September 2016
CBOE RISK MANAGEMENT CONFERENCE EUROPE
TRADING CROSS-ASSET VOLATILITY & CORRELATION
Trung-Tu rung-Tu NGUYEN NGUYEN
Kokou AGBO-BLOUA
Neale JACKSON
Portfolio Manager Directional strategies
Managing Director Head of Flow Strategy & Solutions Financial Engineering
Portfolio Manager, Mana ger, 36 South Capital Advisors LLP
AGENDA � ) �������� ����� ����� ����� ������������ �.
���� ���� �� ����� ���� ����������� ����� �������� ���� ����������� ����
�.
����������� ����������� ���� ������ ������� ��� ���������� ����� �����
�.
����������� ��� ���������� ���� ��� ���� ������ �� ��������� ����������� ����
������/����� ����������� �� �������� ��� �������� ����������� ����������� ����������.
��) �������� ���������� ��� ����������� ���������� �� � �������� �������� ����� ����������� ����������� �.
���� �����������, ������� ���� ��� ��� ��� ������� ��������� ��� �������� �������... ����
�.
����������� ���� ���������� ��� ���� ���� ������ �������� ... ����
�.
��� �� ��� ���� ���� ���� ���� � ������� �������� ����
���) �������� ���������� ������������ ���������� ���������� ��� ��������� ����������� ����������� �.
�������� ����� ������� ���������� �����
�.
������ ���������� ������� ���� ��������������������������������... ����
�.
���������� ��� ����������� �� �������� ���������� ������ ����� ������� ����
����������� ���������� ��������� ���� ���� ������� ��� ����������� ��� ���������� �������� ���������� �� ����� ����� �����������, ���������� ��� ��������� .. �����
September 2015
P. 2
A few words on correlation
•
Time varying property of Cross-asset correlation of volatility trading
•
How to deal with high correlation?
•
Term structure of correlation: the difference between long-term correlation and short-term correlation
P. 3
Multi asset short variance swaps
P. 4
Volatility assets become more correlated after 2008
P. 5
A simple trick to deal with high correlation
Highly
correlated assets:
•
Long Stock indices future
•
Short Equity variance swaps
•
Short Volatility Indices future
•
Long CDX (IG, HY)
•
2 zones: US/EU
P. 6
Equity related: equity neutral (per zone) correlation matrix
P. 7
Term structure of correlation
P. 8
Correlation arbitrage
Tail Protection for Long Investors: Trend Convexity at Work http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2777657 P. 9
A few words
•
We should be aware of the evolution of cross asset correlation,
•
Some main factors could be removed using simple concept of beta-hedging to gain back the diversification,
•
The term structure of correlation is far from being flat, which could be used as an alpha strategy by using correlation arbitrage
P. 10
CROSS-ASSET CORRELATION WITH HYBRIDS Investment case for hybrids :
A melting pot of derivative parameters
(correlation, volatility, forwards)
Isolate specific outcome in joint probability distribution
Leveraged, yet with limited risk
Exotics book supply & demand distortion
Correlation drives the discount
“Worst-of” options provide the
most discount.
% discount vs vanilla assuming
cross-asset correlation of 0%:
Worst-of option: 70%,
Contingent option: 50%
Basket option: 30%
Source: SG CIB Financial Engineering P. 11
TRADING SYNTHETIC COVARIANCE SWAP COVARIANCE = VOLATiLITY X CORRELATION
A three leg trade where:
Long 1 x VarSwap Compo into composite currency
Short
w qto x VarSwap quanto on the index
Short
w fx x Currency VarSwap
Varcompo − K compo ² Varqto − K qto ² Varfx − K fx ² − w qto * − w fx * 2K compo 2K qto 2K fx
P&L =
Proportions are determined so that the structure is VAR neutral
w qto
=
K qto & w fx K compo
=
pure COVAR trade
K fx K compo
FTSE/ GBPUSD Covariance swap Backtest 12
And your final P&L can be written as:
1x UKX Com po $ Var vs . (1x UKX qto $ +0.5 GPBUSD) Var
(RealisedCovarindex, fx − ImpliedCovarindex, fx ⇔ Covar swap K compo
P&L =
a
10
8
6
4
2
0 Nov 05
Nov 07
Nov 09
THE VALUE OF YOUR INVESTMENT MAY FLUCTUATE. THE FIGURES RELATING TO SIMULATED PAST PERFORMANCES REFER TO PAST PERIODS AND ARE NOT A RELIABLE INDICATOR OF FUTURE RESULTS. THIS ALSO APPLIES TO HISTORICAL MARKET DATA.
Nov 11
Nov 13
Nov 15
P. 12
Alexander Calder, entropy and correlation
0.5
Pan asset class rolling three year weekly correlation Proxies are: S&P500, USGG10, DXY, CCI
Alexander Calder Small Sphere and Heavy Sphere, 1932-1933
0.4
0.3 n o0.2 i t a l e r r o0.1 C
0.0
-0.1
-0.2
N M N M N M N M N M N M N M N M N M N M N M N M N M N M N M N M o a o a o a o a o a o a o a o a o a o a o a o a o a o a o a o a v y v y v y v y v y v y v y v y v y v y v y v y v y v y v y v y 6 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 0 0 0 0 0 0 0 1 1 1 1 8 0 1 3 4 6 7 9 0 2 3 5 6 8 9 1 2 4 5 7 8 0 1 3 4 6 7 9 0 2 3 5
Sources: Bloomberg, Standard & Poors, US Federal Reserve, US Treasury, Thomson Reuters
Source: Calder Foundation, New York; Bequest of Mary Calder Rower, 2011
Professional investors only. Private and confidential. Not for public distribution. Please see the full disclaimer at the end of the document
1 3
Low volatility – the great educator The floor (flaw?) in volatility control by correlation
SPX vs 10 %Volatility Control Index 2500
300
250
2000
Probability of rapid volatility expansion tends to 1
Volatility moves to anticipate future low realised volatility
200 1500 150 1000 100 500
0
50
D D D D D D D D D D D D D D D D D D D D D D D e e e e e e e e e e e e e e e e e e e e e e e c c c c c c c c c c c c c c c c c c c c c c c 9 9 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
SPX
0
10% Volatility Control Index Source: Bloomberg as at 9 Sep 2016
Low volatility leads to greater amount known about ZERO , anything unknowns % Change in
that moves causes volatility, and therefore approaching zero this scenario is approximated
Volatility is greater off a lower base (Vol of Vol) Base rate volatility is known unknowns, either we know little is unknown or accept low premium
Source: 36 South Capital Advisors LLP
Professional investors only. Private and confidential. Not for public distribution. Please see the full disclaimer at the end of the document
P. 14
Volatility regimes: Correlation and volatility Drift and Brownian volatility = 0 Correlation = 1
SPX as Perpetuity 12000
30 25 20
10000
15
US 10 Year @ 1.55%
10 5
8000
0 Jan
Feb
Mar Apr Asset 1
May
Jun
Jul
Aug Sep Asset 2
Oct
Nov
e u l a V 6000 X P S
Drift volatility = 0 correlation =1 10
4000
8
PE ratio today (approx. 20.5) 4.9% earnings yield PE ratio in 2012 (approx13) 7.7% earnings yield
6
2000
4 2 0 Jan
Feb
Mar
Apr
Asset 1
May
Jun
Jul
Aug
Sep
Oct
Asset 2 Source: 36 South Capital Advisors LLP
Any change in volatility to this state, will by definition cause a reduction in correlation
SPX Level
0
Nov
% % % % % % % % % % % % % % % % % % % 0 . 6 . 2 . 8 . . 6 . 2 . 8 . 4 . 0 . 6 . 2 . 8 . 4 . 0 . 6 . 2 . 8 . 4 . 0 1 1 2 2 3 4 4 5 5 6 7 7 8 8 9 0 0 1 1 1 1 1 1
Effective Yield ( 1/ PE) Source: Goldman Sachs 360; 36 South Capital Advisors LLP
Professional investors only. Private and confidential. Not for public distribution. Please see the full disclaimer at the end of the document
P. 15
Geometric mean, and variance no proxy for risk
Definition of Investment “Geometric Zeros” 2 1.8 1.6 e1.4 u l a V1.2 o i l o f t 1 r o P0.8 l a t o T0.6
Source: Poundstone,W. 2005. “Fortune’s Formula: The Untold Story of the Scientific Betting System that Beat the Casinos and Wall Street” Hill and Wang, New York
0.4 0.2 0
Time as multiple of investment horizon
Smooth Investment Return Geometric "Zero" Breached
Geometric Zero of Capital: achieved by sufficient nonperformance (erosion) of capital such that expected rate of return for duration of investment time horizon no longer reinstates capital
Source: 36 South Capital Advisors LLP
Professional investors only. Private and confidential. Not for public distribution. Please see the full disclaimer at the end of the document
P. 16
Factors affecting the gradient of the zero line Where correlation is an unsustainable rescue Winter White Dwarf Hamster
Geometric Zero of Capital: achieved by sufficient nonperformance (erosion) of capital such that expected rate of return for duration of investment time horizon no longer reinstates capital
EURIBOR
Life expectancy: 2 years
6
12,000,000
5
10,000,000 ) n 8,000,000 B , R U 6,000,000 E ( t b e 4,000,000 D
4
e t a R 3 t s e r 2 e t n I
1
2,000,000
0 J -1
EUR Debt- Social overhang
a n 0 6
J a n 0 8
J a n 1 0
J a n 1 2
J a n 1 4
J a n 1 6
0
M a r 0 2
M a r 0 3
M a r 0 4
M a r 0 5
M a r 0 6
M a r 0 7
M a r 0 8
M a r 0 9
M a r 1 0
M a r 1 1
M a r 1 2
M a r 1 3
M a r 1 4
M M a a r r 1 1 5 6
Source of charts: Bloomberg as at 9 Sep 2016
Professional investors only. Private and confidential. Not for public distribution. Please see the full disclaimer at the end of the document
P. 17
AGENDA � ) �������� ����� ����� ����� ������������ �.
���� ���� �� ����� ���� ����������� ����� �������� ���� ����������� ����
�.
����������� ����������� ���� ������ ������� ��� ���������� ����� �����
�.
����������� ��� ���������� ���� ��� ���� ������ �� ��������� ����������� ����
������/����� ����������� �� �������� ��� �������� ����������� ����������� ����������.
��) �������� ���������� ��� ����������� ���������� �� � �������� �������� ����� ����������� �.
���� �����������, ������� ���� ��� ������ ������� ��������� ��� �������� �������... ����
�.
����������� ���� ���������� ��� ���� ���� ������ �������� ... ����
�.
��� �� ��� ���� ���� ���� ���� � ������� �������� ����
���) �������� ���������� ������������ ���������� ���������� ��� ��������� ����������� �.
�������� ����� ������� ���������� �����
�.
������ ���������� ������� ���� ��������������������������������... ����
�.
���������� ��� ����������� �� �������� ���������� ������ ����� ������� ����
����������� ���������� ��������� ���� ������� ��� ����������� ��� ���������� �������� ���������� �� ����� ����� �����������, ���������� ��� ��������� .. �����
September 2015
P. 18
EQUITY / RATES CORRELATION IS CONVEX ! 1yr Equity vs US 10yr rates Correlation on Weekly returns since 1962
Challenges for multi-asset portfolios as Efficient Frontier shifts due to correlation shifts (Harry Markovitz) High inflation 70s/80s
QE distortions Tapper Tantrum
Multi-asset portfolio are now more volatile and subject to correlation shocks
Need for new assets with more stable correlation against risky assets = volatility or variance swaps (equity , fx, rates, credit, commodities).
Source: SG CIB Flow Strategy & Solutions P. 19
Pistols at dawn Nash equilibrium proves necessity for a convex response
s s e c c u s f o y t i l i b a b o r P , σ
d, % move towards target Source: Duel Between Burr And Hamilton, 1870s Engraving. (Photo by: Universal History Archive/UIG via Getty Images)
���� ����������� ��� ������ � ���� ����� ′�� � � − � � Professional investors only. Private and confidential. Not for public distribution. Please see the full disclaimer at the end of the document
P. 20
Long volatility strategy in a portfolio Volatility paid vs expected outcomes Nash equilibrium probability of hit vs % move 1 0.9
Self liquidating hedges
0.8 0.7 y0.6 t i l i b a0.5 b o r P0.4
Efficient hedge dynamic correlation gap
0.3 0.2 0.1 0 100
90
80 70 60 50 40 30 20 % of time from peak to trough
Convex Response
10
0
SPX volatility Days from peak to trough 15/04/2005 13/06/2006 05/03/2007 15/08/2007 12/11/2007 06/02/2008 17/03/2008 14/07/2008 10/10/2008 17/02/2009 01/09/2009 30/10/2009 08/02/2010 20/05/2010 16/03/2011 16/06/2011
48 29 29 31 30 51 29 30 50 43 32 31 29 42 30 26
08/08/2011 01/06/2012 28/12/2012 25/02/2013 20/06/2013 03/02/2014 31/07/2014 15/10/2014 15/01/2015 29/06/2015 24/08/2015 28/09/2015 08/01/2016 11/02/2016 24/06/2016
31 30 27 31 31 31 33 29 30 34 30 6 51 28 30
Linear Response Source of charts: Bloomberg and 36 South Capital Advisors as at 9 Sep 2016
Professional investors only. Private and confidential. Not for public distribution. Please see the full disclaimer at the end of the document
P. 21
Correlation and regimes
Normal
correlation vs Tail correlation
P. 22
Asymmetry in the tails matters
The risk of the long and short VIX position are equal
Volatility (standard deviation) does not pick this up!
Idea : risk premia = compensation for taking on a negatively skewed position
Risk Premia: Asymmetric Tail Risks and Excess Returns
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2502743
P. 23
Classical diversification
P. 24
High moment diversification
P. 25
Skew diversification problem
Allocation
solution “Tail risk Parity”
•
Define independent sources of tail
•
Equally allocation on tail scenario
•
Combining tail-anti-correlated strategies as natural hedge: •
Trend following (positive skew)
•
Risk premia (negative skew)
A Primer on Alternative Risk Premia http://www.thierry-roncalli.com P. 26
Natural hedge with convexity of trend following
Start date
End date
RP (%)
TF (%)
20080801
20081101
-31.0
17.4
19871001
19871101
-13.1
2.6
19900701
19900901
-12.1
5.7
20140701
20150101
-9.6
17.9
19971001
19971101
-9.6
-0.7
20130301
20130601
-7.2
1.3
20100401
20100601
-5.9
3.0
20070501
20070901
-4.9
-0.2
P. 27
AGENDA � ) �������� ����� ����� ����� ������������ �.
���� ���� �� ����� ���� ����������� ����� �������� ���� ����������� ����
�.
����������� ����������� ���� ������ ������� ��� ���������� ����� �����
�.
����������� ��� ���������� ���� ��� ���� ������ �� ��������� ����������� ����
������/����� ����������� �� �������� ��� �������� ����������� ����������� ����������.
��) �������� ���������� ��� ����������� ���������� �� � �������� �������� ����� ����������� �.
���� �����������, ������� ���� ��� ������ ������� ��������� ��� �������� �������... ����
�.
����������� ���� ���������� ��� ���� ���� ������ �������� ... ����
�.
��� �� ��� ���� ���� ���� ���� � ������� �������� ����
���) �������� ���������� ������������ ���������� ���������� ��� ��������� ����������� �.
�������� ����� ������� ���������� �����
�.
������ ���������� ������� ���� ��������������������������������... ����
�.
���������� ��� ����������� �� �������� ���������� ������ ����� ������� ����
����������� ���������� ��������� ���� ������� ��� ����������� ��� ���������� �������� ���������� �� ����� ����� �����������, ���������� ��� ��������� .. �����
September 2015
P. 28
VOL OF VOL: STRANGLE ON VSTOXX / VIX SPREAD V2X – VIX term Structure
Var upward vs Vol downward slopping TS 5
12
V2X - VIX Spread today
10
V2X - VIX Spread 1w ago
8
0
-5
6
-10
4
V2X Term structure - VIX Term Structure (5m future - 1m future)
-15
2 Jul16
Aug16 Sep16 Oct16 Nov16 Dec16 Jan17 Feb17 Volatility of volatility term structure
-20 Jun 09
Average Jun 10
Jun 11
Jun 12
Jun 13
Jun 14
Jun 15
Jun 16
Spread of term structures consistently downward slopping
�������� 1�/01/2017 1�/01/2017 1�/01/2017 1�/01/2017 15/02/2017 15/02/2017 15/02/2017 15/02/2017 15/03/2017 15/03/2017 15/03/2017 15/03/2017
��������� 5.3� 5.3� 5.3� 5.3� 5.13 5.13 5.13 5.13 4.5� 4.5� 4.5� 4.5�
������ ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ����
������ 3 4 6 � 3 4 6 � 3 4 6 �
��� 0.43 0.66 0.�6 0.3� 0.55 0.�2 0.�5 0.4 0.71 1.03 0.67 0.32
����� 1.5 1.�4 2.22 1.55 1.6� 2.06 2.23 1.5� 1.�0 2.33 2.02 1.46
Source: Bloomberg, SG CIB Flow Strategy & Solutions
Past performance is not a reliable indicator of f uture returns.
P. 29
US10Y CMS VS SPX VARIANCE SWAPS
PnL Long USD 10CMS vs SPX VAR Swap
Source: Bloomberg, SG CIB Financial Engineering
THE VALUE OF YOUR INVESTMENT MAY FLUCTUATE. THE FIGURES RELATING TO SIMULATED PAST PERFORMANCES REFER TO PAST PERIODS AND ARE NOT A RELIABLE INDICATOR OF FUTURE RESULTS. THIS ALSO APPLIES TO HISTORICAL MARKET DATA.
P. 30
P
SPX VARIANCE SWAPS CONTINGENT ON USD 10Y < ATM + 50BPS
PnL Long USD 10CMS vs SPX VAR Swap
Source: Bloomberg, SG CIB Financial Engineering
THE VALUE OF YOUR INVESTMENT MAY FLUCTUATE. THE FIGURES RELATING TO SIMULATED PAST PERFORMANCES REFER TO PAST PERIODS AND ARE NOT A RELIABLE INDICATOR OF FUTURE RESULTS. THIS ALSO APPLIES TO HISTORICAL MARKET DATA.
P. 31
P
SPX VS SX5E CORRIDOR VARIANCE SWAPS
SX5E vs SPX LT Skew
Backtest Dec18 SX5E vs SPX Varspread Corridor vs vanilla
Source: SG CIB Flow Strategy & Solutions
Past performance is not a reliable indicator of f uture returns.
P. 32
P
Variance swap replication
P. 33
Simple variance swap
P. 34
Simple variance swap
P. 35
Simple variance swap
P. 36
The future of volatility Gradients in volatility- the fast collapses after an “event” 0.5 0 -0.5
t n -1 e i d a -1.5 r G
-2
5 years
5 years
-2.5
1.5 years
-3 Jan 04
May 05
Oct 06
Feb 08
Jul 09
Nov 10
Apr 12
Aug 13
Dec 14
May 16
Sep 17
THE FAST 30 – Days from peak to trough 15/04/2005 13/06/2006 05/03/2007 15/08/2007 12/11/2007 06/02/2008 17/03/2008 14/07/2008 10/10/2008 17/02/2009 01/09/2009 30/10/2009
48 29 29 31 30 51 29 30 50 43 32 31
08/02/2010 20/05/2010 16/03/2011 16/06/2011 08/08/2011 01/06/2012 28/12/2012 25/02/2013 20/06/2013 03/02/2014 31/07/2014 15/10/2014
29 42 30 26 31 30 27 31 31 31 33 29
15/01/2015 29/06/2015 24/08/2015 28/09/2015 08/01/2016 11/02/2016 24/06/2016
30 34 30 6 51 28 30
Source of charts: Bloomberg and 36 South Capital Advisors as at 9 Sep 2016
Professional investors only. Private and confidential. Not for public distribution. Please see the full disclaimer at the end of the document
P. 37
Bull case for volatility Velocity of Money (M2)
Yield on SPX vs 2 year Gov
5
100
4.5 4 3.5 3 2.5
10
2
1986 1989 1992 1995 1998 2001 2004 2007 2010 2013 201
VIX 3 month futures - bull markets no longer 0.2calm
1
0 -0.2 0.1
6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 7 7 8 8 8 8 8 9 9 9 9 9 0 0 0 0 0 1 1 1 1 9 9 9 9 9 9 9 9 9 9 9 9 0 0 0 0 0 0 0 0 0 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 / / / / / / / / / / / / / / / / / / / 3 / 1 / 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
-0.4 -0.6 -0.8 2004
2006
2009
2012
2014
2017
Yield on SPX vs 2 year Gov Source of charts: Bloomberg and 36 South Capital Advisors as at 9 Sep 2016
Professional investors only. Private and confidential. Not for public distribution. Please see the full disclaimer at the end of the document
3 8
AGENDA � ) �������� ����� ����� ����� ������������ �.
���� ���� �� ����� ���� ����������� ����� �������� ���� ����������� ����
�.
����������� ����������� ���� ������ ������� ��� ���������� ����� �����
�.
����������� ��� ���������� ���� ��� ���� ������ �� ��������� ����������� ����
������/����� ����������� �� �������� ��� �������� ����������� ����������� ����������.
��) �������� ���������� ��� ����������� ���������� �� � �������� �������� ����� ����������� �.
���� �����������, ������� ���� ��� ������ ������� ��������� ��� �������� �������... ����
�.
����������� ���� ���������� ��� ���� ���� ������ �������� ... ����
�.
��� �� ��� ���� ���� ���� ���� � ������� �������� ����
���) �������� ���������� ������������ ���������� ���������� ��� ��������� ����������� �.
�������� ����� ������� ���������� �����
�.
������ ���������� ������� ���� ��������������������������������... ����
�.
���������� ��� ����������� �� �������� ���������� ������ ����� ������� ����
����������� ���������� ��������� ���� ������� ��� ����������� ��� ���������� �������� ���������� �� ����� ����� �����������, ���������� ��� ��������� .. �����
P. 39
DVEGA/DSPOT (VANNA) AND DVEGA/DVOL (VOMA) DYNAMICS OF AUTOCALLS
Source: SG CIB Flow Strategy & Solutions
P. 40
DISTORTIONS FROM ASIAN STRUCTURED PRODUCTS
In Europe, issuances have also slowed significantly since Sep15.
Monthly vega from SX5E autocallable is now around $10mln (vs ~$20mln in 2014-2015)
THE VALUE OF YOUR INVESTMENT MAY FLUCTUATE. THE FIGURES RELATING TO SIMULATED PAST PERFORMANCES REFER TO PAST PERIODS AND ARE NOT A RELIABLE INDICATOR OF FUTURE RESULTS. THIS ALSO APPLIES TO HISTORICAL MARKET DATA.
P. 41