Excel spreadsheet for designing overhead bridge crane crane load & crane runway beam as per AISC LRFD 13 and ASD 9 1. Bridge crane load calculation for load input to other structural analysis soft...
Description complète
Full description
This is the design of various type of beam . You have to input data in yellow cell of required concrete property , load from IS code and beam size And you will get bottom and top area of ste…Full description
bubble fiels shdjhcksjhc k sFull description
Full description
design jib crane objectsFull description
Full description
Full description
Design of Cantilever BeamFull description
Bridge Design -Box Beam Example
DESIGN OF 'I' CRANE BEAM Location:‐ Overhead Gantry Crane Section Type: Rolled section Span L = 5900 mm Ley = 5900 mm Lex = (BC1:2008)
Diagonal Brace
0
Braced length=
mm(both ends)
5900 mm 310 N/mm2 310 FPC available
Original strength = Design strength=
(Cl 4.7.5) (Cl 3.1.1: table 9)
I Section
310 Rolled section Pyd =
310 N/mm2
TFW=
200 tTF= 14 tW= 9 H= 450
ŷ
tBF= 14
TBW= 200 Area A= ŷ= x=
9398 mm2 224 mm 100 mm
Ixx= 32259.9 cm4 Iyy= Zxx bottom= Zxx top = Zyy = Sxx= Syy= rxx= ryy= Torsional index x=
Without impact Unity Ratio= 2.4575 >1 Without impact Unity Ratio= 2.9423 >1
yy
/ M cy 1
NOT OK NOT OK
Web Buckling Check Maximum Wheel load = 230 kN dep =300mm
a =2000mm
de =800mm
With Stiffener
a =2000mm d=
12
12
422 10
Maximum Support Reaction= 462.1 kN (Cl 4.4.4.2)
Susceptibility of Shear buckling
10
a = dep =
2000 mm 300 mm
Ts1 =
12 mm
Ts2 = de =
10 mm 800 mm
Limiting d/t = 70ε = 58.395 Actual d/t = 46.889 < 70ε Shear buckling no need to check (Cl 4.4.3.2)
Check web thickness for serviceability Minimum t required = d/250 = 1.7 mm < 9mm Web thickness is adequate for serviciability
(Cl 4.4.3.3)
Check Flange Buckling in to Web Minimum t required = (d/250) x (Pyf/345) = 1.52 mm < 9mm Flange Buckling Satisfied
(Cl 4.4.5.2) (Annex H.1)
Shear buckling resistance qw =
2 186 N/mm
Vw = dtqw = 706.43 kN Mcx = 378.448 kNm
Fv > 0.6Vw = Web under High Shear < Mx Revise the Section
Web Shear Buckling capacity Vb = Vw
= 706.43 kN
> Fv No web shear Buckling
Web check between stiffeners
Compression flange not restrained against rotation
(Cl 4.5.3.2)
2 60.56 N/mm 2 Ped= 101.55 N/mm > fed Satisfied
fed=
Compressive Strength
(Cl 4.4.5.4)
End Anchorage Check Condition‐1
Vw = Pv
Shear capacity is the governing criteria
Vw = 706.43 kN Condition‐2
Pv = 1339.2 kN Condition‐1 does not Apply Fv ≤ Vcr Shear buckling resistance is adequate without tension field Vcr = 460.05 kN
Condition‐2 does not Apply
End Anchorage should be provided (Annex H.4.1)
Anchor force Hq =
7.5 kN
(Annex H.4.3)
Rtf =
5.6 kN
Vw,ep =
502.2 kN
Pv,ep =
502.2 kN
Vcr,ep =
502.2 kN
Vcr,ep > Rtf End post capacity is Adequate Ftf= 1.5872 kN
(Cl4.5.2)
Web Bearing Check 15tw
15tw Design strength of stiffener= 310 N/mm2 ε= 0.9419
bs =100mm tw be =6mm bs =100mm ts
Check the stiffener at support Thickness of stiffener ts=
12 mm
Limiting outstand 19εts= 214.74 mm Effective outstand 13εts= 146.93 Provided otstand= 100 Distance to end from stiff bearing end be= 6 (Fx‐Pbw)≤ check stiffened web
mm mm mm Ps 2 2112 mm
As,net= Ps=
(allowance 12mm for weld)
654.72 kN
Pbw= (b1+nk)tpyw = 191.394 kN (Fx‐Pbw)= 270.706 kN The bearing capacity of stiffened web is adequate check buckling resistance
Fx≤ Px Iy= 9137166 mm4 As= 5956.32 mm2 ry= 39.1667 mm 560 mm
Le= From table 24, strut curve c
λ= 14.2979 pc = 310 N/mm2 Px = 1846.46 kN Buckling resistance of stiffener adequate
Design Summary Catogory Section Capacity Check Member buckling check Lateral Torsional buckling check Web Buckling Check Web Bearing Check Overall Capacity Deflection Check
Vertical Lateral
L/600 L/500
Limiting Ratio 1.00 1.00 1.00 1.00 1.00 1.00 9.8 11.8