
2
2
.
f/
.
r/
X .
x
= Ce y
.
2771.
+ ln|(/|=C. 2775. y
=
xl
C)
2773. y=5
x. C,
(x
2776.
2778.
2
2 t/
=C
2
2 ;
^-; (x
+y
ln|4jc +
8t/
(x
*
2)
= 0.
2 //
= 4;
2774.
= (xy + 3). + 5| + 8j/-4;t = C. !)
(;
i/
(x*
=
jc.
2772.
+ y*)* (x + y)*C.
2777. 2779.
x 2 =l-2[/.
__ Answers
463
2780. Paraboloid of revolution. Solution. By virtue of symmetry tUe soughtfor mirror is a surface of revolution. The coordinate origin is located in the source of light; the x-axis is the direction of the pencil of rays. If a tangent at any point (x, y) of the curve, generated by the desired surface being cut by the xi/-plane, forms with the x-axis an angle q>, and the segment connecttan 2q> (x, y) forms an angle a, then tan a ing the origin with the point
M
=
-
y
=
= y The desired differential equation is 2= = 2Cx-\-C*. The plane section is a para2jq/' and its solution is y* The desired surface is a paraboloid of revolution. 2781. (x y) 2 C*/ = 0. Hint. Use the fact that the area x 2 )-=Cx x = C(2# + C). 2783. But tana
.
.
tan 2 q>
1
=
=
M
tancp ^
;
x
j/'.
*/*/'
bola. 2782.
2
2
2
.
(2(/
X is
to
equal
~--* 4 +
y dx.
\
2
2787. x
.
t>x and ~.
respect
2
2
2793.
r/
= Cx
2784. y
Y
x
_
In
|x
+ + cos y = C. 2
1
= Q/
f/
= xln-.
2789.
.
x (y
2
+C
+ C)
x(
2
2C|/)
=x
8
2
2808.
2799. x
= 01n
;
is
lnU|
.
=
with
*
2790.
#
=
singular
2
.v
1/
= C.
is
no
singular 2 /
2801.
2812.
= 0.
2810.
2813.
= 0.
2815.
integral.
1
General
integral
"o"""^~ r"^
General
x
integral
1/^3
1
2816.
C2 +
2
(A
HO singular integral. 2814. General integral there
1.
x*' =
2806.
~ + ~==C.
2809.
2
integral
+-=
2803.
v
2 singular integral x
^2Cx;
t/
linear
.
2800.
.
(xsiii[/-j-f/cost/~ sin^)c =tC.
= 0;
there
~+C J=0;
x
ry2.|-C
2
=2
2811.
c.
is
y=^+
2 arc tan-
//
e
2786.
.
2 2794. x ^=
= C.
-
~
ab
2
2
+ arc sin x)
= 0.
?807.
= Cx + x
The equation
Hint,
!/
2788. x
2785.
|.
f/^-^cosxi
-~-
sin x. 2817.
A
- + C,
Singular 2821.
In
solution:
r
V p
2
t/
= 0.
2820.
+ + arctan~ = C, 2
i/
4y = x
x^\n
y
1
^
+p
1 ,
In |p
p .
Singular
x|
= C+
solution:
.
y=e
Answers
464
2822.
2823
g-C*+;
y=2*.
L=4
l* =
nlPL-zIl'sin P + C '2825.<
from which x
equation
= *
.
y=xu\
j/
2829.
= Cx + C; */
= Cx +
The
Hint.
,
defined as a function of p
is
2827.
+ y*=\.
and the family of geneous, equation;
2824.
homogeneous. 2826.
is
no singular solution 2
-g
;
/
= 4*.
2830.
differential
2828.
JO/-C
A
2831.
circle
=
+
astroid x*" a z i>. 2833. a) Homoy*i> uv\ c) linear in y\ y uv, d) Bernoulli's with variables separable; f) Clairaut's equation; reduce
tangents. 2832. b) linear in x\ x its
The
=
=
y = uv\_e) to y^xy' V^y^l g) Lagrange's equation; differentiate with respect to x\ h) Bernoulli's equation; y = uv\ i) leads to equation with variable? separable; u--x-}-y\ j) Lagrange's equation; differentiate with respect to x\ k) Bernoulli's equation in r, x=uv\ 1) exact differential equation; m) linear; y = uv\ n) Bernoulli's equation;
+ = Q/ 4
2 2835. x
(/
1
y
2836.
.
= uv.
/=i~.
lnC; singular solution, solution,
y = ~.
2840.
.
3//
2842. y
=
2834. a)
i/
2837.
=
In
sin-^
xi/(C-~
f- (x+l)
.
jc|
In
1
+ C;
x)=
x^y-
b)
2838.
1.
y=-Cx+ VaC\ singular 2841. ***-^ -arc tan y~
2839.
+ L~1J = C. ln
= x(l+Ce*).
|
2843.
y=
1
Ar=*(C-e-> ).
2844.
X -f2847.
x = Ce
sIn
^-2a(l+sini/).
2848.
1
i + Sx + y + ln [(x-3)
10 1
y-
8 1 |
]
= C.
2
-= In Cx.
2849. 2 arc tan
2852.
l- + r
cos*. + 4o
-l.
2860.
2863. y
=
X
ln|x|
2855.
xy
2858. x
= C.
= C(y
2850.
2853.
1).
(/
**=! ---\-Ce
= * arc sin (Cx).
2856. x
y .
2851. x 3
2854. y i ^Ce" ix
= C^-- (sin y + cos
= CeV--f,'-,/-
=-Ce^
^
2859.
/).
+
y sin
5
2857.
2
jc+
py-
-0. 2
y x
ij
2879. f/-0.
+
y^Cx + -~,
2873.
i/
= ~^/2?.
+ 4# ^Q/ 2876. 0=-=* 2880. 2881. y = (sin x + cos x). i/^-^= = 2. 2883. a) y x; b) Cx, where C
^C.
9
2875.
2
p
2
3
.
1.
-i-
2874.
2877. r/-=x. 2878.
(2x
f
2
x'-f-x
+ 2x + l).
*/
= 2.
/
2882.
=
y
2x is arbitrary; the point (0,0) t/ 2 singular point of the differential equation. 2884. a) y 2 x\ h) # 2px; 2 2 2 2 2 (0,0) is a singular point. 2885. a) (x C) 4-(/ -=C b) no solution; c) x -=x; t/ ---=e-*
is
=
a
=
+
;
2891.
2-=0
.
.
8 i/
.
e~ x
--1
-C
f .v
+
.
A:
that
the
area
is
to
equal
:c
y dx
\
J
and
arc
the
length,
f
to
x=^^--f
Cf/.
2
2897.
//
H^l/ 2
|
-^^
/
o
<>
2896.
^
a singular point. 2886. // --e". 2887. y^(V~2a Kx) 2 2888. f/ 2 2889. r-=Ce^. Hint. Pass to polar coordinates. 2890. 3y 2 2 2 2892. x 2 -|- (// 2893. // 2 [- 16x^0. 2894. 6) -_6 Hyperbola r-^/fq) 2 2 2 --C or circle x i-j/ 2895. t/--i- (e-v e- x ). Hint. Use tha fact
is
(0,0)
- 4C (C
-j-
a
x).
2898. Hint. Use the fact that tha
resultant of the force of s>ravit\ and the centrifugal force is normal to the surface. 'lakmg the r/-axih as the nxis of rotation and denoting by co the angular velocity "of rotation, \\ e get for the plane axial cross-section of the desired surface
the differential equation g-'-'==o) 2 x.
2899. p_^ e --*
Hint,
The
prts-
sure at each level of a vertical column of air may be considered as due solely to the pressure of the upper-lying layers Use the law of Boyle-Mar otte, according to \\hich the density is proportional to the pressure. The sought-for differential
equation
.-.kw-dx.
2901.
is
s=/>-j--a; ~ /
one hour.
2904.
kpdh. 2900.
dp
3
will decay in 100 years. Hint.
=^35.2
dQ==
sec.
kQ
Equation
Hint. Equation n(/i f
dfi.
Q
=
Qo
2905.
K
m^ = mgkv
~=
:
t
*f~V
a)e~
Q-=Q (4-)
T
as
;v=
y
2910.
ds
Equation ki
In
2903.
.
the initial quantity
of
~V udf.
=n
2908< u "~^
2909. 18.1 kg. Hint. Equation
4 2?6
^ =kQ.
2fc)d/i
(y)"*
tionality factor). Hint. Equation
16-1900
rpm.
Hint.
T^a + (T Q
2902.
V
(o^lOO(-g-J
s^klw.
/
2906.
2907.
"^
'
n^-
.
^
is
__
t
=^=
Hint,
a
g~tanh ft I/
=
Q
~)
[(/? sin
wf
.
Answers
466
1
+ L~ = E sinco*.
Hint. Equation Ri
].
2912.
x
+C
z.
2914.
#=<:,
+ {;, In
2915.
= C ed?
e
y
2916.
l
2918.
(x
C,)
w
=
i/
=
/=
2913.
.
2911.
r/
= aln : 2 ;y
= C.
+C
in~|
2021.
2923.
2
-
(singular solu-
2925. y
tion).
= C x(x
/
l
8
2929.
=C x=C
2935.
2930.
1).
sin(C,
=x+
x^^
2933.
-
/
2y
2
4x z
2934.
=\.
y=^x
2
2941.
.
2944.
^
-'e-r
2947.
x=
2950.
2954. w
--e"^ 2
= + Cj + D
x2
+
n-
(^i
2951.
2
No
solution.
2932.
.
~ 2939
^8
-
-2)
(i/-|
*
2948.
x.
2
2
-
//-C, //
In
2938.
y
=
"--*
-
-
2943.
.
//
2028. y
.
//=-*-]-!.
2945.
1-e'
t/^sec .
x=
2942.
t/-
= Cx
Jt^C,
2937.
ln|
2940.
8
2931. y
l.
.
2936.
.
l
2926.
(singular solution).
y=
2927.
.
-
r/-^=
= ~- + C
-
y
2946
-
1 -
e*
/y
-"
2949. 2952. y
= ex
.
2953.
//-2
In
|
--
A' |
2
+C
o-Cj^+l)*
C 2 )A: + C 2
2.
Singular solution,
y^
4-
2959.
(x
(x.
.
Singular solution,
1
^ ;
r/
= C.
2955.
3
+C.
2956.
2957. -singular solution, t/=-
2960. Catenary,
x
2 )
r/
= 2at/~ a
=a
2 .
.
2958.
cosh
Cycloid, x
.
x
Circles.
Circle,
=a
(t
2
z
(x sin /).
y = a (1
C^-\-kC\
C,)
= a2
.
cos
2961. /).
<7
O. 2963. Parabola. 2964.
^-e""* +
2962.
e
"^
-0.
Parabola,
__ Answers
4- C*
x.
-
Xcosh The
differential
=g(sina
2
/
=
-fC 2 lnx.
2973. y the
= A + Bx
2
the substitution
2967. In
.
No, b) yes>
+
.
2972.
= C,x-f
f/
Hint. Particular so-
.
AT
/2
---
method
the
By
.
x3
C ^~-\-A, C z
find:
x
\"*/
= */,.
//
O
v
we
-}
(
y< 2968. a)
= --!- 4 * + ^L
2974.
-{-x\
homogeneous equation r/j.v,
variation of parameters
B
Use
Hint.
k
=
3y"+4i/~ 2//-0
y'"
(C,sm x-}-C 2 cosx).
^
~
2966. s
2969. a) t/'-{-y Q\ b) y" 2y' -f f/-=0; 3jt 5x f 2x 8 2971. //-= 2970. j/
no, g) no, h) yes
f)
mg
m-r^ at*
Hint*
E(l uation of
'
cos a)
u,
300 d~x ~A~Z~
Hint. Equation of motion,
2x//'4-2f/-0, d)
2965
s^^- (sin a
motion,
of
^' ^\T)'
Hint. Equation of motion,
).
d) yes, e) no,
yes, A-
l
y
tn/
6.45 seconds.
c)
g
r
= 77
^22
= a.
constant horizontal tension, and
a
is
Law
jiicosa).
\
c)
equation
I/
Xlncoshf/
H
H
where
|-C 2t
467
2975.
-\-B
l
y
the
of
= A-\-
= +
2X
Ccos x-Hn|sec x-f-tan ^I-f-sinx In cos v| xcosx. 2976. f/ C,e -h C 2 sin x. 2977. //^-C,e" 3 * {-C 2 e 3V 2978. // -=C t -|- C 2 e x 2979. */ C, cos x v 2980. //--e' (CicosA'-l-C 2 Sin A-) 2981. y=~ e~** (C t cos 3v-|-C 2 sin 3x) 2982. y -|
sin x-\ 8
H-C'jC
.
~
-
2983. i/-.--e- (C,e r
(C^i-Cx)^-* *
- CV*
-r
A
C,e"
.//-4tf 2992.
x
//=-
C
sin
^4cos2v
+
/J
y(A\ -\-B\i-C}
4- xe
av
^-i-3A 2998.
-I
//
--.
C 2 sin
C,c*
7 'v
I-
C2
x
sin x.
t>
+
(/;
C a x)
2995. [/^(C.-j
2xJ
nx
2
e
+2
-{-
--
z
f)
3001. y
,
16*
cos 2x 4-
C 2 sin
2x)
+
//
= a cosh
+ +
+
2
.
4 cos 2* h e)
e
x
;<
x \-F)x
'
+ 4x
(2x
a x)
2
-f-
3003.
!,
2996. y
3).
P~ X -[-{-
= ^ (C
ic
<>**.
~ xex
.
3000. y
= C, cos x-f-
2 -p-
o
(3 sin 2x-|-cos 2.v). 3002.
i/
=
== (C 1
3005.
sm2x). 1
sin 2x.
f/-
0,
sin
+ C, sin
i/=l. 2991.
;
s
x e
x
A;
= C,+C e- x + ~x + ^r.(2cos2x X
J-
+
a)
= C,e* + C e~ 2X .
y
C, cos
- C,* H- C^"*
x
3004.
C2
-[-
>
ft
=
i/"TT
/ I
= sin 2x. 2990.
= (C, -f C
/
6
J^^fex
If
xe** (Ax* Bx C); b) fl sin x), d) g* (^ cos x xc* [(Av -j- fiv C) cos 2x+ (>x*-f
+1
2999. y
1
x
ax
2997.
.
r/
2994.
);
2984.
).
j/-=C, cos
+ CvV
2v
sin
+ C^~* rl
2
2986. //=.g
)
2988. f/-=e~*. 2989.
.
2993. c)
s
X sin
-|-C 2 e
+ e lv
/y-0
-|-/Jsin2x;
2
(C t e
]
0,
---x 2
* 2
(/=*
<
k
if
;
2985.
=
|
*
3006.
//
cos 2x -f
-^-
(sin
x
(/=
+ sin 2x).
__ Answers
468
$007.
1)
x
=C
A
1
cosco/
+ C 1 sinci)f + -j
-^slnp/;
2)
= Cj cos w/ + C, sin
x
2
$/
2
1
2
3010.
~
y^CfV + CStx**. 3009. ^ = 2X = **(<:! + C x + x 3011. = C + C e + -|x. yA-e = ^ + 4-( 3cos2x + sin2x 3013. y o
-f.cosorf. 3008.
2Jf
).
t/
3012.
2
1
CD/
)-
~ = (CjCos3jc + C sln3A;)gx + ~ = C, + C e * ~ (cos* + 3 sin*) 3018. + C x + *V w + ^4-^. 1U o
X*~* + |-e*.
= (C
3017. y
2
cosx.
+C
2
ie(4x + l)-^-^ + j.
3021. y sin
= C 6" * + C 1
1
2x
(3 sin 2*
-|-
2xcosx). 3024.
i/
3x)+~(2x
(2
2
x)e
8X .
= C e~~ x
+ 2cos2x).
2x
^. (sin
3023.
.
f
8;f
I)e
j(3x
= C, + C c
.
IJC
1
y
the
(2x
1
x -f
cos x
+
-j-
*/
(5, cos x
t/^C, cos 3x-
3028. y
+ x)^^ +
sin
cosines to the
of
product
=
ex
-x
2jce*-~ x
1
sin
3022.
3026. t/^
= C e-* + C ^-
y = Cj cos x + C 2
|/
x)e*. 3025.
2
J
3027. y
Transform
Hint.
-f r^sinSx.
IJC
a
+ 2 cos2x) + -j
3029.
8030.
3020.
= C e x H-C e- x + ~ (% +
X
2
*/
1
3019. y
= C, cos 2x
y
8
1
_^_*. xslnx
3016.
x
x
<
-^-
sum
of cosines.
+ C ex +xe*sin x + e* cos x. 3032. = C, cos x + C = tan ~ + --- 3033 + cos;cln cot x x x 3035. 3034. y = (C + C x)ex + xe \n\x\. x t/=^(C + C x)e-~ + xe^ -= 3036. 3037. y = Cj cos x C sin ^ + x sin x + cos x In cos x C, cos x + = + C sinx *cos* + sinxlnjsin*|. 3038. a) y C e* + Cf-* + (e* + e~*)x V 1/t Xarctan^; b) = C,^ +e*'. +Cf-* 3040._EquatIon of motion, 3031. y
*
2
l
t/
-
-
2
|
\Ti
2
l
-f-
s
I
2
l
2
/
|.
(/
|
2
/
.
l
*
-
2# -= -5
sin30/
t/
60
-~^
g^sin
900
"^7 cm
sec.
| .
.
ff
x-
.
.
t
rec koned
X
'
3041.
from the position of
4 k (x g is the distance of l), where x -jjt"=*4 the point of rest of the load from the initial point of suspension of the spring,
rest of the load,
I
is
the length of
then
the spring at rest;
+ xy
therefore, k (*
/)
= 4,
hence, -i^L*
8
k(x
y),
where *-4, ^ = 981 cm/sec
1 .
3042.
m
d*x.
dt*
= k(bx)k(b + x)
Answers
and x = ccos
=
) J
6~ In (6+ 1^35). 3044.2a)r= ^35). 3044. ~=r=gs; -gs;=: j/ y -In
3043. 6
.
t
2
e~ wi Hint. The differential equation of motion + e-"*); b) r = (e = o)V. 3045. y = C, + C,e* + C e 12X 3046. y = C, + C
.
(e'tf
2 is
y
t
f
469
)
2,(H
^ or
.
3
C 4 e" x 2 3049. 3048. i/ -= C, C 2 x C,e* 2 C 2 sin x) +e~ x (C 3 cos x -\3050. // c_e* (C, cos x C 4 x) sin 2x 3051 y (C, (C, -j- C 2 x) cos 2x ^ / i/T
+
+
=
.
3065. w--_C e" x 1
3066.
//
= Cj
4-
+C
2
y=-e~
+
/
x
2
-\-e
(
sin
3068. y -- (C,
2
3073.
3075. 3077.
j/
C2
In x)
C, cos (2 In x)
3070. y
3071.
-I-
= C,JC-hC
2
~ +C
x 2 |-C 3 x 3
r/^Qx-H-
.
2 .
3074.
.
x
-1
sec x
|/-j
cos
V
v
t
3069.
.
8 /
+ cos x In i/-j
j
xH-
\
I/"Q-
~ \ 4
p^sin ^r- x
cos v
|
tan x sin x |
+ x sin x.
\ )
2 / /3 y C,x + -%
2.
-|-x
3
.
sin (2 In x). 4
3072.
/=- C,-|-C 2 (3jcH-2)-
f/^Q cos
(In x)-f
C 2 sin
/3
.
(In x).
= (^+l)MC + C ln(jc-H)] f (x-}-l) = C x + C x +-o * 3076 2 = x(lnx + ln x). 3078. y = C, cos x + C sin x, z = C cos x C sinr x y = e~ (C cosx + C 2
3
i/
3
-
2
1
!/
1
1
2
2
f/
i
3079.
-^* C 4 sin x)
+
c,sinjcH-g
c(;sx-l
C 2 cos x-\-C 3 -
3067.
V
+
+
3
2
3080. y
l
=
(C,
Cj
Qx) e
2
t
Answers
470
3081. x
=C
L
I/-,-
f
2 e
l
8
(^C
3082.
\
I/"Q~
cos^* + C sin-^
2
x^CV' = = C + C + 2sinx, z= 2C, 2C x)
tj,
3083. y 3084.
3085.
/
2
1
2
2
e~ x 2x(3 + 4e-*), = 10^~8e ~^ + 6/-l; y=
0=14(1 3086. x
b) In
+ = arc
2
2
f/
dz
-
hence,
r
y% ..
2 r
2
/
Vx +y 2
we
^2
2
the
find
xdx -\-udy
v=
.
==C 2
.
,
,
Z |f
.
c)
;
x
+ (/-|-z
..
..
whence dx + dy+d*
2
+ +z 2
2
-= dx
we have
-- Q and,
1
.
,
In (* v
=
J/
9 2
+ ,
-ryw
Hint.
6.
dz
cf/y
y_ 2 z _ x consequently, x + + z = C >
jc
]/
-f
:
x __y
9v 2 ) /
p
2
we have
of derivative proportions,
//
homo-
2
In
integral
,
A;
10.
Hint. Integrating the
Whence lnz^=
.
of derivative proportions, properties r r t
&+ 12/+
first
....
0,
f x (5 + 4^-
*"*)
(1
%&* + &** +
Then, using the properties
y dy /
+i/
x
=
+ C,.
= -; xdx r=
+C
--
geneous equation
= arcxtan
tan
9
z
)
8t
]^x
C 2 (2A:+ 1) 3 sin x 2 cos *. z^Q-fCj,*) e-* + 5x 9;
A;
.
+ ln C, and, ,
,
2
r
the
Applying
= dx+dt/-\-dz
-
;
Q
x dx 1
.
Similarly,
-
-
x dx -\- if dy ~\- z dz n z(x y) 2 C 2 Thus, the integral curves are the circles x + // + z C ,;t 2 -f// 2 -}-z 2 Co 4-z From the initial conditions, Jt=l (/=!, z 2, we will have C l = 0, C 2 = 6.
y(zx) .
1
f
3089.
f
/==
z= 3090. y
C 1
1
*2
+
2C.A;
~^ +
+ -| (3 In * + In x2
f-
1).
= C^ V
Solution.
mjj-kv x m~-^kvy \
mg
for the initial conditions:
when
Answers x
0,
r
0,
I/Q
*
+ mg = (kv
kv v
,
^
sinTr
t,
Vm
2-2*
3093. [/-
x2
,
3097.
X2 ^ z
+ *% x
r/
-j
1
^~
x'
3101. //m
1
_|
~~t o
4 t
4
9
lions:
3104.
.
u(0,
-
//
-.2
JT
A
-]-~t o
7
;
;
3105. u
= -4-
"(^.
2
--qi~~ x
the
:
(x,
JfH-~
.
9 -
^ ie
'
method
for
l
conver ^ es for
serics
undetermined
of '
"-"
coefficients.
series converges for
oo
undetermined coefficients.
of
SCneS
the
..
.}
.
3103.
I
0- -0,
(/.
M (x, 0) -=
cos /m) sin
(1
^
Conver 6 es
^-
A
sin
sin
x-
3102.
M-^cos^sin^.
for
a
'l<-
v l
2
l~oT*
~r-
Hint. Use the condi-
I
,
-^-
Hint.
.
Use
the
conditions:
/
/
u(x,
~y
cos
~T"
sin
~T~
"
Hint
n-\
du
^
undetermined coefficients.
of
9
sin
1)
v
O-o,
^~
=
,'+...
J
tt<"/l 2
= 0.
l
2ig+ '"'
^""
!
0----0. "
w(0,
*
4
+ r
!
!
x
-}-
method
Hint. Use the 2
8
Hint. Use the
.
y
equations of motion:
...' the series converges
r
Use the method x
u~
^=-,1,
X4
77
Hint.
-
+
=
k
= acos
3092. x
.
differential
.\ e 2
Q
+
X3
2
3099. //--I
3100. r/--'
y=(y +
3094.
.
+ o4 + + pr-r Z*3
'
3098. f/-^x
The
^ ^^ 1^ .-.I^+-
,
3096. /t
/
+ mg)e m
Hint.
vx
.
mu 2
yl + lx +
3095.
s\na
1.
-\
a-
Q
we obtain
Integrating,
Q ft
f
*
sina.
i>
,
^
'"
= -~
UV
cosa,
i;
Xo
471
'
^ se
~
llie
conf^ tlons:
forO
0)
3106. u
=--t A n cos n=o
^~ r ^
}
"" sin
n **
^"^
,
where
the
coefficients
/!=
Answers
472
(2
,*. f
"+ 1)JtJf dx.
Hint. Use the conditions
^-sin .
400 7 >u===
\^
_2^
1
,, -
3
(1
<,.a)*
-o.
0=0.
to,
v
nnx
.
cos rui) sin
Hint. Use the" conditions: u
(0,
ioo a
e j-rrr-
/)-=0,
u (100,
Chapter
= 0,
u
(x, 0)
= 0.01
x(100
x).
X
<1
<1
3108. a) <1"; <0.0023/ mm; <0.26/ gm; <0.0016/ . c) b) 3109. 0.0005; <1.45/ 0.005; <0.16/ c) b) a) <0.05; <0.021/ ; 8 since the number lies between 47,877 3110. a) two decimals; 48-10* or 49- 10 and 48,845; b) two decimals; 15; c) one decimal; 6*10 2 For practice1 -purposes 2 3111. a) 29.5; there is sense in writing the result in the form (5.90.1)- 10 2 or 18.5 1.643.2. 3112. 10 18470.01; 84.2; b) c) the result of a) c) b) subtraction does not have any correct decimals, since the difference is equal with a possible absolute error of one hundredth. to one hundredth 2 Hint. Use the formula for increase in area of a square. 3113*. 1.80.3 cm 2 19.90.1 3115. 3114. 0.30.1. 30.00.2; 43.70.1; c) b) a) 3116. a) 1.12950.0002; b) 0.1200.006; c) the quotient may vary between 48 and 62. Hence, not a single decimal place in the quotient may be considered certain. 3117. 0.480. The last digit may vary by unity. 3118. a) 0.1729; 2 3 s 3120. a) 1.648; b) 4. 025 0.001; b) 277- 10 ; c) 2. 3119. (2.050.01)- 10 cm s cm 2 Absolute error, 65 cm 2 Relative error, c) 9.0060.003. 3121. 4.01- 10 0.2 cm; sina 0.440.01, a-2615' 0.16/ 3122. The side is equal to 13.8 3125. The length of the pendulum 35'. 3123. 270.1. 3124. 0.27 ampere should be measured to within 0.3 cm; take the numbers ;t and q to three decimals (on the principle of equal effects). 3126. Measure the radii and the generatrix with relative error 1/300. Take the number n to three decimal places (on the principle of equal effects). 3127. Measure the quantity / to within and s to within 0.7/ (on the principle of equal effects). 0.2/ 3128. ;
;
<
<
;
.
,
.
.
;
.
m
.
.
.
,
+
=
.
.
Answers
473
J129.
3130.
the
4 Hint. Compute the first live values of y and, after obtaining A {/o^24, repeat number 24 throughout the column of fourth diilerences. After this the
remaining part of the table from right to left).
is
tilled
in
by the operation
of
addition (moving
Answers
474
b) 0. 229; 0.399; 0.491; 0.664. 3132.
3131. a) 0.211; 0.389; 0.490; 0.660;
=~
1822;
^
x* x*. 3134. y x4 0.1993; 0.2165; 0.2334; 0.2503. 3133. \+x oe QC JC x2 20 for x^5.2. Hint. When computing 8; J/^ 22 fr x 5.5; ^T T2 x2 20 take 11. 3135. The interpolating polynomial is y A; for 10x4- 1; 0=1 when x 0. 3136. 158 kg! (approximately). 3137. a) 0(0.5)-= 1,
+ +
=
=
+
+
=
0(2)=11;
= -,
b) 0(0.5)
J/t 2
)^
3
3138
-
I-
-
325
1.01.
3139.
3140. 019. 3143. 0.31 and 4 0.25; 2.11. 3141. 2.09. 3142. 2 45 and 1.86; 3144. 2.506. 3145. 0.02. 3146. 024. 3147. 1 27 3148. 35; 1 53 1.88; 3149. 1.84. 3150. 1.31 and 0.67. 3151. 7.13. 3152. 0.165. 3153. 1.73 and 0. 3154. 1.72. 3155. 138 3156. x 0.56 0.83; 0.83; i/= 056; 1 1997 3160. By the trapezoi3157. *=1.67; 22. 3158. 4 493. 3159. dal formula, 11.625; by Simpson's formula, 11 417. 3161. 995; 1; 0.005; 3164. 0.79. 3163. 069 1.3-10- s A^O.005. 3162. 0.3068; A 0.5/ 3166. 0.28. 3167. 0.10. 3168. 1 61. 3170. 0.09. 3169. 1.85 3165. 0.84. 3171. 0.67. 3172. 0.75. 3173. 0.79. 3174. 4.93. 3175. 1 29. Hint. Make use of the parametric equation of the ellipse x cost, 0-= 0.6222 sin/<:nd trans-
=
=
x-
0=1
=
;
.
_JT
2
foim
is
the
formula
of the arc length to the
the eccentricity of the ellipse. 3176. y l (x)
x7
xn
x 15 -
63 v3
o?9
3177
59535-
Qy2
T+T""* -2.
+1: 3178.
z
'
^
x2
W=~ T~
iW^ - 2 3x
1
= x, (x)
f/ 2
=x
\
3
o
'
e 2 cos 2 /-d/,
}/~l
3
,
y2
(x)
xs
X
o
3x 2
*T T
'
W-|
=x (x)
|,
2x 2
where
7
= xT + x^
uo
e
x3
,
y3
(x)
To +
~ J X3
yl
22
=
= 3.36.
form
+ 3x-2,
Zl
(*)=-i
^(x)-x~ + ^. =
3180. 3181. z (1)==2. 72 0.80. 3.72; 0(2) 0(1) 3 15. 0-1.80. 31S3. 3.15. 3184. 0.14. 3185. 0(0.5) -3 15; z (0 5)0.18. 3187. 1.16. 3188.0 87. 3189. x (n) -3.58; 0(0.5)^0.55; z (0 5) 3190. x' (ji) -=0.79. 429+ 1739 cos x 1037 sin x 6321 cos 2x -f- 1263 sin 2x 3191. 96cos x-j-2. 14 sin x 1242cos3x 33sm3x. 1.68 cos 2x 0. 53 sin 2x 1.13 cos 3x 0.04 sin 3x. 3192. 0.960 0.851 cos x 0.915 sin x -|608 sin x [-f-0. 542cos2x 4-0. 620sin2x -[-0.271 cos 3x -|-0. 100 sin 3x. 3193. a) 0.414 cos x 4- 0.1 11 cos 2x |-0.056cos 3x. 4- 0.076 sin 2x4- 0.022 sin 3x; b) 0. 338
3179. 3182. 3186.
0(1)
=
6491
+
+
+
+
+
+
APPENDIX
I.
II.
Greek Alphabet
Some Constants
476
Appendix
III.
Inverse Quantities, Powers, Roots, Logarithms
Appendix
477
Continued
478
Appendix IV.
Trigonometric
Functions
Appendix V.
Exponential, Hyperbolic and Trigonometric Functions
479
480
Appendix
VI.
Some Curves
(for
Reference)
-f
1.
-/ 4.
2.
Parabola,
Cubic parabola,
1
Graph
3.
Rectangular hyperbola,
-/
of a fractional
5.
The witch
of Agnesi,
function,
6.
Parabola (upper branch),
7.
Cubic parabola,
481
Appendix
Semicubical
8/7
parabola, 2
8a.
=x
^ *
or
Neile's p arabola, 2 (
y-^-c'
x^t*
or
_
9.
:
Sine curve and cosine curve,
y
10.
--sin
.v
and
//
=
Tangent curve and cotangent curve, and / cot#.
=
Appendix
482
11.
Graphs
of the functions
//-=secx and
y=arc
f/
sin x-
y^arc cos
x
Ji
x
'
A *
arc cos
\ >
y arcsinx
Graphs of the inverse trigonometric functions # = arc sin x and y~ arc cos x.
x
483
Appendix
T
13.
Graphs
of the
//
= arccot#.
.
14.
Graphs f/
of the exponential
= g*
and y
= e~*.
x
cot
x
"V \^^ arccot
inverse trigonometric functions
//=-arc tan x and
arc cot
functions
-
486
Appendix
\
25.
Bernoulli's lemniscate,
24. Strophoid, *
u2 y
= ATs^-M
ax !
.
27.
Hypocycloid i
=
\ y or
26. Cycloid,
x
= a(f
y
a
(1
A
(astroid),
a cos 3
x
fl
sin 8
2
2
S
8
-f/y
/,
/
=a v
.
sin*),
cos
28. Cardioid,
= a(l+coscp).
/)
29.
Evolvent (involute)
of
the circle
sin*)*
{;::
487
Appendix
31.
^30. Spiral of Archimedes,
32.
Logarithmic r
= *'?.
33.
spiral,
Hyperbolic spiral, a
Three-leafed rose, r a sinSip.
=
34. Four-leafed rose, r asiti2(p.
=
INDEX
B Absolute error 367 Absolute value
number
of a real
Bending point 84 11
Absolutely convergent series 296, 297 Acceleration vector 236 Adams' formula 390 Adams' method 389, 390, 392 Agnesi
Witch
of 18,
Bernoulli's equation 333 Bernoulli's lemniscate Beta-function 146, 150
155,
Binormal 238
Boundary conditions 363 Branch of a hyperbola 20, 480 Broken-line method Euler's 326
156,480
Algebraic functions 48
Angle between two surfaces, 219 Angle of contingence 102, 243 Angle of contingence of second kind 243 Antiderivative 140, 141 generalized 143 Approximate numbers 367 addition of 368 division of 368 multiplication of 368 powers of 368 4 roots of 368 subtraction of 368
Approximation successive 377, 385
Arc length Arc length Archimedes
of a curve of a space
158-161
curve 234
spiral of 20, 65, 66, 105, 487 Area in polar coordinates 155, 256 Area in rectangular coordinates 153, 256 Area of a plane region 256 Area of a surface 166-168, 259
Argument
11
Astroid 20, 63,
105,
Asymptote 93 horizontal 94 inclined 94 right horizontal 93 right inclined 93 left left
vertical
93
486
Cardioid 20, 105, 486 Catenary 104, 105, 484 Catenoid 168 Cauchy's integral test 295 Cauchy's test 293, 295 Cauchy's theorem 75, 326 Cavalieri's "lemon" 165 Centre of curvature 103 Change of variable 211-217 in a definite integral 146 in a double integral 252-254 in an indefinite integral 113
Characteristic equation 356 Characteristic points 96 Chebyshev's conditions 127
Chord method 376 Circle 20, of of
104
convergence 306 curvature 103
osculating 103 Circulation of a vector 289 Cissoid 232 of
Diodes
18,
485
Clairaut's equation 339 Closed interval 11 Coefficients Fourier 318, 393, 394 Comparison test 143, 293, 294 Composite function 12, 49
486
Index
Concave down 91 Concave up 91
probability 19, 484 sine 481 tangent 481
Concavity
Cusp 230 Cycloid 105, 106, 486
direction of 91
Conchoid 232 Condition Lipschitz
489
385
Conditions
boundary 363 Chebyshev's 127 Dirichlet 318, 319 initial 323, 363
D'Alembert's test 295 Decreasing function 83 Definite integral 138 Del 288
Conditional extremum 223-225 Conditionally (not absolutely) convergent series 296 Contingence angle of 102, 243 Continuity of functions 36 Continuous function 36 proper lies of 38
Dependent variable
Convergence circle of 306
interval of 305 radius of 305
region of 304
uniform 306 Convergent improper 270 Convergent series 293 Coordinates
integral
of centre of gravity 170 generalized polar 255 Correct decimal places in sense 367 Correct decimal places in a narrow sense 367 Cosine curve 481 Cotangent curve 481
a
143,
broad
Coupling equation 223 Critical point of the second kind 92 points 84 Cubic parabola 17, 105, 234, 480 Curl of a vector field 288 Critical
Curvature centre of 103 circle of 103 of a
curve 102, 242
radius of 102
second 243
Curve cosine 481
cotangent 481 discriminant 232, 234 Gaussian 92 integral 322 logarithmic 484
11
Derivative 43 left-hand 44 logarithmic 55 nth 67 right-hand 44 second 66 Derivative of a function in a given direction 193 Derivative of functions represented parametrically 57 Derivative of an implicit function 57 Derivative of an inverse function 57 Derivative of the second order 66 Derivatives of higher orders 66-69 one-sided 43 table of 47 Descartes folium of 20, 21, 232, 485
Determinant functional 264
Determining coefficients first method of 122 second method of 122 Diagonal table 389 Difference of two convergent
series
298
Differential of an arc 101, 234 first-order 71
higher-order 198 principal properties of 72 second 198 second-order 72 total,
integration
of
202-204
Differential equation 322 homogeneous linear 349 inhomogeneous linear 349 Differential equations first-order 324 forming 329 higher-order 345
linear 349, 351
490
Index
Differential equations of higher powers first-order
337
Differentials
method
343 and higher orders 72 Differentiating a composite function 47 Differentiation 43 of implicit functions 205-208 of
of third
tabular 46 Diocles cissoid of 18, 485
Direction of concavity 91 Direction field 325 Dirichlet conditions 318, 319 function 40 series 295, 296
theorem 318 Discontinuity 37 of the first kind 37 infinite 38 removable 37 of the second kind 38 Discontinuous function 270 Discriminant 222 Dicriminant curve 232, 234 Divergence of a vector field 288 Divergent improper integral 143, 270 Divergent series 293, 294
Domain Domain
11
of definition 11
Double in
integral 246 curvilinear coordinates
in polar coordinates 252 in rectangular coordinates
253 246
coupling 223 differential 322 Euler's 357 exact differential 335 first-order
differential
324
homogeneous 330, 351, 356 homogeneous linear differential 332, 349
inhomogeneous 349, 351, 356 Lagrange's 339 Laplace's 289, 291 linear 332 of a normal 60, 218 of a tangent 60 of a tangent plane 218 with variables separable Equivalent functions 33 Error absolute 367 limiting absolute 367 limiting relative 367 relative 367 Euler integral 146 Euler-Poisson integral 272 Euler's broken-line method Euler's equation 357 Even function 13 Evolute of a curve 103 Evolvent of a circle 486 Evolvent of a curve 104 Exact differential equation Exponential functions 49,
Exkemal point Extremum
327,
328
326
335 55,
483
84
conditional 223-225 of a function 83, 83, 222
Double point 230 Factor
Elimination
method
of
359
Ellipse 18, 20, 104, 485
Energy kinetic 174
Envelope equations of 232 of a family of plane curves 232 Epicycloid 283
Equal
effects
principle of 369
Equation Bernoulli's 333 characteristic 356 Clairaut's 339
integrating 335 Field direction field 325 nonstationary scalar potential vector 289 scalar 288 solenoidal vector 289 Field (cont) stationary scalar or vector 288 Field theory 288-292 First-order differential First-order differential
Flow
lines
Flux of Folium
288
vector 288
71
equations 324
288
a vector field of
or vector
288
Descartes 20, 21, 232, 485
Index
Force lines 288
491
logarithmic 49 transcendental, integration of 135 trigonometric 48 trigonometric, integrating 128, 129 Fundamental system of solutions 349
Form Lagrange's 311
Formula Adams' 390 Green's 276, 281, 282 Lagrange's 145 Lagrange's interpolation 374 Leibniz 67 Maclaurin's77, 220 Newton-Leibniz 140, 141, 275 Newton's interpolation 372 Ostrogradsky-Gauss 286-288 parabolic 382 Simpson's 382-384 Stokes' 285, 286, 289 Taylor's 77, 220 trapezoidal 382
Gamma-function
Formulas reduction 130, 135 Fourier- coefficients 318, Fourier series 318, 319 Four -leafed rose 487
146,
150
Gaussian curve 92 General integral 322 General solution 359 General solution (of an equation) 323 General term 294 Generalized antiderivative 143 Generalized 255 polar coordinates Geometric progression 293, 294 Gradient of a field 288 Gradient of a function 194, 195 of a function 12 Greatest value 85, 225, 227 Green's formula 276, 281, Guldin's theorems 171
Graph 393,
394
282
Fraction
H
proper rational 121
Function 11 composite 12, 49 continuous 36
Hamiltonian operator 288
Harmonic
continuous, properties decreasing 83 Dinchlet 40 discontinuous 270
of
38
even 13 of a
Homogeneous
function 12
implicit 12 increasing 83 Lagrange 223, 224
multiple-valued periodic 14 single-valued vector 235
11
11
Functional determinant 264 Functional series 304 Functions algebraic 48 equivalent 33 exponential 49, 55, 483 hyperbolic 49, 484 hyperbolic, integration of 133 inverse
series 294, 296, 297 Higher-order differential 198 Higher-order differential equations 345 Higher-order partial derivative 197 Holograph of a vector 235 Homogeneous equations 330, 351, 356
12
Functions (cont) inverse circular 48 inverse hyperbolic 49 inverse trigonometric 482, 483 linearly dependent 349 linearly independent 349
linear
differential
equation 332, 349
Hyperbola
17, 18, 20,
485
rectangular 480 Hyperbolic functions 49, 484 integration of 133
Hyperbolic spiral 20, 105, 487 Hyperbolic substitutions 114, 116, 133 Hypocycloid 283, 486 I
Implicit function 12
Improper integral convergent 270 divergent 270 Improper multiple integrals 269, 270 Incomplete Fourier series 318, 319 Increasing function 83 Increment of an argument 42 Increment of a function 42 Independent variable 11 Indeterminate forms evaluating 78 79 t
492
Index
Infinite discontinuities 38 Infinitely large quantities 33 Infinitely small quantities 33 Infinites 33
Interpolation formula Lagrange's 374 Newton's 372 Interval of calculations 382 closed 11
Infinitesimals 33 of higher order 33 of order n 33 of the same order 33 Inflection
of of
Interval (cont)
points of 91
open
Inhomogeneous equation 349, 351, 356 Inhomogeneous linear differential equation 349
363 322 convergent improper 143 definite 138 divergent improper 143 double 246 Euler 146 Euler-Poisson 272 general 322 improper multiple 269, 270 line 273-278 particular 322 probability 144 singular 337 surface 284-286 triple 262 Integral curve 322 Integral sum 138 Integrating factor 335
Initial conditions 323,
Integral
Integration basic rules of 107 under the differential sign direct 107 by parts 116, 117, 149 path of 273, 274, 280
1 1
interval 372 circular functions 48 functions 12
hyperbolic functions 49 interpolation 373 trigonometric functions 482,
483
Jacobian 253, 264
Kinetic energy 174
109
of differential equation of power series 361, 362 Integration of functions
Integration
by means
differential
Integration of total differentials 202-
204 Integration of transcendental functions 135
Interpolation of functions 372-374 inverse 373
table Inverse Inverse Inverse Inverse Inverse
Involute of a circle 20, 106, 486 Involute of a curve 104 Isoclines 325 Isolated point 230 , Iterative method 377, 378, 380
region of 246-248 by substitution 1 13
numerical 382, 383 Integration of ordinary equation numerical 384-393
convergence 305 monotonicity 83
Lagrange's equation 339 Lagrange's form 311 Lagrange's formula 145 Lagrange's function 223, 224 Lagrange's interpolation formula 374 Lagrange's theorem 75 Laplace equation 289, 291 Laplace transformation 271 Laplacian operator 289
Lamina coordinates of the centre of gravity of a, 261 mass and static moments of a 260 moments of inertia of a 261 Least value 85 Left-hand derivative 44 Left horizontal asymptote 94 Left inclined asymptote 94 Leibniz rule 67, 269 Leibniz test 296, 297
linear 13, 372
Lemniscate 20, 105, 232 Bernoulli's 155, 486 Level surfaces 288
quadratic 372
L'Hospital-Bernoulli
rule
78-82
493
Index of
385,
Limit of a sequence 22 Limiting absolute error 367 Limiting relative error 367 Limits
Minimum Mixed
of inertia 169 static 168
straight 17, 20 Line integral
Monotonicity
application of 276, 283 of the first type 273, 274, 277, 278 Line integral of the second type 274, 275, 278-281 Linear differential equations 349, 351 Linear equation 332 Linear interpolation 372 of a fa nation 13 Linearly dependent functions 349 Linearly independent functions 349 Lines flow 288 vector 288 Lipschitz condition 385
21,
105,
point of a function 151
Mean-value theorems 75, Mean rate of change 42 Method 1
150
389, 390, 392
chord method 376 of differentials 343 of elimination 359
Method
nth derivative 67
Nnbla 288 Napier's number 28 Natural trihedron 238 Necessary condition for for
convergence an extremum
106,
Newton-Leibniz formula 140, 141, 275 Newton's interpolation formula 372 Newton's method 377, 379 Newton's serpentine 18 Niele's parabola 18, 234, 481
Maclaurin's formula 77, 220 Maclaurin's series 31 1, 313 Maximum of a function 84, 222
Adams
N
trident of 18
derivative 55 functions 49
M
Mean value
11
Multiplicities root 121
Newton
curve 484
spiral 20,
intervals of 83 Multiple-valued function
293 Necessary condition 222
force 288
Maximum
point 84
partial derivative 197
Moment
one-sided 22
Line
Logarithmic Logarithmic Logarithmic Logarithmic 487
successive
approximation 381, 389 of tangents 377 of undetermined coefficients 121, 351 of variation of parameters 332, 349, 352 Minimum of a function 84, 222
Pascal's 158 Limit of a function 22 Limit on the left 22 Limit on the right 22
(cont)
Euler's broken-line 326 iterative 377, 378, 380 Milne's 386, 387, 390 Newton's 377, 379 Ostrogradsky 123, 125 Picard's 384, 385 reduction 123
Runge-Kutta 385-387, 390
Node 230 Nonstationary scalar or vector Normal 217 to a curve 60 equations of 218 principal 238 Normal plane 238
field
288
Number Napier's 28 real
11
Number
series 293 Numerical integration of functions 382, 383 Numerical integration of ordinary
differential
equations 384-393
One-sided derivatives 43 One-sided limits 22
Open
interval 11
494
Index
Operator
Hamiltonian 288 Laplacian 289 Order of smallness 35 Orthagonal surfaces 219 Orthagonal trajectories 328 Osculating circle 103 Osculating plane 238 Ostrogradsky-Gauss formula 286-288 Ostrogradsky-Gauss theorem 291 Ostrogradsky method 123, 125
Parabola 17, 20, 104, cubic 17, 105, 234
105,
Niele's 18, 234, 481 safety 234 semicubical 18, 20, 234,
480, 485
481
Parabolic formula 382
critical 84 stationary 222, 225 Polar subnormal 61 Polar subtangent 61 Potential (of a field) 289 Potential vector field 289
Power
series
305
Principal normal 238 Principle of equal effects 369 Runge 383, 386 of superposition of solutions Probability curve 19, 484 Probability integral 144
353
Product of two convergent series 298 Progression geometric 293, 294 Proper rational fraction 121 Proportionate parts rule of 376
Parameters variation of 332, 349, 352 Parametric representation of a function 207
Quadratic interpolation 372 Quadratic trinomial 118, 119, Quantity
Partial derivative
hirheg-order 197 "mixed" 197 second 197
infinitely large 33 infinitely small 33
Partial sum 293 Particular integral 322 Particular solution 339 Pascal's lima^on 158 Path of integration 273, 274, 280
Period of a function 14 Periodic function 14 Picard's method 384, 385
Plane normal 238 osculating 238 rectifying 238 tangent 217 Point bending 84 the second (of discontinuity 37 double 230 extremal 84
critical of
of inflection 91
isolated 230
maximum minimum
84 84 singular 230 stationary 196 of
tangency 217
Points characteristic 96
123
kind)
92
Radius of convergence 305 Radius of curvature 102, 243 Radius of second curvature 243 Radius of torsion 243 Rate of change of a function 43 mean 42 Ratio (of a geometric progression) 294 Real numbers 11 Rectangular hyperbola 480 Rectifying plane 238 Reduction formulas 130, 135, 150 Reduction method 123 Region of convergence 304 Region of integration 246-248 Relative error 367
Remainder 31 Remainder of a series 293, 304 Remainder term 311 Removable discontinuity 37 1
Right-hand derivative 44 Right horizontal asymptote 93 Right inclined asymptote 93 Rolle's theorem 75 Root multiplicities 121
495
Index
four-leafed 487 three-leafed 20, 487 Rotation (of a vector field) 288
Solenoidal vector field 289 Solution (of an equation) 322 general 323, 359 particular 339
Rule
Spiral
Rose
Leibniz 67, 269 1'Hospital-Bernoulli 78-82 of proportionate parts 376
method 385-387, principle 383, 386
Runge-Kutta
Runge
of
390
Safety parabola 234 Scalar field 288
Subnormal
Scheme twelve-ordinate 393-395
Second curvature 243 Second derivative 66 Second deferential 198 Second-ordeP differential 72 Second partial derivative 197 Segment of the normal 61 Segment of the polar normal 61 Segment of the polar tangent 61 Segment of a straight line 20 Segment of the tangent 61 Semicircle 20 Semicubical parabola
Archimedes 20, 65, 66,
18, 20, 1M4, -181
Series
convergent 296, 297 with complex terms 297 conditionally (not absolutely) convergent 296 convergent 293 absolutely
Scries (cont) Dirichlet 295, 296 divergent 293, 294 Fourier 318, 319 functional 304
harmonic 294, 296, 297 incomplete Fourier 318, 319
487
61
polar 61 Substitutions
hyperbolic 114, 116, 133 trigonometric 114, 115, 133
Subtangent 61 polar 61
Successive
method
approximation 377, 384, 385, 389
385
of
Sufficient conditions (for an
extremum)
222
Sum integral 138 partial 293 of a series 293, 304 of two convergent series 298 Superposition of solutions principle of 353 Surface integral of the first type 284 Surface integral of the second type 284 Surface integrals 284-286 Surfaces
level
288
orthogonal 219
Table
Maclaurin's 311, 313 number series 293 operations on 297 power 305 Taylor's 311, 313 Serpentine
diagonal table 389 of standard integrals 107 Table interval 372 Tabular differentiation 46 Tacnode 230
Newton's 18 Simpson's formula 382-384
point "of 217 Tangent 238 Tangent curve 481 Tangent plane 217 equation of 218 Tangents method of 377 Taylor's formula 77, 220
Sine curve 481 Single-valued function 11 Singular integral 337 Singular point 230 Slope (of a tangent) 43 Smallest value 225, 227
105,
hyperbolic 20, 105, 487 logarithmic 20, 21, 105, 106, 487 Static moment 168 Stationary point 196, 222, 225 Stationary scalar or vector field 288 Stokes' formula 285, 286, 289 Straight line 17, 20 Strophoid 157, 232, 234, 486
Tangency
Index
496 Taylor's series 311, 313
Term general 294 remainder 311 Test d' Alembert's 295 Cauchy's 293, 295 Cauchy's integral 295 comparison 143, 293, 294 Leibniz 296, 297
Weierstrass' 306
computing volumes by means evaluating a 265
of
268
in rectangular coordinates 262 Trochoid 157 Twelve-ordinate scheme 393-395
U Undetermined coefficients method of 121, 351 Uniform convergence 306
Theorem Cauchy's
75, 326
Dirichlet's 318
Theorem
(cont)
Lagrange's 75 Ostrogradsky-Gauss 291 Rolle's 75
Theorems Guldin's 171
mean-value Theory
75, 150
288-292 Three-leafed rose 20, 487 Torsion 243 field
Tractrix 161 Trajectories
orthogonal 328 Transcendental functions integration of 135 Transformation Laplace 271 Trapezoidal formula 382 Trident of Newton 18 Trigonometric functions 48 integrating 128, 129 Trigonometric substitutions 114, 115, 133 Trihedron natural 238 Trinomial quadratic 118, 119, 123 Triple integral 262 applications of 265, 268 change of variables in 263
Value greatest 85, 225, 227 least
85
mean
(of a function) 151, 252 smallest 225, 227
Variable
dependent 11 independent 11 Variables separable an equation with 327, 328 Variation of parameters 332, 349, 352 Vector acceleration 236 of binomial 238
normal 238 tangent line 238 velocity 236 Vector field 288 Vector function 235 Vector lines 288 Velocity vector 236 Vertex of a curve 104 Vertical asymptote 93 Vertices of a curve 104 of principal
of
Volume Volume
of a cylindroid 258 of solids 161-166
W 1
Weierstrass test 306 Witch of Agnesi 18, 156, 480
Work
of a force
174, 276,
277