oAD/599
(4)
1. In
^,4-BC
ml1= 720' If 41 is rlhe
foot of the perpendicular liom
on
BC then the points are in the order
(]) B-M -C
A.
(2) M-B-C
]n
rl
(1) (2) (3)
t\+
JEl M-C B
fivo right angles tlvo abtuse angles each angle less thao 60'> Lwo aarLe ar'gles
_,ll e'-.'' (1n
--.
M-B
14)
)r"
tdangle can have
t,
")
:4
The sum of the interior angles qL4_
In a A,4BC,
!l
is
right angle and
BM is an altitude. Then AMB
is
similar to
(1) (2) (3)
&) lI
-A
o"saa 4b
.tf
(2) (3) (4)
4, then
alg{p]s
,t21'
(4)
70' 140'
Then
v-\ t\
(1) 10'
3',
qz
6a
5p
arts
In AABC
5u
angle is
.)+
.6
160"
(3)
tc
90'
\4)
L:
Y7'
:)
L^.
*.
1\0
,t. l:Lz
4= o' "', th"t' the-lEht
(1) l4
th"'
fll
'n '^
l:
:
-'ro
(3) 30' (4) 40.
Thrce anele- of ouadrilaleral rpspe.trvclr equal to l0', 40' and then the fourth angle is
i1) (2)
-:4r'7' -,&
270"
zo' "-',=*'tua
30"
90"
540'
Tle angles r,f a lriangle ar21 35 3' -5 and 5( 50 dpgrpcs.
ao'
40'
tz"-'j)'2.
180'
,
the areles A.B.C ol a l-rienqle cr"
in the ratio.2
360'
'iv !.1
._T-*o
I\CAM
^,43C
(.4)
/N z1 i\
ACB
(1) (2)
,6
)-B
^MBC
Dentagon is
ln orlC
\o
?'a :|rv?A\otv -> zt72.l
+;$. ,ta'
(6) 9.
t3., To rncke
In \ABa,
rhc s.des are 6. I0 and then AABC is
-/ r."i*tl from
right angled trjangle
10.
acute angled
(3)
obtuse angled
(4)
equilateral triangle
trra
(1)
t-A/
gle
(3) \.4)
The total surface area ofa cylindel
(7) 2rr 1.2)
"sr (41
2nr\r+h) 2n\r+h)
rlo.ed ct intlrical tank, o[
*"JG""
U!
'.. 'o shpet, hc ";--, sheel reqJirpd m"tal
G'
(1) (2)
"t'\ t/r;'4+ '7tlt (t:+')
748
m'
7 48 m')
74.8 m? 480
-n'to ,'i l2n
n2
.-
r' rt
yfl
(4)
500 cm'
/ A\ t\
?00 cm'? 55oo crr''
.7'n\+'tI6 ,)
t0
550 cm,
et'"
(.-na!
2-3aJ 11.
qgtal p+9 iq !f lqlong, Th14I'.91 drqmeter of cross secl io-L!:-il cm ThlLthe il]ner,cur:ved-sudacq 4t194 is 968 cm' t2)
484 cm'?
(3)
102 cm': 986 cm'
1,4
,-/2>
15.
(3)
#{16.
cm
0.5 cl]r
7l
cone
If its cluned
ffi
20 cm
the
,4...
10 cm
22 cm
:,.
-r
)t.
lYv'h{! t11\
"I .,n/"'
'va-t'/
%t- ,?
Il h" radiru-,a nd vertrcal he.ghL of
cm and 12 cm r:espectivelv, ihe culved suriace area is cone are
(1)
(3)
27/
?.
E-.ry--l!+':, ther
4gF tz"
cm
5y' z.^ (3) (4)
(.2)
'?1
88 cm'. Then the diameter of the base of the cylinder is
A)
are in the ratio
(1)
tgt>/12_l
{,{
The radius and slant height of sq1!4qe qlpq.. radius is
tz. m. curvcd surf.rce area ol right -.' circular rvljnder ol beiqhl 14 .m (1)
"-
A Jukers ccp i-in r'lclorm ol righl and crrculcr conc of bcso r.'dius/ n.igl^t 24 cm. Th"n ihp^ ar6a of thshaet rcqLrrTed lo mdRp ru rru.n caps ls
,14. \
i-s
1'--) tl
2tzrh
oAD/599
Lq
angle
(2)
::y,;*"r@
(4)
,'*
20{) cm'z
2A4
crr'2
200?
cm'?
204 cm'
\'-."1
\'
@<
fit
2-)-
.l
/
-t?-
17 ,-
(8)
cones, if the cgllql-sql]face .rc. of one i.-I.yli!! 'hat ol thc othet and th" :lcttf l.rq\1 o' LIlo r"1 Pr iot^"i, rhe rctro o[ r\\'rre rhrl of their radii is
17, In two
,1
:L
(3)
tl
r-
(.2)
t\
t{'
6)
sohcr"
tz
3:5 cm is
(1)
394 cml
(.2)
2464 cm'?
yf, t,t t2)
roo1l1:rre
-,x''
.f:r '?
'r
1:* '''
the
€J.
(rl
23. 16
!s.-.1
!-/{ "\'1" "'
1.4r
spher'e witb sudace
area 154 clr]'z. rs
(1)
7 cm
p1'
35crn 14 cm
49 cm
A\
I!-$"
(1)
60 Ctr
(2)
,15
(.3)
72 d.l\
(4)
30
'.lc
'],
6"r
.,
dn *-
dn
.!,\n,
1v'
(.2)
The ladius of
/\
in tire ratio(3./:
of the roorn is
.A
,,"1 rt%"^,'/
616 ctL')
ard orgnr oI
volume is 929'14 dm3, then the len9lh
mqoil- ls appror.inately one fourth of the dicmeicr of fhc crrlh, ihe ratio of therr sur'faqe preasjs
(3) (4)
l-.i
1:2
Thts lpng'n. broadth
rt
,.@
19. If the diameter of
20.
.1"_.)
\+)
'2-
:.-._
(3)
"F
rcliu ni' cld iliv-cd lre
i.-.1rr"* ', surface area oi t-ie c1-liridir is -urlers arn,
The surface area of tbe sphere of
*4
Th.n
ofr-o,'r-
encl!:ers
(3)
3:1
radius
juit
dght ci..'cular cylindcr
.,., l"' ,-ti'-r-^
The inner di3:x:tel of cvlindrical 'lvooden pipe is 2'4 cn and its otil.er diameler is 28 cm.
'I\: leeg!! of ihe
pipe is 35 cm. The volume oi the rvood used is
(1)
5700 crn3 s120 entj
(3)
5000 cmr
(4)
502i1
nnl
'l
-ir
/z' (10)
,r.
Thc inner radius of
Horv much water ca:r 14
pipe is
ofthis pipe
hold?
(1) (2)
cm.
mi 176 n:l
(2) (3) (4)
3.5 cm
lt \4
iro-)
.,,n',."'s-
')'
^'/
14 cm
21 cm
30$
tlleir capa€ities is
(l) 'l:5
gf
r,z
rr_:--l
\q6
(.4) 4:7
If the height of cone is 15 cm and its volume is 770 cm3, then the radius of the base
(1)
I'he volume of
(:J)
10 cm
(4.J
12 cm
,/
j\t6L
tt" 29.
-tulf
i,
-,j1
'"
rhe heieht oI the cone
+a"
e)
32
cm
(4)
11'h tt
21crrL
1?
-.
-h
'?'n''''"
12 cm
The base radii o{ two right circular
the
circulag eq4g is
73
""/a
(,r)
Ea4rc
igight are jn
the
5. The ratio of lheir volumes
is
(.2)
rnz
thel
28 cm.
(2)
l4)
.,1
9!59-em;. If thc diameter of the base
(1)
",
'1
The volume oI a right circular cone is
(1)
(y
,{2,,
5 cm
7cm
ratio
27.
oAD/599
fl,/^
t>2'
(3) 3:4
28.
;':,"{
26. T\vo cy-indrlcal cans havp bascs oI Llre sdme sr7c. The diamcler of eacn is , ,i --r{.c}D,une oTTne cans ls tu cm lengln and the other is 20 cm. Then the ratio of
rlh t:l
l/'A -itfr .a
solid cylinder has total lurfac-q are" ol 462 rm- Its -curvpd slrdace alea is one.thlrd oflts tolcl sur{ace area. Then the radius of the cylinder cm
6,.";?
,----l ,-/ .v ..t/a^ nt
0.176
(3r 1?6m ., )4t u.urtolt7'
!).
,n
15
'--
(12)
31. In the triangle then
if
ABC
sinA=
9. 15
cos
11)
,?#
(4r 32. The diameter of
ci4le
cqct ruqsc4 qt48:a.sgttarg_is 10 cm. Its side u.ill be
(1) lD
3.5
cn
.5'E cm
(3) cm (1) 4rli
crr
Gi tr.-,,-..r\ [}
'ff:ri.
If the volumes of two hemisphe-res are in the ratio 1:27, then the ratio of
(1)
t.2)
3:
(3)
35.
-ao Ur sP. or i- L|ro,D ., le 21 cm. The angle of i,he sector is 150" Then the length ofthe arc is
(2) (3) (4)
it
(3) 1!
oAD/599
'r@ a''. \,
(4L.
llv 12 sq.cr,1 (2) 100 sq.cm 13) 15.1sq.cm (4) 196 sq.cm
55 cm
-'4
ni-J
if
(.7). d=r.
r"
(2) d=\+12
(3)
(-
J\;
.t
(1)
=2(\ r,)
An arc makes an angle of 72" at the centre of circle of radius 10 crn. Its length will be
(7) (2) (3) (4)
:t4-
7'/
''> u'L
hrve. romrrun. rord
.,!9 aqLJl rI ne radlJs u' thp .,p rro 10 13 cm ald rhe dis enre L,eruecrl rh. centres is 41 cm, then the length of the chord is
1),\
(2) (3)
cn1
72
cn
25 cm
(4),.. 10 cm
:@
'4 .,t' r-i\L--'l .. .-) or'.1,,, ?$*
,an
The distance befiveen the centres of thp rrvo cirr.es ruJii ,, "nd r i" r/ 'fhel will rourlr pach orreln'prna.l.
T\vo ir, lc"
*rf
-/' \1-7--,..
48 cIn
Th" cr". tl)p.l-rdco region in rhe figule if ,4,BCD is square of length ol each side 14 cm
;--)
45 ctn
iq9'
t|' ,r'.
-\ ,^" I-l
[7
(14) in the ligure,
then
tro"
^^^,-oAD'ses
l):re slope of line perpendicular to the iine s:r|j 2y+4=0 is
Ifthe chords A,B and CD intersect at as shown
-.1
"9
_!
(r)
0g De
(.7) AC.AB=
(2J (3)
(4)
40.
AO OD=CO OB AO OB =CO O1)
(3) \.4
CO AO =OD'
lf
The slope ofthe line
(7)
(3) (4)
45. Two straighf lines are parallel slopes are
if their
equai not equal
j--
aEgles,
then the product ol their slopes is
(r) (2) (3)
'1
''l
3,5
coordinates of the other end of th,e diameter is ._ {.lt
unde{ined
42. If L$ro lines intersect at right
5,2
One end ofla@glqelqglq=cqrgle is (3,2) and the cenhe is (0,0). Then the
(1) (2) (3)
zero
are
^a (!'J) Po o:1)'" '"
2,7
(2)- 6,2
t4J
(1) (2) (3) (4)
A=14,2), B=(1,y) and AB=5,
then the possible values of
(1) (2) (3)
4t.
-2
(2)
BD 'CD
(3,
,)
2)
3,2)
),'"
(2,3)
(3,
2)
46. If
divides the joj-n ef (3.9J--and A(6,-f) in the ratio 1 : 2, then the is coordinates ofthe point
(1) (2)
(>
(4)
0,6) (1,2) (4,1) (2,3)
>(
0,"') tfc
Lta
2rt
("1.
t)
-v
oAD/599
(16) 47.
The equation of a line with the slope point (2, 3)
and passing through 1S
(1) 2r+3y ?=0 \2) ic 3] 13 '3- 2r-3y l3-0 (4)
48.
r.
.t
,:
*.yn-L)
,..-1
-a
!,r
.,
..lif
line passing
-I
(7Y 2y+2=0 (.2) r.+2y-2=0 (3) y-2x+3=0 (.4) 2y+x 2-0
q-rr3+t'',
(1)
:3
Qt 2/ (s)
-t
--.f
,yV_
,i
-.r't
.'-/'
--rTxlL
right angled A. BC, !!
l2) (3) (41
12'
13
t2 l3 12
12
BU
1j .:
is
tnen
.+T.),
sin 60" +
30'
,y
(3)
acute, Lq=90" and tanA (1)
"'1 I'he value of cos60'
r+2Ji
.,_.. +'r+,
t'{)6
61' .!- .',,.-' '. sin 30"
zr)--
,.9.
?*{=
(2)
(3)
In
.(a
cos
rexagesimal measure of 72o is equal in circular measure to
(2)
t4)
'r'- 2'I --
3'a'a*'t"
G)
50.
=9 and a, is acute, then
sin
lhrouqh rhe poinr t4. 3J whose sum of nrerc"pls on the coordinale a-\es
rs
49.
- f n.
+2t'.':,.=9
Find the equation of
51. If
1+16
(4)
3z ,-.
9*
53. The dngle between the lines jr+2y 6=0 and2r+4y-6=0is
(1)
45.
(.2)
60'
(31
s0"&
(4)
D"/
..t'' ).4::?
oAD/599
(18) 54.
If
A laddcr $1g r" plcr.pd ag.r.nst verlical $ail .-o rhar || .naqes al rngle of 60" with the souna. 4!:Sb3!,!9fCbt above the ground does the laddet
tlr
Em
e)
6",6,n
AtL)
a"e. .lj .l
(4)
,<:.
.J5
o'l'
, k(','
i.]'c, ',
58)
1h" lengh ofthe shadow ofa pr'lar rs Ei3 rmps irs heighr. TJ^o angJe uf elevation of the source of light is
t2) (3)
+ sin355'= 8.,
i{
+{
0/ .,
(41
{!
a<,<
t)"
{n
'r,,,,t
20. 30"
-/
45'
1ne vatue
60'
(1) (2) (3) (4)
If
is acute and sin 2J.
0)
nE
z'
cos rc
-.,5
then
,.i-'/..''t' )' r'"
t,'-
(3)
1=
J-l
(1)
(1) \2) (3) (4)
sec
(1) ry=\E (.2) r+-r,=1 (3) q, =1.,.
,./,
(3) s"li m./ (4)
d+ tan and sex9 lan then the relation between by elirninating is ir
'1-
oI srn'd cos' 1-cosd 1+sind
sin
cos
l/
sn
cos
0z/
cos
sin
a,
1s
rrJ
Yub
2si.n0-cos0
\'.' )j:. ,'
'',itit
60. If the lines 2r 3y + 9 and 24x hy are perpendicular, then the value of A is
(1) -16/ (2) 1E (3) -8 @)
2I
.z.iz)-?R
I<
va
*1 lc-
oAD/599
(20)
61.
hr\:rA edge" l8 cr za cm a;d--50 -cm cre melted und
Thc ratio of the volurnes of tt'o cones is 4 : and the ratio of the-r4dij' of 3. Thc ralio of their their bases is vertical heights is
?-
(4.) 9:5 .'
-.
circumference of the bas-e.of rrr hiqh woqde4 solid cone is 44 rn, rlre'r rFc v"lLme of rh" conc i"
1)
440
mr
/1,,
l\,2, 4600 ?-\"\.) ..' '3 r42Bm "rt. u" ,1.t 4c2 n:-/ */:./u-,, "-4 63. The volume of the largest
ght Ca.l bp r.rr out nl
r, ulrr onp tlrJ cube with cm edge, is
(t) t2)
26',13 1.1
26'.13
't
(3)
729 cm3
(.,1)
891 cmi
If
liT\ /-.--1
o'" r,
:"4't;'or"
cylinder and conc hull"gg.+! radij 9{ thgir bases and equal hcights theD the ralio oltheir l'olu1nes is
(1)
:2
1.3)
3:74
(.2) 4:1 14) 2:
"a.i' "i"6;
(1) (2) (3) (4)
n-,>
62. If thc
np$ cubc lhn pdgp oi lhp ih..i r;-;-d is
recr"r inlo
-A tt' '!x !)
(1) 4: (2) 5,4 (3) 3:5
A-BI-
rl,'es
66.
rrrL6 ncrr
.1
26 cm 36
cm.'
32 cm 38 cm
n'r'n+l+q
^f
in
-llL
r"phcrieuJ bowl oI dran"t.r
10.5 cm is (unto three decimals)
6)
1t
0.303
tj
r!2 {-l
\..(2) 0.102lt i3) 0.2131t --?) ".1^.h>,' 14) 243 lt r'z't! If the nrrrrb"r'
of
jqlrare
(pn.r.meLers
on the sur:face of sphere is equal to the number olcubt( ccrlrrrelF"s in it. volume, then the diametcr of the sphere is
(1) (2) (3) (4)
10 cm
cm
cn
/a
,tF=
..r3
+1:
4 cm
68. If the rndius
of the sphere is do-u!1e{,
then thc ratio o{ t}re volume of the firsl spbere to bhat ofthc second is
(1) :4 (2) :3 (3) 1: (4) 1:8r'
r^,i
69. Ifthe surface area of to the area of
splS:re is eqqal
cfucle
5.6 cm, then-the rid;us
1) 1cm (2) cm (.3) 7.4 cm/ (4) 23cm
of
diameter
-1
.../..\
c\lindrica' rark i. . If the radius ol its base i-
Th" ccpacrly oi
1540 m, the depth of the tanh is
oT-tEe-iFhGre
nl'r-
.l;
73.
.^v
14m
.,''x
,n'1^'..',/
sE:-.-
LJ
1-
'1 ^'
(3)
13
(,1)
12
2i l'a
t-..'
i'j 10
The raLio of thp volump of cJb. to {hdljl lplterg,I. hrch wrll c\aclly lu
r4sidc
\r
t!r-e,
cube is
L.4
1.2) 6.tt
(3) r:a (.1) B:r
The longest chord of
a3.
74.
rq
The angle subtended b5' at the center is
?nei^ ,),.' ud;.
',1
circle is the
(1) radius (2) tangent B) dianetet'/
(1)
60.
(2)
90'22
(3)
120'
(4)
180'
75. The sum of the either opposite angles of quadrilateral is
72.
(1)
90"
(.2)
780"
(.2)
(3)
(3) (4)
270'
(4)
360'
The number of circles aliawn through three non-colLinear points in plane rs
(7)
-',"
semicircle
"'
parr
of the cyclj!
OAD.5::
t2L\
AABa. il tnc eircle drcwr
lr
BC as diamcter
then ABC is
(1) (2) (3)
passes through
on
A,
80.
an acute anglcd
(1)
an equilateral triangle an obtuse angled triangle
(.1) ./a dght angled
triangly'
(2J
-:-\
(3)
'.I-- -t* 77.
In the figure,
The length of the tangent drayltq rm from poir': crrcle u. h raoius cm arvay from the which is center:, is
J,I*,
DCt=
81. If ti'o circles touch internally, then the number of their common tangents 1S
78.
(1)
t20'
t2)
110'
(3)
70"
(4)
130'
(.r) t2) 1..' (3) (4)
of lhp foJ,o"ing
1{
quadrilateral?
(1) (2) (3) (4)
,r.1
trapezlum parallelogram rhombus
2.
-^.i
-'l
TVo crrcles with equal radii alg
(1) (2) (3) (4)
congruent,/ oniy similar but not congruent
not congruent neither congruent nor similar:
rectangle cm and 5€ touch internally, Ihen the distance bet\ieen their q€nters is
83. If trro circles ol radii ?9.
The tangents at the ends of of
circle
(1) (2) (3) (4)
ar-e
perpendicular
are parallcl ,7 bisects
intcrsects at the center
diameter
(1) (2) (3) (4)
cm 8 cm
ct:t,' 15 cm
a)
oAD/599
(26) 84.
Two circles are of radii 3 cnr a4{1-rm gnd the distance beiwaen their centers
I'he angle between tangeni 1:o a circle and the radius drawn at the
i;-5 cnf Ean-nia:L"tgE si- !Fi'
point ol contact is
(1)
60'
t.2)
30'
(3)
45"
(1)
so"
tiiiiiwe$p sogrlqeal4g€ent is
1) cm/- .-,,<' /'
,2, ,rcm 13) 5cm (4) 8cm
The tangents drawn
toa
circle from
an external Doint are
2-.
olifof 0.g8 cubic -eters ol iron? (1) 140 j. o.ov
?=-
,2,200./ )11 ,".,'"f,r" o,Kt -'
,. 4'F
89. If the length of the chor4gf circle is eSld,lojb radius, then the angle
(3)
subtended by the chord at
\4)
tbglgqUq
IS
l" rwo crrclp" are radii5
touch
e>r:te_r,nally,
(1)
21 cm
t2)
7cm
(3)
1'7
crn,/
2cm
c_m
and I2 cm
--tbgL!-he -distenre
between their: center:s
4)
2'*^-'h-l"t
of lenelh How many g941palq, 1,1 and diameter cm can be made 1it"-]
,3. 280 (4) 320
(1)
86.
jY
-.' 88.
e)
\
i.,
iL
(1) 30' (2) 45" $) 60" .,.' (4) 90"
90. lf two concentdc
circles grq &Illcd with radii cm and 14 crrr, thc area '+.-+ between tne two clTcles rs
(1) (2) (3) (4)
154 sq. cm
250 sq. cm 462 sq. cm 49? sq. cm
n'
t|
'.,,,
lii
t,' t"s.,lo. polj'gon, ifthe sum 01 the irrt.rlo. angles is twice tbe sum of the extedor angles. then the nurlrbFr of sides olthe legulal polvgon is f9 ..v.
"-, ':' i.2.t 6. (3)
(.1)
i.
,,'f) ,€
... ,,
l''
t{}
,. .*,,
rrhirh
AB
l2')
pBC
@' 96.
the tdaDgle
(31 14)
97.
a.nl
is
2.5 15
-l\ -l
cnr.'
clll
If AD is p:uallel to BE, C- i1 tbc niclfloinf of Bt ar.rd the arca of ,\ ,c,E is (1) 30 cm: L2) 60 cml (3) 40 ctti (4) 20 ctrr:r
*_l;
98.
2wD/
rnd
-\/l
(1) 12) (3) (4)
.!
94'
ctr
DF ttren XF 99.
16 cm 4 cm 10
cmr'
,c
In the figure, ABCD is
ryrtangle
/-
o' (3)
ar 15 cm,/ t2r 1,lr 13 (n1 1) 20 cnL lf D,-U and
e:t
95. If
then
a''
tb+f)/
and
11)
area ol .4
(2)
ared ol
13) 1,1)
area of arc'a
of
r'
area of
"area of
ll alea of
1.' -),-"
,/a
--;
a1e lcsPectively
area of A'C area of
A .DEF
(4) arca of
ABC
(3)
the arLd.
,'
___
ABC (2)
\,o
)DLI=
(1)
l\'"
are two congllLcul i.gure;,
)rt
nidpoiDts of the sij]es -BC, CA AB ol'a triangle ABC. then
...{,e
,l
7,
bc'-
If the area oI :r rhombus is 2-l!q41' and :s lPrel\ 18.n_ ,rp of i., i,Sor then the length of one of its sjdes is
and BDE is an isosceleslS$-qgglcl triangle. The {tlca of the figue t--'
1,'t cab
ol
/{
12
93.
A(-=4tm
I\.BD-E=40cm', thcn the area
Apts-=l pBC
pBC
iu
(1) 5cm L2) 10 crn
jr '),1.c qrc"riL orrl AD B-! =('D 'tne"
2lcBp
i.'
tbe[ the radius of the circumcircle ol
'rn.
"r'',' '/'
,1r I!B.=\LBA
''
ooo^* .,, :.'t-. ,:'
DEF
-! of
AB']
100.
ll ,1.
D]]F
.,1, 9? "1 AB I' D(lr ::lt
dicgo rrls-.At
r-z intcrsect eacb other area of r\ AOD \BOC/ |' dtts
(21
,3, (4)
ot
.J
ABa
at
areaofjBoC 2r
-"
rts.)C
area of ABOC
tlrgn tbe
;"
'-:;,'
(30)
101. The arca ofthe rhombus is (1) th€ ploduct of the lengths oI the
(2) (3)
(4)
2'
(1) (2) (3)
3-the
product of the lengths of
area, then the quadrilateral is
parallelogranr
square rhombus rectangle
(2), {reatcr. than that of
(3) (4)
recrangte equal to ihat olthe rectangle
2' .f thc
Derimeter
of
l1) (2) i3)
(.4) 109.
the /,
area. of
ABCD
t2)
alea of
ABCD
(3)
area of ABCD
(.1)
aye,a
ol AB(ID
.l
1^' 2i 'L+':
4-
/
1'
)rBt.h. -' v'
28 crn2z 48 cm,
24
cn'
If the ratio of the bases of
trvo
anLl -c rat.o ol thc corresponding altitudes is 7, then the ratio of their areas in '.he same rflcrlgre:
rs
(.1) 2:5 (2) :J :'l (.il) \0:21t
(4)
110.
'.t'
32 cm'z
order is
the
AIlc.D r" prlrl.elogrur. .rno a-r ,l In.dpoinrs oi BC ard eD respectively, lhen the area of the (1)
30
108. qlhg !g4lg!tc19! 4q!{apqzjlqn 19 cm, cm and the distance belwecn -!t.l+ them is ,1 cm, then its area is
l'
AAxI
.f
18 cm
(1) 12 cm (2) cm (iJ) 8 cm (4) 4cnt
rectangle
lO5,
12 cm
107. if the area of triaritgle i.s 12 crn, and ir. hssF i" 6.r..:hen il".orr.slondrnt il".orr.slondrnt altitude is
If the
parallelosram lAC,Q._gl4 racl rneTe r1tsEF are on tl-e "enc br.p AB and lave -9qqa1 arcas, thgL-t_lle pedmeter: of the-parell-ellgggis (1) less than that ofthe rectangleX
t4?4g1e_ A!-C.'
cm, \4t Zt trn
the diagonals
.^103. II p"ch dirsoral ol'a ou.rdrilarprlll separates io iwo tr-ii;-1es;T-;qual
104,
right angled at B, BD fAq, BD =9 cmand.4D cm, then the value of AC is
the nrodrrct of ihe lengths ofl
Iffto chods Al) anrl CD intersect at O. AO=1cn, OB=5cm and DO cn, lhen CO =,..---{ (1) 4cm i' (2) 6cm :. 1,q )a ,J cn (4) 10 cmr
(1) (2) (3) (4)
106. In
diagonals trvice thc product of the lentghs of the diagonal-.
the diagonals
102.
oAD/599
14
z/< ?/:* 1A
:15
the area of rectangle i-c 2,4 crn, a.lld its lengrhis qg. lhen its pelimeter is 1f
(1) \2) ,3) /l)
10
ct,
20 cn, JU cm
t4,,r
|
)-. b'I
r!
!J] '\
'"'
oAD/599 111.
If the qleq- -gl. j!. tariuglltsljs 7!S!t\ n,n
and
are the midpoints
116.
'' CA and AB of the sides BC,
l'cspectively, then
,..nstc DFF i"-.
the area of
;'.,1 \,,'.* 1_1
i, ern^ 2l cnr
(3) A) 112.
the
If the ratio of the basq! !r lIo rri,,ngl4- is-o:.1,"d rh" i.',;;;i"",,"
aqLrl in arca. rnen the rdtro oflhFrr
correspondlng sll,rtudcs rs
{1) o:b \2) d. (.3) a: 11) 2a:
Il3.
Tn
DC (1) (2) (3) (4)
I17.
L.^
in D,
(.1)
"ote uf 2.2 rn ,ong h.. b€ct p!t_!-lt_ tbg_f-orrgaf circle The area of the 4400 cm: 2620 cm2 2560 3850 cm':1
ls
-::n*
..7
fl 'L'".a
.i/a
?.-) '-..r
'7,t
",'t
:nen
PR:AC BC:QR
B'
a)a-
4!'
PQ
'n.
ti)
rr9. If AB:ZY
BC XY AABC i6 similar to
AC AD
cm,
1AC'
(3)
(1)
zxY t.2) ^XYZ
(3) LZYX. t4)
e. L-
thc
r2o. sides
!f,
cm, 10 cm cm, 15 cm, 17 cm/ clr',23 crr,,24 cm
then
/
cq+arn
rf
2:
,/\/\
^YZX
tdangles are gt"cn b?Iui Which of them is dght angled t4g4C1e1 (1) 6cm Icnl, 11c
(2) (3)
(4)
t?
AC AB AD
115. 1he lengths of
!.ac,
l,^'::
AC'
180.
(3)
then
AB.
90"/ 46. 50'
AC"
(1) (2) (3) ('1)
114. If in IABC, AC'= AI'_iB-C,, then IABC=
(1) (2) (3) (4)
(1)
cu cle so lo1.Ined
'riangl" {Bl rlrc b."er !o4 of
-/JAC intersect .BC Bt)
ABC is an isosceles right angled triaDgle, right anglcd at C, then AB,
(.2) 2AC,/
trt-2
3.5 cm' 1.5 cm2/
If
G;ta:^pet)
<_v
44_!.":r",
PQ=2.4 cm and PR=5.4 cm. thcn
(1) (2) {3) (4)
3.6 cm 5.4
cn:r
4.5 cm 8.1 crr'
;A ?c
z\
5-.1
(34)
121. The sum o{ the interior angles of quadrilateral is (1) 90'
(2)
1.3)
(4)
sidcs of Lhe polyeon is
123.
t26. Each angle of an is
180. 270' 360e,
122. Tf 'he e\tcrtor arglF ot rcgu rr polygon is 36', then the nurallel or
(1) (2) (3) (4)
oAD/599
727.
(1) (2)
(.3)
(4)
B0'
then
30.
60' 20"
90.
L{
"ar"
Dr1160
x\ #. --
(1.) 18 cms (.2) 27 cni's (3) 30 cmsT P' 12
,-
rms
then BD
(2) (3)
60"
(3)
70"
\4)
90'
In
LABC
if
+AC
!ac
c-
(2) (3) (4)
129.
1' dK lt /tz
!dn IAD
"9.
.r'
(,'
7.
!l =!l= a5", then
128. The angles of triangle q{9 tllhe ratio 3:4.: 5, then the angles of the r.rangle are l( 6o l2^, t7) 45",60",75.
r25. If 4-is lbqrqi{1!ar&qllh.9.}ip,o-tS.+}se AC of a right angled triangle ,48C,
o)
l2)
(1) AB (.2) BC (3) AC (4) All sides are equal
12
124. In triangie 44c_,,jdrt ergl"d "t -B BD IAC BD =9cm and,4r=3cm, the value of AC is
t1t
50'
which is the
1.0
In a triangle AtsC, il BC= AB ard
l!
(1)
"qg!!914-,t4q€19
130.
Tn
(1) (2) (3) (4)
,10., 60., 80.
parallelogam thp diagonal" are equal
bisect each other
intersect at dght angles ere parallel to each other
sides
equal, then
(ts)
(4)
t,0
45., 45., 90"
If ali
(t) (2)
,.r
40",50.,90.
of
it is
rhombus rectangle squarc parallelogt am
quaddlateral
f-l
(36)
L\!) 131. 11 a triangle and
parailelogram
on the sane base and bet\rcen the sarne parallels, thcn the area of the tliangle is equal to
(ll
oAD/599 136. Thc leng1h of the mediao BD
Iigirt angled triaDgle
ol the pr rullclo{Tnmy'
i.2)
ar-ea
(3)
1"rr"er (]1
Lbe
puatlelngrJrn
(l)
12
cm
(2) cn
area ol the parallclogranl
i3)
ru
132. Irl the lbllorviug figure,
../ ll cm --.- n,r c' a.s cm2 f;$
l2) \.;1)
(1)
\r-ith side cn is (1) 35 cm7 t.2) 2E cm (3) 56 crn \4) 42 crn
60"
1V 120"/
160"
rcg1llar octagon is 1000. 1280. 1080'./ 1800"
(1) (2) (3) (4)
Lrr snacuteanqle,..-?o ,;;
(3)
(4) 13.+
nsht
ansle
an obtuse angle,/ leflex angle
''J
rriang ABa lf ;" anl pinr \'rtlnn it such tbat AlJ, Br{ CA1 \oA' oB, oC, ihen is thc (1) excentre 12) incentre
Pf
(4)
\\1r,
centroid
o, rp tollusrng r.
.onpi.l
iro.qudrF- rr. cl$-y"..tD.'J-./ or'.bu.cs ar'e rlurv-
rrlr iio I
(1)
t.2)
(3) (4) 140.
sLatcnent? rr t\\'o II]soglcs are :rlrvays srmtlcr
luu rc,.rane1.- tue ,l$_,.
.'i -,'
1:..
,\i" ,.,,."o
I39. Tl arcb of an eqgilgr"ra| r.r.lnglc \. hr.h ii 'brn cd orr t-p srde sou-"eu h8ctnsda. :n.; "t
eirtiimcentre
slmrlal'
regular peDtagon
138. The sum of the interior a+gles of
rhc -un ofrrro rlgl.s orr triansle iq 8u'. th"u ih-ther ansi; r2
.h ,..
1J
137. The perineter of
(1)
rhe
-r-
areaofparailelogranl
(41
ii
in
1216
76nE/. 18
6' j;{.i
a6
,q\1
14./5
II
on" Jnete of rr rri*ellc_r" obrust. nFn rt 01 ie,' t\.o dlgle. m, isLbc
(1) (2) (3) (4)
acute angles iess thau 45" each straight angles
one riglrt angle and the other-
acute angle
oAD/599
(38) 141,
tnanel" A19a. DE ..- drawr. ,lD parallel to Be. Then
In
..
BC
""
DE atl
\2) :-1/
Ea
146.
triangle ale in the ratio 1: rE: 1, then the triangle is
(1) equilateral (2) isosceles (3) righi angled
,t\ DHE
B) l!BD/ &t 49^
t47-
parallelogram PQRS,
the midpoint of P@ and I is the midpoint of ,RS. Then XY divides the parallelogram into lwo parts as
(l) 1:2 (2) 3:1 (.3)
1/ (4) 2:7
143.
7.
nanogone is
110'
(3) (4)
130'
(2)
r2o'
740'/
--t
145. Intersecting point of angular bisectors of triangle is tbe., (1) circuncentre
incentre;
centroid orthocenhe
of the tdangle AC2 ts
z(ao'+ tn") z 2lBC'+cD') AD')
(4)
+(BD" BC' + CD2
. . ..! -_ltlDr.v/
at,-
tr rg1",ere 4!)3m 148. Th"_gioe- of 41 cm and 9 cm. Then the arca of the tdangle is
(1) (2) (3) (4)
regtrlar
44. In right angled triangle the other two angles must be (1) acute angles (2) obtuse angles (3) equal to 15' (4) one is acute and the other is obtuse
(2) (3) (4)
.4BC then AB2
'"
L/_1
The interior angle o{
(1)
Il AD is the rnedian
0)
AE/
142. ln
\,\ {u 'eL t,,..', l..i
(4) .,.right angled isosceles
ts't-
;d" otb i"
If the sides of
149.
120 cm? 320 cm' 180 cm'z./ 200 cm:
11
(6, 2) ar'd (2,6) are $re--e-4{s of h]'potenuse of al:tgb! argled isosceles in square units trian?e, ihen its
If
ia'-
(1) /. 13)
Q)
150.
,,.,76
"E
(-a,
,YL
@)
€,t)
If A(0.0)
and B(6,0) are trvo vertices ol nghr anpled rrrar gre ABr- "rght and "s(3,4) is the angled at circumcenlre, then its tlrird ve ex is
(1) (6, 8) (2) (8, 6) (3) (0,8)/ (4) (4,3J
r-?,b')
.r, ,?""'
fr