1/101
SDH MSPP
Thomas Jost
Coriant hiT 7025 Technical Description
Copyright 2008 Nokia Siemens Networks. All rights reserved.
2/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
The information in this document is subject to change without notice and describes only the product defined in the introduction of this documentation. This documentation is intended for the use of Coriant customers only for the purposes of the agreement under which the document is submitted, and no part of it may be used, reproduced, modified or transmitted in any f orm or means without the prior written permission of Coriant. The documentation has been prepared to be used by professional and properly trained personnel, and the customer assumes full responsibility when using it. Coriant welcomes customer comments as part of the process of continuous development and improvement of the documentation. The information or statements given in this documentation concerning the suitability, capacity, or performance of the mentioned hardware or software products are given “as is” and all liability arising in connection with such hardware or software products shall be defined conclusively and finally in a separate agreement between Coriant and the customer. However, Coriant has made all reasonable efforts to ensure that the instructions c ontained in the document are adequate and free of material errors and omissions. Coriant will, if deemed necessary by Coriant, explain issues which may not be covered by the document. Coriant will correct errors in this documentation as soon as possible. IN NO EVENT WILL CORIANT BE LIABLE FOR ERRORS IN THIS DOCUMENTATION OR FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, DIRECT, INDIRECT, INCIDENTAL OR CONSEQUENTIAL OR ANY LOSSES, SUCH AS BUT NOT LIMITED TO LOSS OF PROFIT, REVENUE, BUSINESS INTERRUPTION, BUSINESS OPPORTUNITY OR DATA,THAT MAY ARISE FROM THE USE OF THIS DOCUMENT OR THE INFORMATION IN IT. This documentation and the product it describes are considered protected by copyrights and other intellectual property rights according to the applicable laws. Other product names mentioned in this document may be trademarks of their respective owners, and they are mentioned for identification purposes only. Copyright © Coriant 2013. All rights reserved.
History of Changes Control
Date
Author
Comments
04
18.06.2007
Rainer Koster
Rebranded to NSN layout
05
Feb 27, 2008
Th. Jost
New SW license structure added
06
Jun 05, 2008
Rainer Koster
New 4x STM-1 board and enhanced temperature variant added
07
Sep 09, 2009
Christoph Schwinghammer
Update with new core and OA shelf
08
Sep 15, 2009
Rainer Koster
Update of mapping table
09
Apr 15, 2010
Xie Yijian
Update of port cross connection & VLAN aggregation feature Description of 4x GE/T card updated Description of DNI feature added List of electromagnetic compatibility requirements updated
10
Jun 15, 2010
Xie Yijian
Modification on description of 4x GE/T card STM-1 I-1 optical interface added modification on max. power consumption update of thermal standard (ETSI Class 3.2 on environment)
Rainer Koster
12
Jul 15, 2013
Thomas Jost
Copyright 2013 Coriant. All rights reserved.
2/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
The information in this document is subject to change without notice and describes only the product defined in the introduction of this documentation. This documentation is intended for the use of Coriant customers only for the purposes of the agreement under which the document is submitted, and no part of it may be used, reproduced, modified or transmitted in any f orm or means without the prior written permission of Coriant. The documentation has been prepared to be used by professional and properly trained personnel, and the customer assumes full responsibility when using it. Coriant welcomes customer comments as part of the process of continuous development and improvement of the documentation. The information or statements given in this documentation concerning the suitability, capacity, or performance of the mentioned hardware or software products are given “as is” and all liability arising in connection with such hardware or software products shall be defined conclusively and finally in a separate agreement between Coriant and the customer. However, Coriant has made all reasonable efforts to ensure that the instructions c ontained in the document are adequate and free of material errors and omissions. Coriant will, if deemed necessary by Coriant, explain issues which may not be covered by the document. Coriant will correct errors in this documentation as soon as possible. IN NO EVENT WILL CORIANT BE LIABLE FOR ERRORS IN THIS DOCUMENTATION OR FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, DIRECT, INDIRECT, INCIDENTAL OR CONSEQUENTIAL OR ANY LOSSES, SUCH AS BUT NOT LIMITED TO LOSS OF PROFIT, REVENUE, BUSINESS INTERRUPTION, BUSINESS OPPORTUNITY OR DATA,THAT MAY ARISE FROM THE USE OF THIS DOCUMENT OR THE INFORMATION IN IT. This documentation and the product it describes are considered protected by copyrights and other intellectual property rights according to the applicable laws. Other product names mentioned in this document may be trademarks of their respective owners, and they are mentioned for identification purposes only. Copyright © Coriant 2013. All rights reserved.
History of Changes Control
Date
Author
Comments
04
18.06.2007
Rainer Koster
Rebranded to NSN layout
05
Feb 27, 2008
Th. Jost
New SW license structure added
06
Jun 05, 2008
Rainer Koster
New 4x STM-1 board and enhanced temperature variant added
07
Sep 09, 2009
Christoph Schwinghammer
Update with new core and OA shelf
08
Sep 15, 2009
Rainer Koster
Update of mapping table
09
Apr 15, 2010
Xie Yijian
Update of port cross connection & VLAN aggregation feature Description of 4x GE/T card updated Description of DNI feature added List of electromagnetic compatibility requirements updated
10
Jun 15, 2010
Xie Yijian
Modification on description of 4x GE/T card STM-1 I-1 optical interface added modification on max. power consumption update of thermal standard (ETSI Class 3.2 on environment)
Rainer Koster
12
Jul 15, 2013
Thomas Jost
Copyright 2013 Coriant. All rights reserved.
3/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
Contents 1.
Introduction Introduc tion ........................................................................... 8
1.1 1.2 1.3
Editorials Editoria ls ............... ............................... ................................. .................................. ................................. ................................. ........................ ....... 8 Next Generation SDH ...................................................................................... 8 hiT 70 serie series s .......................... ........................................... .................................. ................................. ................................. ........................ ....... 9
2.
hiT 7025 Overv Overview iew .............................................................. 10
2.1 2.1.1 2.1.2 2.1.3
Overview ............... Overview ............................... ................................. .................................. ................................. ................................. ...................... ..... 10 Physical Structure ......................................................................................... 11 Cross Connection and Switching Capability .................................................. 12 Line/Service Interface .................................................................................... 12
2.2 2.3 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.3.7 2.3.8
Data Capabilities ........................................................................................... 13 Advanced Data Data Service Support Support ......... .................. ................... ................... ................... ................... .................. ............ ... 13 IEEE 802.1Q (VLAN) ..................................................................................... 13 Input Information Rating Limiting ................................................................... 14 Class of Service ............................................................................................ 14 GFP Data Encapsulation ............................................................................... 14 Virtual Concatenation and LCAS ................................................................... 15 RSTP Based Protection ................................................................................. 15 L2 Multicast Multicast Function Function......... .................. ................... ................... .................. ................... ................... .................. ................... ............ 15 Ethernet Transport Schemes ......................................................................... 15
2.4 2.5 2.5.1 2.5.2 2.5.3 2.5.4 2.5.5
Network Protections ...................................................................................... 17 Main Features & Strengths ............................................................................ 17 Flexibil Flex ibility ity ............... ............................... ................................. .................................. ................................. ................................. ...................... ..... 17 Reliabi Rel iability lity ............... ............................... ................................. .................................. ................................. ................................. ...................... ..... 17 Modularity and Scalability .............................................................................. 18 Ease of use ............................................... ............................................................... ................................. .................................. ................... .. 18 Data Handling Capabilities ............................................................................ 18
3.
System Application Application ............................................................. 19
3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6
Networking Capability .................................................................................... 19 Termination and Multiplexing (TM) ................................................................ 19 Hubbing and Local Cross Connect ................................................................ 20 Linear Line ar ................ .................................. .................................. ................................. ................................. .................................. ......................... ....... 21 Ring Rin g................. .................................. ................................. ................................. .................................. .................................. ........................... .......... 21 Multiple Ring Closure .................................................................................... 22 OA extension shelf ........................................................................................ 22
3.2
Ethernet Service Applications ........................................................................ 23
4.
System Description ............................................................. 24
4.1 4.1.1 4.1.2
Physical Structure and Module Construction ................................................. 24 Chassis Slot Naming ..................................................................................... 24 hiT 7025 interface options ............................................................................. 25
4.2 4.3 4.4
Power Supp Power Supply ly ................ ................................. ................................. .................................. .................................. ............................. ............. 26 FAN 26 System Controller Controller (SC, SCE and SCE plus) .......... ................... ................... ................... .................. ............ ... 26
Copyright 2013 Coriant. All rights reserved.
4/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
4.5 4.6 4.7 4.7.1 4.7.2 4.7.3 4.7.4
System Interface Panel (SI) ........................................................................... 27 Cross-Connect Switching (CC) ...................................................................... 27 SDH Interfaces.............................................................................................. 27 1x STM-4 Interface Board ............................................................................. 27 2 STM-1 Interface Board ............................................................................. 27 4 STM-1 Interface Board ............................................................................. 28 2 STM-1E (W/P) Interface ........................................................................... 28
4.8 4.8.1 4.8.2 4.8.3 4.8.4 4.8.5 4.8.6 4.8.7
PDH and Data Service Interfaces .................................................................. 29 8x FE/L2 Service Interface Card .................................................................... 29 4xGE/L2 Service Interface Card .................................................................... 31 8x FE/T Service Interface Card ..................................................................... 32 1x GE/T Service Interface Board ................................................................... 33 4x GE/T Service Interface Board ................................................................... 34 3 E3/DS3 (W/P) Interface Card.................................................................... 37 21 E1 (W/P) Interface Card ......................................................................... 38
4.9 4.10 4.11 4.12 4.13 4.13.1 4.13.2
Optical Amplifier ............................................................................................ 38 User Channel (F1) ......................................................................................... 41 Engineering Order Wire (EOW) ..................................................................... 41 Miscellaneous Discrete Input/Output (MDI/MDO) .......................................... 42 Introduction to Software licensing .................................................................. 43 General Structure of new SW items............................................................... 43 Software license structure of hiT 7025 ........................................................... 44
5.
Protection and Redundancy ................................................ 46
5.1 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7
Network Protection ........................................................................................ 46 MS-SPRing ................................................................................................... 46 MSP .............................................................................................................. 46 SNCP ............................................................................................................ 47 DNI ................................................................................................................ 47 LCAS............................................................................................................. 48 Ethernet Shared Protection Ring ................................................................... 48 Multiple Layers Protection ............................................................................. 48
5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6
Equipment Redundancy and Protection ........................................................ 49 Redundant Power Supply .............................................................................. 49 Redundant Cross-Connect ............................................................................ 49 Electrical Interface Module Protection ........................................................... 49 Protection under Abnormal Condition ............................................................ 49 Software Fault Tolerance .............................................................................. 50 Data Security................................................................................................. 50
6.
Technical Specification ....................................................... 51
6.1 6.2 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5
Multiplexing Structure .................................................................................... 51 SDH Overhead.............................................................................................. 53 Interface Types.............................................................................................. 54 Electrical Interfaces ....................................................................................... 55 Optical Interfaces .......................................................................................... 55 Optical amplifier card: OA .............................................................................. 56 Optical Amplifier (OA) .................................................................................... 57 Management and Maintenance Interface....................................................... 60
Copyright 2013 Coriant. All rights reserved.
5/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
6.4 6.4.1 6.4.2 6.4.3 6.4.4 6.4.5 6.4.6 6.4.7 6.4.8 6.4.9 6.4.10 6.4.11
Interface Performance Specifications ............................................................ 61 Optical Interface Performances ..................................................................... 61 STM-1 Optical Interface Performance ........................................................... 62 STM-4 Optical Interface Performance ........................................................... 63 STM-16 Optical Interface Performance.......................................................... 64 Multi-rate CWDM interface Optical Performance ........................................... 65 2.5G DWDM interface Optical Performance .................................................. 66 GE Optical Transmitter and Receiver Interfaces ............................................ 68 Electrical Interface Performances .................................................................. 70 Timing and Synchronization Performance ..................................................... 73 Jitter Performance ......................................................................................... 73 STM-N Interface Output Jitter ........................................................................ 74
6.5 6.6 6.6.1 6.6.2 6.6.3
Timing ........................................................................................................... 76 Power Source................................................................................................ 77 Power Supply ................................................................................................ 77 Power Consumption ...................................................................................... 77 Cooling .......................................................................................................... 77
6.7 6.8 6.8.1
Mechanical Structure ..................................................................................... 77 Environment Requirements ........................................................................... 78 Enhanced Temperature Variant ..................................................................... 78
6.9 6.10 6.10.1 6.10.2
Electromagnetic Compatibility ....................................................................... 79 Vibration Tests .............................................................................................. 81 Shipping Test ................................................................................................ 81 Office Test..................................................................................................... 81
6.11 6.11.1 6.11.2 6.11.3 6.11.4
Alarms and Events ........................................................................................ 81 Alarm Types .................................................................................................. 81 Alarm Severity Level...................................................................................... 82 Alarm Reports ............................................................................................... 82 Events ........................................................................................................... 82
7.
Standard Compliance.......................................................... 85
8.
Appendix 1: Definitions and Abbreviations .......................... 87
9.
Appendix 2: Basis Technologies ......................................... 94
9.1 9.2 9.3 9.4 9.5
Generic Framing Procedure (GFP) ................................................................ 94 Virtual Concatenation (VCat) ......................................................................... 96 Link Capacity Adjustment Scheme (LCAS).................................................... 97 Ethernet Functions and Services ................................................................... 97 Port Cross Connection and Port+VLAN Cross Connetion.............................. 98
10.
Appendix 3: Related Documents ....................................... 101
Copyright 2013 Coriant. All rights reserved.
6/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
List of Figures Figure 1 - Future Traffic Growth .......................................................................................................... 8 Figure 2 - hiT 7025 chassis ............................................................................................................... 10 Figure 3 – hiT 7025 Physical Structure ............................................................................................. 11 Figure 4 - Three Ethernet data transmission methods in hiT 7025 ring ...........................................16 Figure 5 - hiT 7025 termination and multiplexing capability .............................................................. 19 Figure 6 - hiT 7025 termination and multiplexing capability .............................................................. 20 Figure 7 - hiT 7025 linear network configuration ............................................................................... 21 Figure 8 - hiT 7025 2-fiber MS-SPRing application .......................................................................... 21 Figure 9 - Multiple Ring closure at a single hiT 7025 node ............................................................... 22 Figure 10 - hiT 7025 Chassis view ....................................................................................................24 Figure 11 - hiT 7025 chassis slot naming ......................................................................................... 25 Figure 12 - hiT 7025 Cards List.........................................................................................................26 Figure 13 - Functional block diagram of 2 STM-1E (W /P) card protection ..................................... 28 Figure 14 - 8 FE/L2 card functional block diagram ......................................................................... 30 Figure 15 - 8 FE/L2 interface card external interfaces .................................................................... 31 Figure 16 - 8 FE/L2 card LEDs ....................................................................................................... 31 Figure 17 - 8 FE/T card functional block diagram ........................................................................... 32 Figure 18 - 8 FE/T interface card external interfaces...................................................................... 33 Figure 19 - 8 FE/T card LEDs ......................................................................................................... 33 Figure 20 - 1 GE/T service board module functional block diagram ...............................................34 Figure 21 - Functional block diagram of 3 E3/DS3 (W /P) card protection ...................................... 37 Figure 22 – OA m odule functional building block diagram ............................................................... 39 Figure 23 – OA module safty procedure ...........................................................................................40 Figure 24 – OA card external interfaces ........................................................................................... 41 Figure 25 – OA card LEDs ................................................................................................................41 Figure 26 –External XOW box .......................................................................................................... 42 Figure 27: Software license structure in Next Generation Metro ......................................................43 Figure 28: Software license structure of hiT 7025 ............................................................................ 45 Figure 29 - Cross-Connect Multiplexing Structure (ITU-T G.707) .................................................... 51 Figure 30 - Terminated Mapping Structure .......................................................................................52 Figure 31 - Payload Mapping ............................................................................................................ 52 Figure 32 – hiT 7025 supported SDH overhead process ................................................................. 54 Figure 33 – hiT 7025 Interface Types ...............................................................................................54 Figure 34 - hiT 7025 optical service interfaces supported ................................................................56 Figure 35 - STM-N Optical Interface Parameters and Application Codes ........................................ 61 Figure 36 - hiT 7025 STM-1Optical Interface Specifications ............................................................ 62
Copyright 2013 Coriant. All rights reserved.
7/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
Figure 37 - hiT 7025 STM-4 Optical Interface Specifications ........................................................... 63 Figure 38 - hiT 7025 STM-16 Optical Interface Specifications ......................................................... 65 Figure 39 - hiT 7025 CWDM Optical Interface Specifications .......................................................... 66 Figure 40 - hiT 7025 DWDM Optical Interface Specifications .......................................................... 67 Figure 41 - hiT 7025 DW DM Wavelenthes ....................................................................................... 67 Figure 42 - 1000 Base-SX transmitter interface parameters ............................................................ 68 Figure 43 - 1000 Base-SX receiving interface parameters ............................................................... 69 Figure 44 - 1000 Base-LX Transmitter interface parameters ........................................................... 69 Figure 45 - 1000 Base-LX receiver interface parameters ................................................................. 70 Figure 46 - 2048 kbit/s Electrical Interface Parameters .................................................................... 71 Figure 47 - Electrical Interface Output Signals Bit Rate Allowable Deviation ...................................71 Figure 48 - Electrical Interface Allowable Input Attenuation ............................................................. 72 Figure 49 - Electrical Interface Allowable Input Port Frequency Deviation .......................................72 Figure 50 - Electrical Interface Input Port Anti-interference Capability .............................................72 Figure 51 - Timing Output Jitter ........................................................................................................ 73 Figure 52 - Internal Timing Source Output Frequency ...................................................................... 73 Figure 53 - STM-1/-4/-16 Interface Output Jitter ............................................................................... 74 Figure 54 - STM-1 Interface Jitter Tolerance .................................................................................... 74 Figure 55 - STM-4 Interface Jitter Tolerance .................................................................................... 75 Figure 56 - STM-16 Interface Jitter Tolerance .................................................................................. 75 Figure 57 - PDH mapping jitter generation specification................................................................... 75 Figure 58 - hiT 7025 PDH interface combined jitter generation spec ...............................................76 Figure 59 - hiT 7025 Environment Requirements ............................................................................ 78 Figure 60 - hiT 7025 Electromagnetic Compatibility Requirements ..................................................80 Figure 61 - Shipping Test Standards ................................................................................................ 81 Figure 62 - Office test standards .......................................................................................................81 Figure 63 - Management Events .......................................................................................................83 Figure 64 - Hardware Events ............................................................................................................83 Figure 65 - Software Events ..............................................................................................................84 Figure 66 - GFP mapping ..................................................................................................................95 Figure 67 - Comparison between GFP and PPP .............................................................................. 96 Figure 70 – Port Cross Connection ...............................................................................................98 Figure 71 – VLAN aggregation ..........................................................................................................99
Copyright 2013 Coriant. All rights reserved.
8/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
1.
Introduction
1.1
Editorials
This document is a technical description for the product hiT 7025. The technical descriptions of other products of the hiT 70 series are also available. This document is not a marketing document. The target of this document is to inform on detail about the product, product features and the application in the network environment. It is not a document for advertisement purposes but it is useful to inform our customer in detail in the after sales period. For marketing and advertisement related product information please contact the sales department. If the reader is looking for information on the basis technologies please refer to 9 Appendix 2: Basis Technologies.
1.2
Next Generation SDH
For almost two decades, Synchronous Digital Hierarchy (SDH) has been the preferred transport technology over optical fibers. SDH is the dominant transport protocol in virtually all long-haul networks (voice and data) as well as in metro networks that were originally developed for voice traffic. As a resilient, well-understood transport mechanism, SDH has stood the test of time. Its reliability is uned. The ability of SDH to support 50-msec switching to backup paths, combined with extensive performance monitoring features for carrier-class transport. Legacy SDH was designed mainly to transport circuit oriented services like voice and as such is an inherently rigid and inefficient method for transporting data. Traditionally a single wire speed Gigabit Ethernet service (1.25G) will be allocated to one STM 16 channel (2.5G). This means 48 % of the of this STM-16 pipe remains as idle capacity.
Figure 1 - Future Traffic Growth
Copyright 2013 Coriant. All rights reserved.
9/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
The phenomenal growth in bandwidth, connectivity and content generated by the Internet, Intranet and broadband applications, has made native data transfer a very important criteria for telecommunication infrastructure (see Figure 1). Ethernet has become the de facto standard for enterprise networks. In Storage Area Networks (SAN), ESCONTM, FICONTM and Fiber Channel are by far today‘s most dominating technology as well. The solution is Next Generation SDH—technology that transforms rigid, circuit-oriented SDH networks to a universal transport mechanism that is optimized for both voice and data. The technology enables carriers to keep up with growing demands for bandwidth, to efficiently carry both streaming and bursty traffic, and adapt to constantly changing traffic patterns. Multiple protocols and thus services are supported: from basic TDM voice, Ethernet, as well as SAN.
1.3
hiT 70 series
Coriant has introduced a new range of equipment that makes the promise of Next Generation SDH a reality: the hiT 70 series. This platform provides the flexibility of true packet switching and Ethernet transport, while operating with the inherent reliability of SDH. Multiple network applications are integrated and consolidated into a single compact unit. The efficiency of this approach, together with extensive use of highly integrated components allows the hiT 70 series to be offered at lower costs than current solutions.
Data + Voice = hiT 70 series In order to address the varying needs and requirements of carrier‘s carrier, car rier and enterprise, the hiT 70 series consists of a diverse range of products, namely:
hiT
7080
ADM / CC, multiple STM-64
hiT
7065
ADM / CC, multiple STM-64
hiT
7060 HC
ADM 64, multiple STM-16
hiT
7060
ADM, multiple STM-16
hiT
7035
ADM, STM-16, STM- 4, STM-1
hiT
7025
ADM, STM-16, STM-4, STM-1
hiT
7030
ADM 4/1 modular
hiT
7020
ADM 4/1 single board CPE
This Technical Description covers hiT 7025, only. For detailed description of the other product please refer to 10 Appendix 3: Related Documents.
Copyright 2013 Coriant. All rights reserved.
10/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
2. 2.1
hiT 7025 Overview Overview
hiT 7025 is a compact carrier class full blown STM-16/-4/-1 add-drop-multiplexer. hiT 7025 supports core equipment protection with no single point of failure, and PDH electrical protection. It offers rich Ethernet features. Applications: Optimized In
for SDH applications with data capabilities
transmission networks of mobile network
Central
office STM-16/-4/-1 add drop multiplexer
Highend enterprise services
hiT 7025 offers a High Order cross connection capacity up to 33G and a Low Order cross connection capacity up to 10G.
Figure 2 - hiT 7025 chassis
hiT 7025 offers a powerful and cost-effective product design for PDH, SDH and data applications independent if these applications capabilities are requested for use in central offices, fixed part of mobile networks or in combination with highend enterprise services. hiT 7025 supports the complete range of PDH and SDH interfaces ranging from E1, E3/DS3, STM-1 el./opt. up to STM-4 and even STM-16. It provides a full suite of SDH functions including mapping, multiplexing, cross-connection and various protection schemes. hiT 7025 has a modular and scalable design, enabling a pay-as-you-grow deployment plan. The system can be initially deployed as a low cost, modest capacity system, and then enlarged to a high capacity, multi-service system. A large variety of service modules ensure a cost-effective match with service demands of today while retaining superior flexibility to meet future service requirements. Its advance software architecture design results in a highly fault-tolerant system. Combined with built-in hardware redundancies, hiT 7025 achieves carrier-class reliability with 99.999% availability. Copyright 2013 Coriant. All rights reserved.
11/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
The system is fully compliant with ITU-T and/or IEEE standards, and is inter-operable with other standards-based SDH, multi-service transport, and data communication products. Utilizing hiT 7025 in combination with the multi-service capabilities of Coriant TNMS network management system, service providers can cost-effectively grow their embedded base networks or launch new networks
2.1.1
Physical Structure
The physical dimensions of hiT 7025 chassis are 445mm (wide) 238mm (high) 240mm (deep) (300mm back to door), which is compliant to 19 and 21 inch industry standards. LC1
LC5
IO1
LC2
LC6
IO2
LC3
LC7
IO3
LC4
LC8
IO4
F A N
CC1 w STM-16/4/1
SI
CC2 w/ STM-16/4/1
PWR1
SCE
PWR2
Figure 3 – hiT 7025 Physical Structure
The dimension of physical cards is: CC cards
=
253 mm x 264 mm x 30mm
Short cards
=
238 mm x 130 mm x 30 mm
IO1-4/
=
229 mm x 130 mm x 33 mm
SI/PWR
=
198 mm x 130 mm x 33 mm
FAN
=
246 mm x 225 mm x 36 mm
All external interfaces have front access.
Copyright 2013 Coriant. All rights reserved.
12/101
2.1.2
Technical Description hiT 7025 July 15, 2013 / Issue 12
Cross Connection and Switching Capability
hiT 7025 supports two types of cross connection and switching capabilities:
ADM-4/-1: 7.2G/2.5G CC with 1x STM-4/-1 line interface: HOCC: (7.2G) LOCC: (2.5G)
ADM-16/-4: 15.2G/5 CC with 1x STM-16/-4 line interface: HOCC:
15.2G
LOCC:
5G
ADM-16/-4/-1: 33G/10 CC with 2*STM-16 or 1*STM-16+4*STM-4/1: HOCC:
33G
LOCC:
10G
2.1.3
Line/Service Interface
hiT 7025 provides the following line interfaces:
1) SDH: 1 STM-4 Optical Line Interface Board 2) SDH: 2 STM-1 Optical Interface Board 3) SDH: 4 STM-1 Optical Interface Board 4) SDH: 2 STM-1E (W/P) Electrical Interface Card 5) SDH: 2 STM-1E PaddleCard 6) PDH: 3 E3/DS3 (W/P) interface card 7) PDH: 3 E3/DS3 Paddle 8) PDH: 21 E1 (W/P) client interface card 9) PDH: 21 E1 75ohm Paddle 10) PDH: 21 E1 120ohm Paddle 11) IP/Ethernet: 8 FE/L2 interface card 12) IP/Ethernet: 8 FE/T Ethernet interface card 13) IP/Ethernet: 1 GE/T interface card
Copyright 2013 Coriant. All rights reserved.
13/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
14) Optical Amplifier cards (13, 15 and 18 dBm) 15) Optical Pre-Amplifier card (20dB) 16) 4 x GE/T interface card
2.2
Data Capabilities
hiT 7025 supports GFP (ITU-T G.7041 / Y.1303) encapsulation for Ethernet data. hiT 7025 supports VC-12-nv, VC-3-nv and VC-4-nv virtual concatenation (ITU-T G.707 / Y.1322) efficiently mapping data traffic into SDH payload. hiT 7025 also supports LCAS (G.7042) at VC-12-nv, VC-3-nv and VC-4-nv level, which provides dynamic bandwidth adjustment. hiT 7025 provides SDH network protection functions including Multiplex Section Shared Protection Ring, Multiplex Section Protection 1 + 1 unidirectional/bi-directional, and SubNetwork Connection Protection (SNCP) at VC-12/-3/-4 levels.
2.3
Advanced Data Service Support
hiT 7025 supports the following Layer 2 data functions: 1) IEEE 802.1Q (VLAN) 2) Input information limiting 3) Class of Service 4) GFP 5) VCAT and LCAS 6) RSTP 7) Layer 2 multicast 8) ESR 9) Port aggregation and VLAN aggregation
2.3.1
IEEE 802.1Q (VLAN)
hiT 7025 supports Ethernet switching function, which is in compliance with IEEE Standard 802.1Q. hiT 7025 supports VLAN on a per port basis. Each data port can be enabled or disabled for VLAN function.
Copyright 2013 Coriant. All rights reserved.
14/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
At the ingress, each port can be set either to accept both VLAN-tagged and untagged frames, or to accept only the VLAN-tagged frames depending on the application requirements. At the egress, each port can be set to remove the VLAN tags or keep the VLAN tags. It is also possible to assign each port a PVID (Port- based VLAN ID), which will be inserted to the untagged frames as a VLAN ID when the frames come into the port. In addition, each port can be put into one or more VLANs by assigning a VLAN list to it, allowing different customers or different applications to share the same port. All services within the specific VLAN in the list can dynamically share the bandwidth of the port and still retain security. If the port belongs to a VLAN, the frames of that VLAN will be able to pass-through the port; otherwise the frames will be discarded. Optionally, each port can be set to transparent mode, meaning that no switching functions will be performed on the frames. In this case, the pairing of one LAN (customer) port and one WAN (internal uplink) port must be established.
2.3.2
Input Information Rating Limiting
hiT 7025 supports Input Rate Limiting function on a port basis or a VLAN basis. An input information rate-limiting feature allows the one to control the maximum bandwidth an end user can obtain from the network. The minimum rate is 128 Kbit/s, and t he bandwidth incremental granularity is as low as 128 Kbit/s.
2.3.3
Class of Service
hiT 7025 supports 802.1p CoS at a port basis or a VLAN basis. At the ingress of every port, there is a buffer to accommodate the input burst when the output port is congested. The memory for buffering is shared among all ports on a card, and the total capacity is up to 16 Mbytes. At the egress of every port, there are four queues, which can be assigned with different priorities or weights. The scheduling scheme can be set either to strict policing or Weighted Round-Robin.
2.3.4
GFP Data Encapsulation
hiT 7025 incorporates advanced Generic Framing Procedure (GFP) (G.7041 / Y.1303) mapping scheme to encapsulate Ethernet traffic into SDH payloads. GFP encapsulated data is then mapped into SDH payloads using Virtual Concatenation techniques of ITU-T standard G.707/Y.1322. This process provides the most efficient mapping of the packets and the greatest bandwidth
Copyright 2013 Coriant. All rights reserved.
15/101
2.3.5
Technical Description hiT 7025 July 15, 2013 / Issue 12
Virtual Concatenation and LCAS
hiT 7025 supports VC-12-nv, VC-3-nv and VC-4-nv. The VC provides fine-tuned SDH pipes to match the needs of packet – packet – and to boost carriers’ traffic-handling traffic-handling scalability and efficiency. The system can accommodate accommodate up to 48ms (for all transparent cards) or 32 ms (for FE/L2 card) delay deference between the fastest VC-4 member and the slowest VC-4 member and accommodate 16 ms delay deference between the fastest VC-12 member and the slowest VC-12 member.. hiT 7025 supports LCAS. The combination of VCAT and LCAS provide soft protection schemes. LCAS provides dynamic adjustment of the size of a virtually concatenated group of channels.
2.3.6
RSTP Based Protection
The Rapid Spanning Tree protocol acc. IEEE 802.1w and MSTP acc. IEEE 802.1s prevent against loops at the WAN W AN side of the network while providing providing L2 protection.
2.3.7
L2 Multicast Function
hiT 7025 supports Layer 2 multicast functionality including pre-provisioned static multicast, or IGMP Snooping controlled dynamic multicast.
2.3.8
Ethernet Transport Schemes
hiT 7025 supports three Ethernet data transport schemes, which are described below: below: Point-to-point transparent
In this mechanism, dedicated bandwidth is assigned to end-to-end traffic. The Virtual Concatenation Concatenation technique is used in the hiT products to provide provide more efficient bandwidth assignment. This scheme is more suitable for high security requirements and delay-sensitive delay-sensitive traffic as each traffic has a dedicated bandwidth. The drawback is the limited bandwidth efficiency. As we know, Ethernet traffic has bursty characteristics and is delay insensitive. Statistical multiplexing is usually employed in data network to achieve bandwidth efficiency. Dedicated bandwidth per data flow is not efficient for bursty traffic t raffic transmission. Layer
2 aggregation
In this mechanism, the Ethernet switching and aggregation aggregation is performed at the NE to allow local user traffic to be aggregated into a higher rate SDH trunk. The statistical multiplexing multiplexing of multiple Ethernet traffic makes the bandwidth utilization more efficient. Copyright 2013 Coriant. All rights reserved.
16/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
Port Cross Connection That means the frame from ingress port (both WAN or LAN) will be forward to egress port (both WAN or LAN) according to the ingress port. At the ingress port a forward table is configured by operator to define the egress port base on the ingress port
Port + VLAN Cross Connection (VLAN aggregation) That means the frame from ingress port from ingress port (both WAN or LAN) will be forward to egress port (both WAN or LAN) according to its VLAN tag. At the ingress port a forward table t able is configured by operator to define t he egress port based on VLAN. Untagged frame will be discarded.
Ethernet
Shared Ring (ESR)
The ESR (Ethernet Shared Ring) is a variable length packet switched multi-node ring. Data
traffic shares the same ring bandwidth
Nodes
on ring have IEEE802.3 Address
Header Header MAC
has IEEE802.3 type Destination Address and Source Address
and VLAN based switching
Destination Destination Drop
strips unicast packets
and continue for broadcast and multicast
Source node strips
Class Class
broadcast packets
of Service indication indication in the t he header supports multiple traffic priorities on ring
Rapid
Spanning Tree protocol (IEEE 802.1w and IEEE802.1s) to prevent building loops and to provide layer 2 protections in ring configuration.
The ESR (Ethernet Shared Ring) technology can efficiently add/drop or duplicate the data traffic on a ring. This dramatically increases the transport efficiency when compared with the t raditional point-to-point point-to-point networking technology that may lead to back-haul traffic and inefficient multicast traffic. ESR is based on the RSTP technology to prevent the Ethernet Loop and Broadcast Storm. If using the Multi-STP, functionality of the spatial reuse, different VLAN can go through different path, and can balance the traffic between the different paths.
(a) Point-to-point (transparent)
9WAN Interfaces
3 LAN interfaces
(b) Local Aggregation -Layer 2switching -VLAN aggregation 3WAN interfaces
3 LAN interfaces
(c) Ethernet Shared Ring
2WAN interfaces
3 LAN interfaces
Local muxing
Figure 4 - Three Ethernet data transmission methods in hiT 7025 ring
Copyright 2013 Coriant. All rights reserved.
17/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
2.4
Network Protections
hiT 7025 provides traffic protection in the SDH layer: MS-Spring MS-Spring 1+1
MSP at STM-1and STM-1and STM-4 and STM-16 level, level,
Both Both
at STM-4 and STM-16 level,
of SNCP/I and SNCP/N at VC-12, LO VC-3, HO VC-4, and HO VC-4-4c level.
DNI at STM-16 and STM-4 STM-4 Level
hiT 7025 also provides traffic protection in the Ethernet layer: LCAS Link
soft protection (Diverses routing),
aggregation at LAN and WAN side.
2.5
Main Features & Strengths
2.5.1
Flexibility
hiT 7025 offers the f lexibility lexibility to be used as full blown ADM-1/ ADM-4 to compact ADM-16. Interconnection to your SDH network can be at STM-16, STM-4 or STM-1 level. For reach of very long and ultra long distance applications without use of intermediated regenerators optical booster and preamplifiers are offered. Maximum distances up to 160 km (in compliance with ITU-T Recommendation Recommendation G.692 U-16.2/3) can be achieved. achieved.
2.5.2
Reliability
hiT 7025 is due to t o its full redundancy concept concept a very reliable product: The system is based on the standardized SDH technology, which is a market proven networking technology. Highly integrated components guarantee for highest system reliability: Optical transmission can be protected using Multiplex Section Shared Protection Ring, Sub-Network Connection Protection (SNCP), and Multiplex Section Protection 1+1 unidirectional unidirectional / bidirectional. bidirectional. Thermal Sensor detects if the internal temperature temperature exceeds the threshold and raise the over temperature alarm.
Copyright 2013 Coriant. All rights reserved.
18/101
2.5.3
Technical Description hiT 7025 July 15, 2013 / Issue 12
Modularity and Scalability
hiT 7025 is of modular design and allows therefore a high configuration versatility. All optical line interfaces uses SFP optical modules. This modularity reduces the sparepart stock and increases the flexibility of the system as on the same card different types of SFP modules can be used on different ports (e.g. short haul and long haul). The scalability from full blow ADM-1/ ADM-4 to compact ADM-16 allows for flexible growth with evolving networking needs. hiT 7025 offers the ability to interface with all NSN and other vendor’s optical networking systems. The same applies for data processing equipment offers standardized Ethernet interface (10/100 BaseT, 1000/100/100 BaseT, 100 Base FX , FC1G or 2G and Gigabit Ethernet).
2.5.4
Ease of use
All optical and electrical interfaces have front access. Support for Small Form-factor Pluggable (SFP) optical interfaces for STM-16, STM-4, STM-1, and GE SFP optical interfaces, allow convenient field replacement of the optical interfaces. As the network evolves, different optical modules can be inserted to meet the changing network environment and growth. Additional, state-of-art electrical SFP module is supported for STM-1 interface card and GE card.
2.5.5
Data Handling Capabilities
Support for 4094 VLANs per L2 switch card in order to transport end-user data securely with a variety of Class-of-Service options that allow differentiated services between users or between applications with a given user. Ethernet traffic is encapsulated into SDH using either GFP. This provides the most advanced and efficient way to carry data traffic within a SDH network. Virtual Concatenation is used to provide scalable, efficient, compatible, and resilient use of SDH to move traffic. This greatly increases the useable bandwidth of the network.
Copyright 2013 Coriant. All rights reserved.
19/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
3.
System Application
hiT 7025 multi-service access platform is a highly flexible product capable of supporting a variety of network applications like bandwidth access, service-on-demand and LAN services. hiT 7025 can be configured in such a way that it supports a large variety of network applications with any mix of PDH, SDH and Ethernet services.
3.1
Networking Capability
hiT 7025 provides high flexibility and compactness supporting a large variety of configurations for STM-16, STM-4 and STM-1 network applications: Termination Small
and multiplexing
local cross connect
Linear Ring Multi
3.1.1
Ring closure
Termination and Multiplexing (TM)
hiT 7025 system can be configured to function as a hub-Terminal at STM-16, STM-4 or STM-1 level. E1 E3/DS3
STM-1/-4/16
10/100M 10/100/1000M
hiT 7025
100M FX GE STM-1E STM-1/4 ATM IMA FC
Figure 5 - hiT 7025 termination and multiplexing capability
Copyright 2013 Coriant. All rights reserved.
20/101
3.1.2
Technical Description hiT 7025 July 15, 2013 / Issue 12
Hubbing and Local Cross Connect
hiT 7025 system can be used to function as a small local cross-connect system (or can be applied in hubbing configurations). This allows various hybrid network architectures with a variety of connection speeds and network topologies such as rings, multi-rings, subtending rings, or linear structures. This eliminates the need for back-to-back terminals and greatly increases network flexibility. hiT 7025 can serve a cluster of other terminals, for example hiT 7030 or other vendor’s products that have standard SDH interfaces, located at remote sites, through point-topoint connections with optional 1+1 MSP protection. It also serves as an aggregation Hub for Subtending Rings. This feature eliminates back-to-back terminals that would be required to serve multi-ring connections using equipment with less ring-closure capabilities.
STM-1/-4/16
STM-1/-4/16
hiT 7025
E1 E3/DS3 100/100M 10/100/1000M 100M FX GE STM-1E STM-1/4 ATM IMA FC
Figure 6 - hiT 7025 termination and multiplexing capability
Copyright 2013 Coriant. All rights reserved.
21/101
3.1.3
Technical Description hiT 7025 July 15, 2013 / Issue 12
Linear
hiT 7025 supports STM-16/-4/-1 linear network topology as depicted in figure below:
hiT7025 TM
hiT7025 ADM
hiT7025 TM
Figure 7 - hiT 7025 linear network configuration
3.1.4
Ring
Rings provide redundant bandwidth and/or equipment to ensure system integrity in the event of any transmission or timing failure, including a fiber cut or node failure. A ring is a collection of nodes that form a closed loop, in which each node is connected to adjacent nodes. hiT 7025 supports two-fiber MS-SPRing. Figure below shows a hiT 7025 ring example.
hiT7025
hiT7025
2-Fiber STM-4/16 ring
hiT7025
hiT7025 Figure 8 - hiT 7025 2-fiber MS-SPRing application
When using the MS-SPRing protection mechanism, rings ranging from 3 to 16 nodes are supported (the maximum of 16 nodes in a ring is specified in G.841). They perform automatic protection switching (revertive) in less than 50 milliseconds.
Copyright 2013 Coriant. All rights reserved.
22/101
3.1.5
Technical Description hiT 7025 July 15, 2013 / Issue 12
Multiple Ring Closure
A single network element as depicted in Figure 9 can interconnect two hiT 7025 rings working at different or the same line speeds.
hiT7025
hiT7025
Ring 1
hiT7025
Ring 2
hiT7025
(STM-1/4/16)
(STM-4/16)
hiT7025
hiT7025
hiT7025
Figure 9 - Multiple Ring closure at a single hiT 7025 node
3.1.6
OA extension shelf
In OA Extension Shelf Mode the hiT 7025 can be used as an Optical Amplifier (OA) extension shelf for the hiT 70xx series products. This configuration has no CC, tributary, or line cards. Only basic cards (power, fan, Enhanced System Controller (SCE)), and Optical Amplifier (OA) cards are supported.
Connection is made either directly between the management ports of these t wo NEs or if multiple OA Extension Shelves are required, through a hub or switch (see Fig. 3.1).
SURPASS hiT 7025 OA Extension Shelf
SURPASS hiT 7025 OA Extension Shelf
MAIN SHELF
MGT Port 1
SWITCH / HUB
MGT Port 2 When more than one OA Extension Shelf is needed, a hub or switch is necessary
Fig. 3.1
OA Extension Shelf connection to main shelf
Copyright 2013 Coriant. All rights reserved.
23/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
In OA Extension Shelf configuration, the NE has no cross connect card or tributary cards and can be equipped with up to 8 OA cards in slots 1 – (LC1) to 8 – (LC8).
3.2
Ethernet Service Applications
hiT 7025 provides data transport over SDH, and offers various data applications in addition to traditional TDM applications. This offers service providers a cost-effective, simple, and reliable multi-service solution for their customers. hiT 7025 can provide aggregation from any port to any port, and then connect it to a router. hiT 7025 can support up to 4094 VLANs on the Ethernet port allowing bandwidth to be shared for different customer applications depending on the priority or security required for the application. Normally a user does not require all of the available bandwidth, for instance 600 Mbit/s which can be provided by a VC-4-4v. By using the VLAN capability, the whole bandwidth of 600 Mbit/s can be allocated across multiple users, giving each a committed information input rate. Hence, the bandwidth of the physical link can be more effectively utilized. In addition, using Virtual Concatenation and LCAS can more accurately adjust the physical bandwidth to meet customer demands, as opposed to traditional contiguous concatenation. This further enhances bandwidth efficiency. Additionally to being able to provide precise customer-required bandwidth levels, four queues for service priority can be assigned per Port/VLAN. This enables additional flexibility in pricing and over-subscription service plans. By using the VLAN function, the operator can provide Transparent VLAN Service (TVS) for different customers. For example, a GE user or multiple 10/100M Ethernet users can be aggregated and transported while retaining secure connections. The use of GFP data mapping techniques within hiT 7025 greatly improves the bandwidth efficiency of the connections.
Copyright 2013 Coriant. All rights reserved.
24/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
4.
System Description
4.1
Physical Structure and Module Construction
hiT 7025 is designed to fit ETSI (21 inch) and EIA 300 (19 inch) requirements. A hiT 7025 chassis view is shown below:
Figure 10 - hiT 7025 Chassis view
hiT 7025 sub-rack is structured using a horizontal oriented, multi-card chassis.
4.1.1
Chassis Slot Naming
hiT 7025 chassis slot and slot naming is shown below: LC stands for Line Card, CC stands for Cross Connect Card, SC stands for System Controller, IO stands for Input/Ouput Card, SI stands for System Interface and PWR stands for Power filter and converter module.
Copyright 2013 Coriant. All rights reserved.
25/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
LC1
LC5
IO1
LC2
LC6
IO2
LC3
LC7
IO3
LC4
LC8
IO4
F A N
CC1 w STM-16/4/1
SI
CC2 w/ STM-16/4/1
PWR1
SCE
PWR2
Figure 11 - hiT 7025 chassis slot naming
4.1.2
hiT 7025 interface options
In the following table all interface options provided by hiT 7025 are listed. Card Name
Allowable Card Location
Maximum number of ports [per system]
Cross Connect Card with 1xSTM-4/-1
CC1, CC2
1 [2]
Cross Connect Card with 1xSTM-16/-4
CC1, CC2
1 [2]
Cross Connect Card with 2xSTM-16 or 1*STM-16+4*STM-4/1
CC1, CC2
1 STM-4 Line Interface Board
2 STM-1 Line Interface Board
4x STM-1 Line Interface Board
2 STM-1E Interface Board
5 [10]
LC1 to LC4(7.2G/2.5G)
1 [4](7.2G/2.5G)
LC1 to LC8(15.2G/5G)
1 [8](15.2G/5G)
LC1 to LC8 ( 33G/10G)
1 [8](33G/10G)
LC1 to LC4(7.2G/2.5G)
2 [8](7.2G/2.5G)
LC1 to LC8(15.2G/5G)
2 [16](15.2G/5G)
LC1 to LC8(33G/10G)
2 [16](33G/10G)
LC1 to LC4(7.2G/2.5G)
4 [16](7.2G/2.5G)
LC1 to LC8(15.2G/5G) LC1 to LC8(33G/10G)
4 [32](15.2G/5G)
LC3 or LC4
2 [2]
Copyright 2013 Coriant. All rights reserved.
4[32] (33G/10G)
26/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
Card Name
Allowable Card Location
Maximum number of ports [per system]
LC1 to LC8
8 FE/T Card
8 [64] 8 [32] (7.2G/2.5G)
LC1 to LC8
8 FE/L2
8 [32] (15.2G/5G) 8 [32] (33G/10G)
1 GE/T
LC1 to LC8
1 [8]
4 GE/T
LC1, LC2,LC7, LC8
4 [16]
4xGE/L2
LC1, LC2,LC7, LC8
4 [16]
3 E3/DS3
LC3, LC4
3 [6]
21 E1
LC5 to LC8
21 [84]
Figure 12 - hiT 7025 Cards List
Both the optical and electrical interface access is on the front of the sub-rack. Card faceplates are provided for all cards with information on card type, LED description, and unique serial number on each label. Faceplate covers are available for empty slots.
4.2
Power Supply
hiT 7025 DC power supply provides two -40V DC to -72V DC power supplies to offer full equipment redundancy.
4.3
FAN
There is one fan assembly on the left side of the chassis. The fan working status is indicated at the interface panel. The fan assembly is replaceable when the system is in service.
4.4
System Controller (SC, SCE and SCE plus)
hiT 7025 has a dedicated system controller. This controller has on its front side several service interfaces: management, console, MDI/MDO, etc.
Copyright 2013 Coriant. All rights reserved.
27/101
4.5
Technical Description hiT 7025 July 15, 2013 / Issue 12
System Interface Panel (SI)
The system interface panel provides the synchronization interfaces (T3 and T4).
4.6
Cross-Connect Switching (CC)
The CC card provides a cross connect function. To fit the customers’ different application economically, the hiT 7035 provide three types of CC cards: one with 15.2G/5G with 1 STM-16/-4, one with 7.2G/2.5G with 1 STM-4/-1 and one with 32.8G/10G and 2*STM-16 or 1*STM-16 + 4*STM-4/1.
4.7
SDH Interfaces
hiT 7025 provides following SDH interfaces: 1 STM-4
Interface Board
2 STM-1
Interface Board
4x
STM-1 Interface Board
2 STM-1E
4.7.1
interface Card
1x STM-4 Interface Board
This board provides 1 optical interface with a signal rate of 622 Mbits/s. The STM-4 interface is fully compliant with ITU-T G.707 and G.957 standards. This module supports hot swappable SFP optical module. The STM-4 optical interface on this board can be paired with any STM-4 interface on another board for 2-fiber STM-4 ring closure. The STM-4 ring supports MS-SPRING, MSP, and SNCP protection function.
4.7.2
2 STM-1 Interface Board
This board provides 2 optical interfaces with a signal rate of 155 Mbits/s. The STM-1 interfaces are fully compliant with ITU-T G.707 and G.957 standards. This board supports two hot swappable SFP optical modules or SFP electrical modules. On STM-1 level MSP and SNCP protection is supported. Copyright 2013 Coriant. All rights reserved.
28/101
4.7.3
Technical Description hiT 7025 July 15, 2013 / Issue 12
4 STM-1 Interface Board
This board provides 4 optical interfaces with a signal rate of 155 Mbits/s. The STM-1 interfaces are fully compliant with ITU-T G.707 and G.957 standards. This board supports four hot swappable SFP optical modules or SFP electrical modules. On STM-1 level MSP and SNCP protection is supported.
4.7.4
2 STM-1E (W/P) Interface
This card offers 2 STM-1E electrical interface, and supports redundant (1+1) 2 STM-1E card protection. Using the redundancy option implement the following devices two 2 STM-1E functional cards and one 2 STM-1E I/O board. The 2 STM-1E functional card performs 2 STM-1E signal mapping and framing function. The 2 STM-1E EC board provide 2 STM-1E interfaces. This board is connected to both 2 STM-1E (working) and 2 STM-1E (protection) card simultaneously. Under normal condition, the STM-1E client interface is connected to the 2 STM-1E (working) card. If the 2 STM-1E (working) card fails, the 2 STM-1E EC board will switch to the 2 STM-1E (protection) card. Figure 13 depicts the functional block diagram of 2 STM-1E (W/P) card protection.
2 STM-1E (W) 2 STM-1E EC
2x STM-1E transceiver & Framing function
Selector Relay
To CC board via B ackplane
To c lient equipment
2 STM-1E (P) 2x STM-1E transceiver & Framing function
SC
Figure 13 - Functional block diagram of 2 STM-1E (W/P) card protection
Copyright 2013 Coriant. All rights reserved.
29/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
4.8
PDH and Data Service Interfaces
hiT 7025 supports the following service cards:
Data cards: 8 FE/L2 8 FE/T
Service Interface Card
Service Interface Card
1x
GE/T Service Interface Board
4x
GE/T Service Interface Board
PDH cards: 3 E3/DS3 21 E1
(W/P) Interface Card
(W/P) Interface Card
4.8.1
8x FE/L2 Service Interface Card
This card provides 410/100M Base-T interfaces (RJ-45), One RJ45 can be used for two LAN ports, There are eight WAN ports on the network side. Up to 8x 10/100M traffic can be aggregated at WAN port side and forwarded to a SDH line interface for transmission with up tp 4 VC-4 at the network / WAN side.
Ethernet over SDH functions by this card are: Supports
GFP encapsulation (ITU-T G.7041/Y.1303)
Scalable
bandwidth through VC-12-nv (n=1,…,46) and VC-3-nv (n=1,2)
LCAS
support according ITU-T G.7042
Maximum
Transmission Unit (MTU) 1800 bytes
The Layer 2 functions supported by this card are: 10/100Mbit/s Ethernet VLAN trunking VLAN
and double VLAN tagging, providing increased number of VLANs
Access Rapid
Control List (ACL) based on MAC addresses
Spanning Tree (802.1w) for the W AN ports, dramatically reducing restoration
time Layer
2 multicast functions (including static provisioned multicast and IGMP Snooping multicast functions), saving bandwidth on applications such as multi-media video
Copyright 2013 Coriant. All rights reserved.
30/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
Layer
2 aggregation function
Providing
per port/VLAN rate limiting function: the rate range of each port is from 128kbps~100Mbps, and the rate provisioning granularity is 128kbps
Providing
802.1p QoS/CoS based on Ethernet port and/or VLAN
4x RJ-45 connectors
Ouad 100Base-T PHY
Layer 2
EOS (GFP) VC-12-nv, VC-3-nv, VC-4-nv
4xVC-4 to XCT via backplane
Figure 14 - 8 FE/L2 card functional block diagram
Each LAN and WAN interface has a buffer to support bursty data traffic transmission. The input buffer of the interface can accommodate up to 256 frames. Each interface has 8 output queues, each of which has a buffer that can accommodate up to 96 frames to be sent out. As each input buffer and output buffers are independently using the dedicated memory spaces, instead of sharing any common memory space, there will be no mutual influence between the input buffer and the output buffers.
Interface
Description 4x RJ-45 connectors, each connector supports two channels of Fast Ethernet service via an external ethernet splitter Standard compliance
FE Electrical Interface
10M BASE-T (IEEE 802.3) 100M BASE-T (IEEE 802.3u) Data rate supported 10Mbit/s (half-duplex, full-duplex, flow control) 100Mbit/s (half-duplex, full-duplex, flow control)
Copyright 2013 Coriant. All rights reserved.
31/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
Interface
Description Cables: Use of 4 ports only: 10/100 BASE-T: 100 Ohms two pairs shielded twisted pair cable (STP) and two pairs of unshielded twisted pair cable (Category 5 UTP). The reaching distance is up to 100m Use of 8 ports: 10/100 BASE-T: 100 Ohms four pairs shielded twisted pair cable (Category 5) in combination with 2-in-1 RJ45 splitter.
Figure 15 - 8 FE/L2 interface card external interfaces
Name
(FE port LED)
Color
Status
Functional Description
A green LED per interface indicates the link up and down
On OFF
The link is down.
A yellow LED per interface indicates the activity
ON
Transmitting or receiving data.
OFF
No data.
The link is up.
Figure 16 - 8 FE/L2 card LEDs
4.8.2
4xGE/L2 Service Interface Card
This card provides four Gigabit Ethernet optical interface. The basic functionality of the card is to provide L2 switching, GFP, high order virtual concatenation, LCAS and WAN ports aggregation. The GE ports can be use as optical GE, FX or electrical 10M/100M/1000M ports together with electrical SFP’s inserted. The 4xGE/L2 board supports VC-4-Xv, VC-3-Xv and VC-12-Xv mapping.
Summary of key functions:
VLAN cross-connection and port cross-connection
802.3x Flow Control
802.1q VLAN , VLAN stacking
802.1w RSTP, 802.1s MSTP Ingress
Per port/VLAN rate Limiting
LAG on WAN and LAN ports
Jumbo Frames Copyright 2013 Coriant. All rights reserved.
32/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
4.8.3
MAC based ACL
Layer 2 multicast support via IGMP snooping
IEEE 802.1p based CoS, Policing CIR/PIR, WRED
Strict priority and WRR scheduling scheme
8 QoS queues per port
LCAS per VCG
Ethernet OAM base on ITU-T.1731 and IEEE 802.1ag
8x FE/T Service Interface Card
This card has 8 10/100M Base-T IEEE 802.3 compatible Ethernet interface ports, and can provide transparent transmission for up to 8x 10/100M connections. The total available bandwidth on the network side is 4 VC-4 equivalent. Supports
GFP encapsulation (ITU-T G.7041/Y.1303)
Scalable
bandwidth through VC-12-nv (n=1,…,46) and VC-3-nv (n=1..3)
LCAS
support according ITU-T G.7042
Maximum
Transmission Unit (MTU) 1800 bytes, up to 9600 bytes (jumbo frame
support) Even with minimal equipment investment, this Ethernet card still provides very attractive services to the end customers, like: Scalable
bandwidth without having to change interfaces
A
transparent LAN service that hides the complexity of the W AN for end users (a WAN that looks like a LAN)
High
availability LAN service because of end-to-end SDH protection switching
Network side: Total 4xVC4 bandwidth (to the backplane) Client side : Up to 8 FE signals
4x RJ-45 connectors
Octal 100Base-T PHY
EOS (GFP, LAPS, VC12-nv, VC-3)
Figure 17 - 8 FE/T card functional block diagram
Copyright 2013 Coriant. All rights reserved.
33/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
Interface
Description 4x RJ-45 connectors, each connector supports two channels of Fast Ethernet service via an external ethernet spiltter Standard compliance 10M BASE-T (IEEE 802.3) 100M BASE-T (IEEE 802.3u) Data rate supported 10Mbit/s (half-duplex, full-duplex, flow control)
FE Electrical Interface
100Mbit/s (half-duplex, full-duplex, flow control) Cables: Use of 4 ports only: 10/100 BASE-T: 100 Ohms two pairs shielded twisted pair cable (STP) and two pairs of unshielded twisted pair cable (Category 5 UTP). The reaching distance is up to 100m Use of 8 ports: 10/100 BASE-T: 100 Ohms four pairs shielded twisted pair cable (Category 5) in combination with 2-in-1 RJ45 splitter. Figure 18 - 8 FE/T interface card external interfaces
Name
(FE port LED)
Color
Status
Functional Description
A green LED per interface indicates the link up and down
On OFF
The link is down.
A yellow LED per interface indicates the activity
ON
Transmitting or receiving data.
OFF
No data.
The link is up.
Figure 19 - 8 FE/T card LEDs
4.8.4
1x GE/T Service Interface Board
The board provides one 1000Base-X interface (1 SFP module). Application: GE
p2p; Mapping into VC-4-Xv (X=1...4) or VC-3-Xv(X=1…12) payload for transmission.
Virtual
mode enabled: The Ethernet side provides eight 10/100 Mbps virtual ports
VLAN aggregation function is used. VC4, VC-3-Xv(X=1…3), VC-12-Xv(X=1…46) mapping is available. Copyright 2013 Coriant. All rights reserved.
34/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
The functional block diagram of this board is depicted in the following figure: GE PHY
EoS Mapper
VCG WAN port
GE LAN port
Switch Fabric
(a) Transparent Mode
VCG#1
Virtual port #1 GE PHY GE LAN port
EoS Mapper
Virtual port #2 Virtual port #n
VCG#2
Switch Fabric
VCG#n WAN port
(b) Virtual Port Mode
Figure 20 - 1 GE/T service board module functional block diagram
For hiT 7025, 1xGE/T can also be inserted on SLOT 5/6/7/8 when 15.2G/5G CC is configured. For hiT7025 system with 15.2G/5G CC, 1xGE/T backplane bandwidth is 4xVC-4 when it is at slot 1/2/3/4 and 1xGE/T backplane bandwidth is 1xVC-4 when it is at slot 5/6/7/8. Supports Scalable LCAS
GFP encapsulation (ITU-T G.7041/Y.1303)
bandwidth through VC-3-nv (n=1,…,3) and VC-4-nv (n=1..4)
support according ITU-T G.7042
Maximum
Transmission Unit (MTU) 9600 bytes (jumbo frame support)
Even with minimal equipment investment, this Ethernet card still provides very attractive services to the end customers, like: Scalable
bandwidth without having to change interfaces
A
transparent LAN service that hides the complexity of the W AN for end users (a WAN that looks like a LAN)
High
4.8.5
availability LAN service because of end-to-end SDH protection switching.
4x GE/T Service Interface Board
This card provides 4 LAN interfaces on the side and 32 WAN ports like described in the drawing:
Copyright 2013 Coriant. All rights reserved.
35/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
This card provides 4 client interfaces on the LAN side: Interface ports 1 and 2 of this board can be configured as 1G Ethernet, 1G Fiber Channel or 2G Fiber Channel: 1G
Ethernet, Port 1 and Port 2 can be 1G Ethernet
1G
Fiber channel, Port 1 and Port 2 can be 1G Fiber Channel
2G
Fiber Channel, Port 1 can be 2G Fiber Channel
FC(1G) can have a bandwidth through VC-4-X6 and VC-3Xv(x=1 - 21 and 19 is the best). FC(2G) can have the bandwidth through VC-4-VX. GE LAN can have scalable bandwidth through VC-4Xv( x=1 to 7), VC-3Xv(x=1-21) and VC-12Xv(x=1-46).
Interface ports 3 and 4 can be configured as 1G Ethernet or 10/100/1000Mps triple speed with E-SFP: 1000Mbps
with SFP
10/100/1000Mbps 100Mbps
with E-SFP
with SFP
Copyright 2013 Coriant. All rights reserved.
36/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
GE LAN can have scalable bandwidth through VC-4Xv( x=1 to 7), VC-3Xv(x=1-21) and VC-12Xv(x=1-46). 10/100/1000 Base LAN can have scalable bandwidth through VC-4Xv( x=1 to 7), VC3Xv(x=1-21) and VC-12Xv(x=1-46). 100-Base FX can have scalable bandwidth through VC-4Xv( x=1), VC-3Xv(x=1-3) and VC-12Xv(x=1-46).
On the WAN side this card provides 32 WAN (VCG) ports to share 16xVC-4 bandwidth on the backplane and each VC4 can be mapped into VC3 or VC12. The first WAN can have bandwidth till 14Xvc-4 so that it can used to aggregate more than two GE traffic
This card support two Modes: 1. Port cross connection Port cross connection function can transport the Ethernet traffic through the SDH network using GFP-F, and transport the fiber channel packet using GFP-T At the same time, it can support VLAN operate on the input packets includes: 1)
Just forward without any VLAN operation.
2)
Add a PVID based on Port
3)
Stack a VLAN Tag
4)
Strip VLAN tag at the egress
2. Port+VLAN cross connection (VLAN aggregation) At the same time, it can support VLAN operate on the input packets includes: 1)
Forwarding the packet without any VLAN manipulation
2)
Stacking a VLAN tag (double tag tunneling)
3)
Ttranslating a VLAN ID (VLAN id replace)
4)
Stripping the VLAN tag at the egress (new request)
For more information about Port Cross Connection and Port+VLAN Cross Connection feature, please refer to Appendix 9.3: Port Cross Connection and Port+VLAN Cross Connection.
Traffic manager include Policing (CIR/PIR), QOS (VLAN priority) and Schedule (WRED/SP/WRR) is supported in this 4*GE/T card.
Copyright 2013 Coriant. All rights reserved.
37/101
4.8.6
Technical Description hiT 7025 July 15, 2013 / Issue 12
3 E3/DS3 (W/P) Interface Card
This card has 3 E3/DS3 software configurable interfaces; each E3/DS3 signal is mapped into a Lower Order VC-3 and forwarded to line interface for transmission. The E3/DS3 interface uses CC4 connector. Figure 21 depicts the functional block diagram of 3 E3/DS3 (W/P) card protection.
3 E3/DS3 (W) 3 E3/DS3 EC
Mapping each E3/DS3 To VC-3
Selector Relay
To CC board via Backplane
3 E3/DS3 (P) Mapping each E3/DS3 To VC-3
SC
Figure 21 - Functional block diagram of 3 E3/DS3 (W/P) card protection
The hiT 7025 chassis supports 1:1 protection for the E3/DS3 card.
Copyright 2013 Coriant. All rights reserved.
38/101
4.8.7
Technical Description hiT 7025 July 15, 2013 / Issue 12
21 E1 (W/P) Interface Card
The 21 E1 interface card contains the following two types of cards: (1) 21 E1 Function Card with retiming function (2) 21 E1 EC (Electrical Connectors) Card with 75Ohm/120Ohm version connector In the retiming mode, the transmitter eliminates wander and jitter in the incoming clock. While the rate of the outgoing 2 Mbit/s or 2MHz signal is normally equal to the rate of t he 2 Mbit/s or 2MHz signal going into the SDH network, occasionally this relationship disappears. A retiming function is necessary for suppression of jitter and wander that the 2Mbit/s signal suffers during transmission in SDH and which makes the signal useless for carrying the synchronous frequency to the PDH domain. To retime an outgoing 2 Mbit/s or 2MHz signal, means simply to retime this signal with the internal clock of the multiplexer equipment in which the de -synchronization takes place. This can be done by reading the recovered 2Mbit/s or 2MHz signal into an elastic store and timing the output of the elastic store with the system clock. When the device is set in the retiming mode all jitter and wander due to the multiplexing or de-multiplexing process in the transmission is eliminated.
4.9
Optical Amplifier
This OA (Optical Amplifier) module provides uni-directional single optical amplifier function with optical performance monitoring capabilities. Optical Amplifiers are available with 13, 15 or 18 dBm output power. Additionally there is also a Pre-amplifier module available (20 dB). These modules are designed to compensate losses in the entire C band and increasing therefore the span performance of the system without need for intermediated regenerators. The module functional building block diagram is shown below.
Copyright 2013 Coriant. All rights reserved.
39/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
OA Card Optical Signal IN
EDFA Module
Optical Signal OUT
Embedded CPU RS-232
FPGA
To SC (System Controller)
Figure 22 – OA module functional building block diagram
The EDFA (Erbium Doped Fiber Amplifier) sub-module is the core building block for this card. It provides optical signal amplification function. With integrated fast digital circuit and advanced software, the EDFA can be configured to operate at APC, ACC or AGC mode.
APC
(automatic power control) mode: In this mode, the optical output power is maintained constant by adjusting the laser pump current to compensate minor changes in OA input power, component aging, and temperature variation. This mode is mainly used in post-amplifier application.
AGC
(automatic gain control) mode: In this mode, the O A provides constant gain power by adjusting the pump laser current to compensate minor changes in component aging and temperature. This mode is mainly used in pre-amplifier application.
ACC
(automatic current control) mode: In this mode, the pump laser current is maintained constant.
These modes can be set through software according to customer’s requirements. In addition, other significant parameters that need to be pre-set are:
Input
optical power low threshold
Output Low
optical power low threshold
and high temperature threshold for output power shutdown
This OA provides the following performances monitoring parameters: Copyright 2013 Coriant. All rights reserved.
40/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
OA
Input Power (dBm), precision to 0.01dBm
OA
Output Power (dBm), precision to 0.01dBm
OA
Module Gain (dB), precision to 0.01dB
OA
Pump Power (mW), precision to 0.01mW
OA
module internal temperature, precision to 0.1 C degree
OA
module pump drive current, precision to 0.1 A
OA
power module power supply voltage, precision to 0.01V
This OA module board can be configured to use one of the following 4 EDFA submodules: Booster 13dBm Booster 15dBm Booster 18dBm Pre-amp
20dB
All EDFA sub-modules above use single-stage or dual-stage un-cooled 980nm pump lasers.
OA Safety Procedures The OA module safety procedures supported are described in the table below. Feature
Description
ALS
After 500ms or more of continuous presence of the LOS defect, the laser will automatically shutdown; the reduction of the optical output power at OA input port occurs within 800ms from the moment loss of optical signal occurs at OA output port.
Automatic Link restore
Whenever the OA’s input signal vanishes, the OA’s optical output signal will be shut down. When the input signal returns, the output power will be restored. - The minimum optical signal restore delay is 100s. - The activation for Transmitter /Receiver is less than 0.85s. - The maximum deactivation time of booster and preamplifiers is 100 ms. - The maximum activation time of an booster is 100 ms. - The maximum activation time of preamplifier is 300ms.
Manual Restore
"Manual restart" or "Manual restart for test" can only be activated when the laser is shut down. Figure 23 – OA module safty procedure
Copyright 2013 Coriant. All rights reserved.
41/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
Interface
Description Connector Type
Optical Interface
Input power range
LC connector Pre-amp
-35 to -10 dBm
Booster amp.
-6 to +3 dBm
Figure 24 – OA card external interfaces
Name Fault
Link 1
Color Red
Green
Status
Functional Description
ON
There are fault conditions presented in this card.
OFF
This card is in normal condition.
ON
The OA optical link is normal.
OFF
The optical link is down.
Figure 25 – OA card LEDs
4.10
User Channel (F1)
Two 64kbps G.703 interfaces are provided and the following SDH Overhead bytes can be allocated: E1, E2 and/or F1.
4.11
Engineering Order Wire (EOW)
The hiT 7025 uses VoIP (H.323) technology to provide the EOW function on a DCC channel or uses an external data network. The hiT 7025 VoIP based EOW provides unicast and multicast calling, and broadcast communications. Traditional XOW over E1/E2/F1 will be implemented via an external XOW box. For 7025: There are one RJ45s on the SC card. Users may totally select all the channels of E1/E2 from the system. And will be terminated by the system. There is no limitation on the card or STM-N port level. Only one F1 channel can be selected at the same time. On external XOW Box, there is one V.11 access for F1 channel, and the physical interface is DB15. And there is one RJ11 accessed for phone.
Copyright 2013 Coriant. All rights reserved.
42/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
SURPASS hiT 70 XOW
RJ 45 Cable
Phone Set
EOWC
SURPASS hiT 7025 / 7035
Figure 26 –External XOW box
For more details please refer to the hiT 7035 XOW technical description.
4.12
Miscellaneous Discrete Input/Output (MDI/MDO)
The hiT 7025 provides 8 (4) * miscellaneous discrete input points and 8 miscellaneous discrete output points (4 of MDOs are always used for rack alarm). MDI is used to read the status of external alarm points. Both the MDI description and severities are provision able on the management system. Any external equipment to be monitored must provide the electrical equivalent of a contact closure across the corresponding pairs. The MDI voltage specifications are as below: MDI
Voltage range: 0~ -75V
Inactive: Active:
0~ -10V
-18~ -75V
MDO is used to drive external devices. MDO actions are activated or deactivated manually by the management system. Miscellaneous discrete output points are hard contact, its contact rating as below: Max
DC Voltage: 110VDC @ 0.3A
Max
AC Voltage: 125VAC @ 0.3A
Max
Current: 1A @ 30VDC
* starting from Release 4.2 hiT 7025 provides 4 miscellaneous input points. Copyright 2013 Coriant. All rights reserved.
43/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
4.13
Introduction to Software licensing
Up to now SW licenses for Next Generation Metro equipment were un-recognized add-on items and the sales of these products have been dominated by HW selling. The SW license structure guarantees an optimized Network performance with minimum TCO (Total Cost of Ownership) by customized feature set. Within the hiT 70xx portfolio there are several features are being introduced like capacity based licenses, support of Matrix protection, support of extension shelves and ASON/GMPLS. This SW license structure allows following equipment configuration principles: •
Offer only what is actually required
•
Exclude non-mandatory features explicitly
•
Tailoring of SW bundles allows up-sell potential
•
Protect the individual SW value drivers by selling them separately
•
Do not automatically design & price all SW features for the whole network
4.13.1
General Structure of new SW items
The Software item structure implemented within the product line Next Generation Metro are divided into 3 general categories: mandatory SW license items, optional application feature SW license items and upgrade SW license items. These are further represented in the following document by a colour code indicated in the drawing below.
Mandatory SW items
Optional SW items Upgrade SW items SW Maintenance items
Figure 27: Software license structure in Next Generation Metro
Copyright 2013 Coriant. All rights reserved.
44/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
Mandatory SW items
The mandatory Softw are items represent the basic functionality of the system, and one of these core licenses are mandatory to be equipped for each equipment core.
Optional SW items
The option al Software items are items that represent additional types of functionality. These can be:
Additional optional feature packages
Additional functionality related with HW configuration
Additional capacity
Upgrade SW items
The upgrade Software items are available for each individual product to provide release upgrades. Release upgrades are in general upgrades where the succeeding release contains a higher feature set. This is in general represented by a number in the release name of the product.
SW Maintenance items
The Software Maintenance items are available for each individual product to provide maintenance related services, namely to solve technical queries (to provide qualified answers and assistance for any general technical/operational queries), for trouble resolution (to handle customer reported suspected defects and o deliver workarounds and/or final solutions) and to provide software updates (to ensure a regular, proactive, delivery of software update packages with respective release documentation).
4.13.2
Software license structure of hiT 7025
hiT 7025 is a versatile network element having the equipping option as ADM for STM-1/-4 (equipped with a small switch matrix) or as ADM for STM-4/-16 (equipped with a large switch matrix). Therefore there are three different mandatory core licenses, an ADM-1/4 core license, an ADM-4/16 license and an ADM-1/-4/-16 license.
Copyright 2013 Coriant. All rights reserved.
45/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
The main optional feature that hiT 7025 offer is equipment protection to significantly increase the reliability of the network elements. Increased reliability is significant value add, therefore by equipping a switch matrix protection, a matrix protection license is needed. Upgrade SW items are available to a release upgrade (from a release x.y to a release x.(y+1) or increase of x).
Figure 28: Software license structure of hiT 7025
Copyright 2013 Coriant. All rights reserved.
46/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
5.
Protection and Redundancy
5.1
Network Protection
hiT 7025 supports multiple layer network protection functions and multiple layer protection escalation. The network protection functions supported are: MS-SPRing,
in compliance with ITU-T G.841
MSP
1+1 protection, revertive or non-revertive modes, in compliance with ITU-T G.841
SNCP
at VC-12, VC-3, VC-4, VC-4-4c level in compliance with ITU-T G.841
Rapid
Spanning Tree Protocol (RSTP) to provide Layer 2 Ethernet data protection by converging data to another path, in compliance with IEEE 802.1w protocol
5.1.1
MS-SPRing
hiT 7025 supports 2 fibers MS-SPRing at STM-16/-4 level. The protection (detection and switching) is guaranteed to be finished within 50ms. The wait-to-restore time is user configurable with a default value of 5 minutes. The system also supports force switching and manual switching. For example, In an STM-4 ring with the MS-SPRing function enabled, a total of 4 AU4s are divided evenly into 2 groups, working AU4s (time slots 1 and 2) and protection AU4s (time slots 3 and 4). The hiT 7025 MS-Spring implementation supports also low priority traffic by supporting NUT feature (Non-preempt-able Unprotected Traffic).
5.1.2
MSP
1+1 MSP (G.841/Clause 7) protects an STM-N link between two adjacent SDH MS (multiplexing section) elements. hiT 7025 supports 1+1 multiplex section protection (MSP) on all STM-N optical ports. The MSP 1+1 can be either uni-direction or bi-direction. The protection time is less than 50ms. hiT 7025 also supports Manual Switch and Forced Switch of MSP, revertive and nonrevertive MSP.
Copyright 2013 Coriant. All rights reserved.
47/101
5.1.3
Technical Description hiT 7025 July 15, 2013 / Issue 12
SNCP
hiT 7025 supports Sub-Network Connection (SNC) protection (ITU-T G.841). It is available at VC-12, VC-3, VC-4 and VC-4-4c level. hiT 7025 supports VC-4/-3/-12 SNC protection between any pair of VC-4/-3/-12s in any STM-N cards and also supports VC-44c SNC protection in STM-4 cards and STM-16 ports. The protection switch time for SNC protection is less than 50 ms. The SNC protection scheme supported in hiT 7025 is an inherently monitored SNCP (SNCP/I) or non-intrusively monitored SNCP (SNCP/N). The SNCP protected VC-4s are protected against AIS or LOP at the AU-4 level (server layer defects) and against misconnections (trace identifier mismatch or VC-4 dTIM), disconnections (unequipped signal or VC-4 dUNEQ), or signal degradations (VC-4 dDEG) in the VC-4 itself. Likewise, SNCP protected VC-3s and VC-12s are protected against TU3/12-AIS, TU3/12-LOP (server layer defects), VC-3/12 dTIM, dUNEQ, and dDEG. Also SNCP protected VC-4-4cs are protected against AU-4-4c-LOP/AIS, MS-AIS, LOF, LOS, VC-4-4c- dTIM, dUNEQ and dDEG. The hiT 7025 SNCP implementation supports also non-revertive, single-ended and drop & continues features. An advantage of SNCP is the flexibility to select any segment of the path for protection. The SNC protection can be applied to an end-to-end (from source to sink termination point) VC-n path, or to one or multiple links within the end-to-end path. It is also simple and easy to implement, as there is no signaling required between the source and destination nodes.
5.1.4
DNI
hiT 7035 supports Dual Node Inter-working (DNI) protection (ITU-T G.841). It is a protection mechanism between two rings with dual node connections. Each ring may be configured for MS-shared protection or SNCP protection. The ring interconnection can work at STM-1 electrical or STM-N optical rate level. The DNI architecture has the capacity of protecting against the failure of one interconnecting node, two interconnecting nodes, or the connection between the two interconnecting nodes. It depends on detecting path defects. To avoid propagation of failures when possible, a hold-off time is allowed. The service interrupt time by external command and node failure, signal failure, card failure, SFP failure for DNI/DRI protection is less than hold-off time plus 50ms.
Copyright 2013 Coriant. All rights reserved.
48/101
5.1.5
Technical Description hiT 7025 July 15, 2013 / Issue 12
LCAS
hiT 7025 supports the combination of VCAT and LCAS to provide VC-4, VC-3 or VC-12 level protection. LCAS allows hitless adjustment of the size of a virtually concatenated group of channels. For example, whenVC-4-nv bandwidth is used to transmit data traffic through the network. In the case that certain VC-4s in the same VC-4-nv group fail, hiT 7025 will use LCAS to delete the failed VCs from the group, and the traffic is dynamically, or on the fly adapted to the rest VC-4s bandwidth for transmission. Without LCAS, partial bandwidth failure will result in the failure of the end-to-end traffic transmission. When the failure is repaired, the LCAS will automatically add (recover) the deleted VC-4s to the VC group.
5.1.6
Ethernet Shared Protection Ring
hiT 7025 supports L2 switching and RSTP (IEEE 802.1w compliant) based L2 protection in ESR. The convergence time can reach less than two seconds. RSTP based protection is different from SDH layer protection. SDH protection is considered a physical layer protection, while RSTP is a Layer 2 protection. When layer 2 Ethernet data fault is detected, even though the physical connectivity is good, RSTP will make the convergence of the data to another physical path.
5.1.7
Multiple Layers Protection
hiT 7025 supports network protection functions in multiple layers. These layers are SDH and Ethernet data. In order to coordinate the protection activities between layers, hiT 7025 provides a protection escalation mechanism. This uses different hold off times at different layers to make sure that lower layer protection occurs first. For example, in a fiber failure condition, SDH protection will be performed first. If SDH layer protection is successful, no Ethernet layer protection occurs (because it is not needed). However, if the SDH protection fails after a certain period of time (the hold off time for Ethernet layer protection), Ethernet layer protection will occur. That is, the higher the layer, the longer the hold off time will be. In this way, the system can fully take the advantage of the fast SDH protection (<50ms), and have multi-layer protections f or higher system reliability. For Ethernet services, if the layer protection fails (the failure is declared after a pre-defined hold off time; for example 100ms), the RSTP in the Ethernet layer will react to the failure and provide the protection by converging the data to an alternative path. In the ESR, the alternative path is the path on the other side of the ring. The hold off time in the Ethernet layer is user provision able.
Copyright 2013 Coriant. All rights reserved.
49/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
5.2
Equipment Redundancy and Protection
5.2.1
Redundant Power Supply
hiT 7025 provides optional 1+1 DC power supply protection. The DC power voltage is -40 to -72 V. Both power modules are active and coupled via an “OR” function to share t he load current. hiT 7025 permits convenient field replacement of either power module without affecting traffic.
5.2.2
Redundant Cross-Connect
hiT 7025 provides optional redundant cross-connect and timing card.
5.2.3
Electrical Interface Module Protection
hiT 7025 provides the following electrical interface card protection: (1) 1:3 21 E1 card protection (revertive) (2) 1:1 3 E3/DS3 (W/P) card protection (non-revertive) (3) 1+1 2 STM-1E (W/P) card protection (non-revertive)
5.2.4
Protection under Abnormal Condition
Software download protection: when power fails during software download, hiT 7025 BIOS will be written protected. The BIOS is guaranteed not to start the uncompleted software program or data file. After the power recovery, hiT 7025 supports continued software downloading. All application software and data files can be downloaded to the NE while the NE is still in-service. The software download verification process prevents data errors from transmission. Software upgrade protection: hiT 7025 controller contains two copies of t he system software. During the software upgrade, one copy will be replaced by the new version of the software. After the new version is confirmed, the switch over to the new version does not affect the service traffic, and the existing system setting and configuration are maintained. If the system upgrade fails, the system can be switched back to the old version. Only when the new software version is confirmed working properly, can the old version be erased.
Copyright 2013 Coriant. All rights reserved.
50/101
5.2.5
Technical Description hiT 7025 July 15, 2013 / Issue 12
Software Fault Tolerance
The software design of hiT 7025 NE adopts the principle of software engineering, involving a top-down and object-oriented software design methods. Advanced software developing management and designing technology assure the high quality and reliability of NE software. hiT 7025 provides multiple protections for software programs and data with self-checking and self-recovering functions. Data transmission checking and re-transmitting mechanism are implemented in all control signal transmission channels between modules to minimize the transmitting errors. Adopted internal watchdog-circuit in CPU to avoid the impact of software deadlock or shut down. No service is affected when the software performs warm reset. Adopted common software platform approach: hiT 7025 supports code-sharing and reusing as many as field proven codes to provide higher software reliability.
5.2.6
Data Security
hiT 7025 adopts database module technology and manages data uniformly, which enhances the data security: Database and database files each have a data checking function. Database files are protected according to importance level of data. Errors of lower level database files will not affect higher level database files.
Copyright 2013 Coriant. All rights reserved.
51/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
6.
Technical Specification
6.1
Multiplexing Structure
hiT 7025 supports the following multiplexing structure and terminated mapping and payload mapping structures.
Bit Rate
Cross-connect multiplexing structure STM-16<->AUG-16<->AUG-4-16c STM-16<->AUG-16<->AUG-4<->AU-4-4c STM-16<->AUG-16<->AUG-4<->AUG-1<->AU-4
2.5 Gb/s
STM-16<->AUG-16<->AUG-4<->AUG-1<->AU-3 STM-16<->AUG-16<->AUG-4<->AUG-1<->AU-4<->VC-4<>TUG-3<->TU-3 STM-16<->AUG-16<->AUG-4<->AUG-1<->AU-4<->VC-4<-> TUG-3<->TUG-2<->TU-12 STM-4<->AUG-4<->AU-4-4c STM-4<->AUG-4<->AUG-1<->AU-4
622.08 Mb/s
STM-4<->AUG-4<->AUG-1<->AU-3 STM-4<->AUG-4<->AUG-1<->AU-4<->VC-4<->TUG-3<->TU-3 STM-4<->AUG-4<->AUG-1<->AU-4<->VC-4<->TUG-3<-> 2<->TU-12
TUG-
STM-1<->AUG-1<->AU-4 155.54 Mb/s
STM-1<->AUG-1<->AU-3 STM-1<->AUG-1<->AU-4<->VC-4<->TUG-3<->TU-3 STM-1<->AUG-1<->AU-4<->VC-4<->TUG-3<->TUG-2<->TU-12
Figure 29 - Cross-Connect Multiplexing Structure (ITU-T G.707)
Copyright 2013 Coriant. All rights reserved.
52/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
Bit Rate
Terminated Mapping Structure
Container
2.5 Gb/s
STM-16<->AUG-16<->AUG-4<->AUG-1<>AU-4<->VC-4
C-4
622.08 Mb/s
STM-4<->AUG-4<->AUG-1<->AU-4<->VC-4
C-4
155.54 Mb/s
STM-1<->AUG-1<->AU-4<->VC-4
C-4
E3 (34Mbit/s, E31)
E31 <-> C-3 <-> VC-3
C-3
DS3 (45Mbit/s, E32) E32 <-> C-3 <-> VC-3
C-3
E1 (2.048Mbit/s)
E1 <-> C-12 <-> VC-12<-> TU-12<-> TUG- C-12 2 …… 10/100Mbit/s (FE) <-> GFP <-> C-12-Xv <-> C-12 VC-12- Xv (X=1..46)
10/100 Mb/s (FE) 10/100Mbit/s (FE) <-> GFP <-> C-3-Xv <-> C-3 VC-4-Xv (X=1..3) 1000Mbit/s (WAN port GE) <-> GFP <->
C-4
C-4-Xv <-> VC-4-Xv (X=1..4) 1000Mbit/s (WAN port GE) <-> GFP <->
1000 Mb/s (GE)
C-3
C-3-Xv <-> VC-3-Xv (X=1..3) 1000Mbit/s (WAN port GE) <-> GFP <->
C-12
C-12-Xv <-> VC-12-Xv (X=1..46) FC(2G)
FC(1G)
10/100/1000M
FC(2G) <-> GFP <-> C-4-X12 <-> VC-4- X12
C-4
FC(1G) <-> GFP <-> C-4-X6 <-> VC-4- X6
C-4
FC(1G) <-> GFP <-> C-3-Xv <-> VC-3- Xv (X=19...21, 19 is the best fit)
C-3
10/100/1000Mbit/s LAN <-> WAN <-> GFP <-> C-4-Xv <-> VC-4- Xv (X=1...7)
C-4
10/100/1000Mbit/s LAN <-> WAN <-> GFP <-> C3-Xv <-> VC-3- Xv (X=1...21)
C-3
10/100/1000Mbit/s LAN <-> WAN <-> GFP <-> C12-Xv <-> VC-12- Xv (X=1...46)
C-12
Figure 30 - Terminated Mapping Structure
Virtual Container VC-4
Container C-4
Container Bit Rate 149.76Mb/s
Terminating Signal at Bit Rate STM-1, or VC-4-nv
Figure 31 - Payload Mapping
Copyright 2013 Coriant. All rights reserved.
53/101
6.2
Technical Description hiT 7025 July 15, 2013 / Issue 12
SDH Overhead
hiT 7025 supports the following SDH overhead process:
Overhead Name
Description
hiT 7025 Support
A1-A2
Framing Bytes
J0
Regenerator Section Trace
B1
Regenerator Section BIP-8
E1
Regenerator Section Order wire
F1
Regenerator Section User Channel
D1~D3
Section DCC
B2
BIP-Nx24
K1, K2 (b1~b5)
APS
K2 (b6~b8)
MS-RDI
D4~D12
Multiplex Section DCC
S1
Synchronous Status
M0-M1
MS-REI
E2
Line Order Wire
J1
Path Trace
B3
Path BIP-8
C2
Path Signal Label
G1
Path Status
F2
Path User Channel
H4
Position and Sequence Indicator
F3
Path User Channel
K3(b1~b4)
APS
K3(b5~b6)
Spare
K3(b7~b8)
Data link
N1
Network Operator Byte
VC-2/VC-1
V5(b1~b2)
BIP-2
POH
V5(b3)
LP-REI
RS-OH
MS-OH
VC-4-Xc/VC-4/VC-3 POH
Copyright 2013 Coriant. All rights reserved.
54/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
Overhead Name
Description
hiT 7025 Support
V5(b4)
LP-RFI
V5(b5~b7)
Signal Label
V5(b8)
LP-RDI
J2
Path Trace
N2
Network Operator Byte
K4(b1~b4)
APS
K4(b5~b7)
Reserved
K4(b8)
Data Link
Figure 32 – hiT 7025 supported SDH overhead process
6.3
Interface Types
hiT 7025 supports the following interfaces listed in Table below: Interface Types
Interface Name and Rates 10/100M/1000 Base-T E1 (2048kbit/s)
Electrical Interface
E3/DS3 STM-1 el. (155.520Mbit/s) STM-1 (155.520Mbit/s) STM-4 (622.080Mbit/s) STM-16 (2.5 Gbit/s)
Optical Interface
GE FC 100M FX 2048kbit/s
Timing Interface
2048kHz
Auxiliary Management and Maintenance Interface )
RS-232, RJ-45 (802.3 LAN)
TIF (MDO or MDI) , ALM (alarm contact)
RJ-45
Data Channels
64Kbps/s, G703, RJ45 Figure 33 – hiT 7025 Interface Types
Copyright 2013 Coriant. All rights reserved.
55/101
6.3.1
Technical Description hiT 7025 July 15, 2013 / Issue 12
Electrical Interfaces
hiT 7025 Ethernet 10/100M Base-T rate-adaptive electrical interface complies with IEEE Standard 802.3. The transmission media is 100 Ohms –two pairs shielded twisted pair cable (STP) and two pairs of unshielded twisted pair cable (Category 5 UTP); the interface connector is using standard RJ-45 (1000ohm) connector. hiT 7025 STM-1E interface complies with ITU-T G.703 Recommendation and uses CC4 connector (75 ohm) unbalanced. hiT 7025 E3/DS3 interface complies with ITU-T G.703 Recommendation and uses CC4 connector (75ohm) unbalanced. hiT 7025 E1 interface complies with ITU-T G.703 Recommendation, and uses 2mm High Density (75ohm or 120ohm) connector.
6.3.2
Optical Interfaces
hiT 7025 optical interfaces comply with ITU-T Recommendations G.957 and G.691. The SFP optical modules are field replaceable.
Optical Interfaces: STM-16 SFP interfaces
S-16.1, L16.1 and L-16.2, V-16.2, U-16.2 also FC 2G.
STM-4 SFP interfaces
S-4.1, L4.1, L-4.2 and V-4.2
STM-1 SFP interfaces
I-1, S-1.1, L1.1, L1.2 and V-1.2 also 100M FX
GE SFP interfaces
SX, LX, LH, ZX also FC(1G)
STM-1 electrical SFP interfaces Multi-rate CWDM SFP interfaces
G. 695 C8L1-1D2 and C8L1-0D2
2.5G DWDM SFP interfaces
100G Hz channel grid
GE electrical SFP interfaces
Laser safety for the STM-16, STM-4 and STM-1 optical interfaces: complies with IEC60825 recommendations Optical connectors are LC type.
Copyright 2013 Coriant. All rights reserved.
56/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
Line Rate
STM-1
STM-4
STM-16
Multi-rate
Wavelength and Application Code
Transmission Distance
1310 nm (I-1)
2 km
1310 nm (S-1.1)
15 km
1310nm (L-1.1)
40 km
1550nm (L-1.2)
80 km
1550nm (V-1.2)
120 km
1310/1550nm Bidi
20 km
1310 nm (S-4.1)
15 km
1310 nm (L-4.1)
40 km
1550 nm (L-4.2)
80 km
1550 nm (V-4.2)
120 km
1310/1490nm Bidi
10 km
1310 nm (S-16.1)
15 km
1310 nm (L-16.1)
40 km
1550 nm (L-16.2)
80 km
1550 nm (V-16.2)
120 km
1550 nm (U-16.2)
160 km
1555.75 nm (DWDM U-16.2)
180 km
1471+20m,m=1-7
N.A.
(622Mbps ~ 2.67Gbps)
(C8L1-1D2/ C8L1-0D2)
DWDM STM-16
100 GHz channel grid in the C-band: 191.70-196.0 THz, 44 wavelengths
N.A.
1000 Base-SX
850 nm
500 m
1000 Base-LX
1310 nm
5000m
1000 Base-LH
1310 nm
10 km
1000 Base-ZX
1550 nm
70 km
1000 Base-LX
1310/1490nm Bidi
10 km
Figure 34 - hiT 7025 optical service interfaces supported
6.3.3
Optical amplifier card: OA
Function This Optical Amplifier (OA) card provides unidirectional single optical amplifier functionality with optical performance monitoring capabilities. This card is designed to compensate losses in the entire C band as Booster Optical Amplifier (BOA) or Pre-Optical Amplifier (POA) in the transport networks.
Copyright 2013 Coriant. All rights reserved.
57/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
The OA card can be ordered (with different part numbers) to provide the following applications:
6.3.4
Post-amplifier, 13 dBm Output Power
Post-amplifier, 15 dBm Output Power
Post-amplifier, 18 dBm Output Power
Pre-amplifier, 20 dB Gain
Optical Amplifier (OA) Parameters
Min.
Max.
Units
Operating case temperature
0
65
C
Storage temperature
-40
85
C
Environment (ESD/EMC)
700/85%
Tab. 6.1
V/-
OA card EDFA module absolute ratings
Parameters
Description
Note
Wavelength range
1528 nm ~ 1562 nm
1
Pump laser
Uncooled pump
Configuration
Single or Dual pump, single stage
2
Gain flattening
without GFF
3
Control modes
APC, AGC, and ACC
Transient suppress control
Transient Suppress Circuit
Application types
Booster or Preamplifier
Notes: 1.
This wavelength range is specified as the max. wavelength range for the erbium-doped fiber amplifier using in single channel SDH application.
2.
This configuration is designed for single channel SDH system up to Copyright 2013 Coriant. All rights reserved.
58/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
Parameters
Description
Note
now; dual pump or dual stages may be required for obtaining high gain or large output power. 3.
For single channel SDH application, the Gain Flatten Filter (GFF) is not required for obtaining the fine gain flatness.
Tab. 6.2
Erbium-Doped fibre amplifier general specifications
BOA interface Parameters
Min.
Type
Max.
Unit
1562
nm
5.5
dB
Notes
General specifications (for all types booster) Wavelength range
1528
Noise figure
5.0
Optical power detection accuracy
0.5
Polarization mode dispersion
0.3
Polarization dependent gain
0.2
Return loss Transient Add/Drop)
dB 0.5
ps
0.5
dB
45 overshoot
(5
dB
Transient suppress speed (5 dB Add/Drop)
3
dB 0.5
1.0
0.5
dB
ms
Post-amp: 13 dBm output power Input power range
-10
Small signal gain @ pin = -10 dBm Saturation power @ pin > -5 dBm
3
dBm
18
dB
1
dBm
2
13
Post-amp: 15 dBm output power Input power range
-10
3
Copyright 2013 Coriant. All rights reserved.
dBm
59/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
Parameters
Min.
Type
Small signal gain @ pin = -10 dBm Saturation power dBm
@ pin > -5
Max.
Unit
Notes
20
dB
1
dBm
2
15
Post-amp: 18 dBm output power Input power range
-10
Small signal gain @ pin = -10 dBm Saturation power dBm
@ pin > -5
3
dBm
23
dB
1
dBm
2
18
Notes: The maximum small signal gain: 13 dBm booster: when input power ≤ -5 dBm, maximum small signal gain can be up to 18 dB. 15 dBm booster: when input power ≤ -5 dBm, maximum small signal gain can be up to 20 dB. 18 dBm booster: when input power ≤ -5 dBm, maximum small signal gain can be up to 23 dB. The saturation power is specified at the maximum gain value when the input power is larger than -5 dBm; The typical value of Noise figure is specified at the maximum gain and input power of 0 dBm. Tab. 6.3
Post-amplifier specifications
POA interface Items
Parameters
Min.
Center wavelength
Typ
Max.
1555.75
Unit
Notes
nm
Wavelength range (filter pass-band window @ 3dB)
0.25
+0.25 nm
3
Input power range
-35
-15
dBm
4
20
dB
-10
dBm
N/A
dB
Small signal gain (include filter attenuation ) Output power range @ pin= -15 dBm
-15
Gain flatness Copyright 2013 Coriant. All rights reserved.
1
60/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
Noise figure
5.0
6.0
dB
Input power: -35 to -20 dBm
0.5
dB
Output power: -20 to 0 dBm
0.5
dB
0.5
ps
0.5
dB
Optical power detection accuracy
Polarization mode dispersion
0.3
Polarization dependent gain
0.2
Return loss
40
Transient overshoot
dB 0.5
1.0
dB
(5 dB input variance @ constant power) Transient suppress speed
0.5
ms
(5 dB input variance @ constant power) Auto-shutdown hysteresis
0.5
2
dB
2
Notes: 1.
For single channel SDH application, gain flatness is not required.
2.
The same as booster amplifier.
3.
A fixed filter (1555.75 nm 0.25 nm @ 3 dB) which is put after the output of OA to improve OSNR and sensitivity of PA is integrated in PA. DWDM SFP with fixed wavelength 1555.75 nm (both 100 G and 200 GHz grid) will be used when PA is added before optical receiver.
4.
Error-free long term transmission should be guaranteed under worst case when input power of PA is -35 dBm ~ -20 dBm and bit rate is 2.5 Gbps. Tab. 6.4
6.3.5
Pre-amplifier specifications
Management and Maintenance Interface
hiT 7025 provides a RS-232 connector, which supports terminal-based command line interface.
hiT 7025 also provides a RJ-45 100 Ohms IEEE 802.3 LAN connector, which supports Internet browser based EMS and telnet-based command line interfaces.
Copyright 2013 Coriant. All rights reserved.
61/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
6.4
Interface Performance Specifications
hiT 7025 performance specifications for the optical and electrical interfaces, timing and synchronization, and jitter, as well as tests for electromagnetic compatibility, environment, and vibration comply with the ITU-T Recommendations G.957, G.703, and IEEE Standard 802.3.
6.4.1
Optical Interface Performances
The following table provides hiT 7025 supported optical interfaces and application codes.
Inter-office Short-haul
Application Operating wavelength range 1310 (nm)
1310
Inter-office Long-haul
Inter-office Very Long-haul
1550
1550
ITU-T Rec. G.652 Type of fiber
ITU-T Rec. ITU-T Rec. G.652 G.652
ITU-T Rec. G.653 ITU-T Rec. G.654
ITU-T Rec. G.652 ITU-T Rec. G.653 ITU-T Rec. G.654
Distance (km)*
15
40
80
120
STM-1
S-1.1
L-1.1
L-1.2
V-1.2
STM-4
S-4.1
L-4.1
L-4.2
V-4.2
STM-16
S-16.1
L-16.1
L-16.2
V-16.2
* (1) Target distance is used for classification, not for standardization. (2) The actual transmission distance can be calculated based on the transmitter power, receiver sensitivity and fiber loss.
Figure 35 - STM-N Optical Interface Parameters and Application Codes
The following tables show the STM-1/-4 and STM-16 optical interface parameters specified for the transmitter at point S, the receiver at point R, and the optical path between points S and R.
Copyright 2013 Coriant. All rights reserved.
62/101
6.4.2 Item
Technical Description hiT 7025 July 15, 2013 / Issue 12
STM-1 Optical Interface Performance Parameters
Classification of STM-155Mbps
1
Application Code
I-1
S-1.1
L-1.1
L-1.2
V-1.2
Bidi
2
Supported Distance Range [km]
~2
~15
~40
~80
~120
~20
3
Laser Types
MLM/LED
MLM
MLM/SLM
SLM
SLM
4
Central Wavelength [nm]
1300
1261~1360
1261~1360
1480~1580
1480~1580
5
Max. Spectral Width [nm]
6
Min. SMSR [dB]
7
Average Launch Power [dBm]
8
RMS
=40/80
RMS=7.7
RMS=3/ -20dB=1
-20dB=1
-20dB=1
1260 ~ 1360 1480 ~ 1580 RMS<7 -20dB<1
NA
NA
NA/30
30
30
NA
-15 ~ -8
-15 ~ -8
-5 ~ 0
-5 ~ 0
0~4
-14 ~ -8
Extinction Ratio [dB]
8.2
8.2
10
10
10
<10
9
G.957 STM-1 Mask Margin
15%
15%
15%
15%
15%
15%
10
Receiver Types
PIN
PIN
PIN
PIN
PIN
PIN
11
Mini. Overload [dBm]
-10
-8
-10
-10
-10
> -8
12
Receiver Sensitivity @BOL [dBm]
-31
-37
-37
-37
-32
13
Receiver Sensitivity @ HT. [dBm]
-29
-35
-35
-35
-30
14
Receiver Sensitivity @EOL [dBm]
-28
-28
-34
-34
-34
-28
15
Optical Path Penalty [dB]
1
1
1
1
1
1
16
Max. Reflect. of receiver [dB]
NA
NA
NA
-25
-25
>14
17
Digital Diagnostics Function
Yes
Yes
Yes
Yes
Yes
Yes
Figure 36 - hiT 7025 STM-1Optical Interface Specifications Notes: 1. The application code is referred to ITU-T G.957. 7. Average launched power is the range of output power. Usually, the actual output power should be close to the up-side level of Average power; we require that the output power of laser at the beginning of life (BOL) should be 1dB better than the standard values listed in the ITU-T G.957, according to the application code; 12. (1) Measured at bit error rate (BER) of 10e-10, using 2^23-1 PRBS test data pattern; (2) To consider of aging factor, we define the receiver sensitivity at the beginning of life (BOL) should be 2~3dB better than the standard values listed in the ITU-T G.957, according to the application code; 13. To consider of high -temperature’s effect, we define the receiver sensitivity at the high-temperature (HT), which refers to the environmental temperature about 55ºC. Generally, we test all performance at 25ºC room TM temperature when SFP transceivers are installed in MetroWave MSTP system with Fan “ON”; to the extreme temperature, we tested all performance at 55ºC environmental temperature when SFP transceivers TM are installed in MetroWave MSTP system with Fan “ON” for about 3 hours; Copyright 2013 Coriant. All rights reserved.
63/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
14. For the receiver sensitivity at the end of life (EOL), we consider of the sensitivity aging degradation when the transceiver is used in the long -term, which includes the effect of temperature, laser aging and chip aging; 15. The impact factors for path penalty value include the dispersion, non-linear a nd other effects. But dispersion is the main effect we should consider. Generally, we use fiber to test the path penalty of the SFP transceivers. 15
km SFP, 25 km G.652 fiber
40
km SFP, 45~50 km G.652 fiber
80
km SFP, 90~100 km G.652 fiber
6.4.3 Item
STM-4 Optical Interface Performance Parameters
1
Application Code
2
Supported Distance[km]
3
Laser Types
4
Classification of STM-4/622Mbps S-4.1
L-4.1
L-4.2
V-4.2
Bidi
~15
~40
~80
~120
~10
MLM
MLM/SLM
SLM
SLM
MLM
Central Wavelength [nm]
1261~1360
1261~1360
1480~1580
1480~1580
5
Max. Spectral Width [nm]
RMS=2.5
6
Min. SMSR [dB]
7
Average Launch Power [dBm]
8
Extinction Ratio [dB]
9
RMS=1.7/ -20dB=1
-20dB=1
-20dB=1
1260 ~ 1360 1480 ~ 1500 RMS<3.5 -20dB<0.88
NA
NA/30
30
30
NA/<30
-15 ~ -8
-3 ~ 2
-3 ~ 2
0~4
-9 ~ -3
8.2
10
10
10
<12
G.957 STM-4 Mask Margin
15%
15%
15%
15%
15%
10
Receiver Types
PIN
PIN
PIN
APD
PIN
11
Mini. Overload [dBm]
-8
-8
-8
-18
> -3
12
Receiver Sensitivity @BOL dBm]
-31
-31
-31
-36
-22
13
Receiver Sensitivity @ HT. dBm]
-29
-29
-29
-35
-21
14
Receiver Sensitivity @EOL dBm]
-28
-28
-28
-34
-20
15
Optical Path Penalty [dB]
1
1
1
1
<1
16
Max. Reflect. of receiver [dB]
NA
-14
-27
-27
NA
17
Digital Diagnostics Function
Yes
Yes
Yes
Yes
Yes
Note: The same as the STM-1 statement.
Figure 37 - hiT 7025 STM-4 Optical Interface Specifications
Copyright 2013 Coriant. All rights reserved.
64/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
6.4.4
STM-16 Optical Interface Performance
Item
Parameters
Classification of STM-16/2.5Gbps
1
Application Code
S-16.1
L-16.1
L-16.2
V-16.2
U-16.2
DWDM U16.2
2
Supported Distance[km]
~15
~40
~80
~120
~160
~180
3
Laser Types
SLM
SLM
SLM
Un-cooled SLM
Un-cooled SLM
Cooled SLM
4
Central Wavelength [nm]
1261~1360
1261~1360
1480 ~ 1580
1530~1560
1530~1560
1555.75
5
Max. Spectral Width [nm]
-20dB=1
-20dB=1
-20dB=1
-20dB=1
-20dB=1
-20dB=1
6
Min. SMSR [dB]
30
30
30
30
30
30
-5 ~ 0
-2 ~ 3
-2 ~ 3
-2 ~ 3
-2 ~ 3
-2 ~ 3
7
Average Launch Power [dBm]
8
Extinction Ratio [dB]
8.2
8.2
8.2
8.2
8.2
8.2
9
G.957 STM-16 Mask Margin
15%
15%
15%
15%
15%
15%
10
Receiver Types
PIN
APD
APD
APD
APD
APD
11
Mini. Overload [dBm]
0
-9
-9
-9
-9
-9
12
Receiver Sensitivity @BOL [dBm]
-21
-30
-30
-30
-30
-30
13
Receiver Sensitivity @ HT. [dBm]
-19
-28
-29
-29
-29
-29
14
Receiver Sensitivity @EOL [dBm]
-18
-27
-28
-28
-28
-28
15
Optical Path Penalty [dB]
1
1
2
3
3
3
16
Max. Reflect. of receiver [dB]
NA
-27
-27
-27
-27
-27
17
Dispersion [ps/nm]
NA
NA
1600
2400
3200
2400
18
Digital Diagnostics Function
Yes
Yes
Yes
Yes
Yes
Yes
Note: 1. V-16.2 SFP has the same optical parameter as L-16.2 SFP except its dispersion can be up to 2400ps/nm; U-16.2 SFP has the same optical parameter as L -16.2 SFP except its dispersion can be up to 3200ps/nm; DWDM U-16.2 SFP is one of 44 channels DWDM SFP listed in 2.3.8 section; its wavelength is a special one (1555.75nm). The wavelength stability of DWDM U-16.2 SFP is 100pm. 120km transmission: V-16.2 SFP plus 13dBm booster amplifier 160km transmission: U-16.2 SFP plus 18dBm booster amplifier 180km transmission: DWDM U-16.2 SFP plus 18dBm booster amplifier and preamp with filter and 680ps/nm DCM (suppose the fiber dispersion @1555.75nm is 17ps/nm)
Copyright 2013 Coriant. All rights reserved.
65/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
DWDM SFP should be compatible with DWDM SFP MSA (Sept., 2005) 2. The wavelength of V-16.2 and U-16.2 SFP should be within the range of 1530nm ~ 1560nm over life and temperature. 3. Other items are the same as t he above.
Figure 38 - hiT 7025 STM-16 Optical Interface Specifications
6.4.5
Multi-rate CWDM interface Optical Performance
Item
Parameters
Specifications
1
Application Code
C8L1-1D2/ C8L1-0D2
2
Data Bit Rate
622Mbps ~ 2.67Gbps
3
Laser Types
SLM
4
Central Wavelength [nm]
1471 + 20 m m = 0 to 7
4.1
Channel Spacing [nm]
20
4.2
Maximum central wavelength deviation [nm]
±6.5
5
Max. Spectral Width [nm]
-20dB =1
6
Min. SMSR [dB]
30
7
Average Launch Power [dBm]
0~5
8
Extinction Ratio [dB]
8.2
9
ITU-T G.957 STM-16 Mask Margin
15%
10
Receiver Types
APD
11
Mini. Overload [dBm]
-9
12
Receiver Sensitivity @BOL [dBm]
-30
13
Receiver Sensitivity @ HT. [dBm]
-29
14
Receiver Sensitivity @EOL [dBm]
-28
15
Optical Path Penalty [dB]
2
16
Max. Reflect. of receiver [dB]
-27
17
Dispersion [ps/nm]
1600
18
Digital Diagnostics Function
Yes
Copyright 2013 Coriant. All rights reserved.
66/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
Note: 1. 8 channels CWDM SFP are supported. Its optical performance is compliant with G.695. C8L1-1D2 is for STM-16 application and C8L1-0D2 is for GE application. It can support multi-rate application: STM-4/16, STM16 FEC and GE. Their wavelengths are 1471nm, 1491nm, 1511nm, 1531nm, 1551nm, 1571nm, 1591nm, 1611nm. 2. Other items are the same as t he above. The RX sensitivity is based on 2.48832bps bit rate.
Figure 39 - hiT 7025 CWDM Optical Interface Specifications
6.4.6
2.5G DWDM interface Optical Performance
Item
Parameters
Specifications
1
Application Code
2
Data bit rate
2.48832 to 2.666057 Gbps
3
Laser Type
Cooled SLM
Wavelength range
100 GHz channel grid in the C-band: 191.70-196.0 THz, wavelength selected
4.1
Wavelength stability (over life & temperature)
12.5
5
Spectral width (-20dB) modulated
0.5nm
6
Side mode suppression ratio
> 30 dB
7
Average launch power
0 dBm to + 4 dBm
8
Extinction ratio
> 9 dB (BOL), 8.2 dB (EOL)
9
ITU-T G.957 STM-16 Mask Margin
15%
10
Receiver Types
APD
11
Minimum overload
-9dBm
12
Rx sensitivity @BOL
-30dBm
13
Rx sensitivity @HT.
-29dBm
14
Rx sensitivity @EOL.
-28dBm
15
Path Penalty
3 dB
16
Receiver reflectance
< -27 dB
17
Dispersion tolerance
-2400 ps/nm … + 2400 ps/nm
18
Digital diagnostic function
Yes
4
GHz ( 100 pm)
Copyright 2013 Coriant. All rights reserved.
67/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
Note: 1. 44 channels DWDM SFP are supported. It can support STM-16 and STM-16 FEC application. Its channel spacing is 100GHz. Its wavelength table is as follows. DWDM SFP should be compatible with DWDM SFP MSA (Sept., 2005) 2. Please notice that 192.7THz (1555.75nm) DWDM SFP will be used for 180km ultra-long haul transmission application. 3. Other items are the same as t he above.
Figure 40 - hiT 7025 DWDM Optical Interface Specifications
ITU Channel Number
Frequency (THz)
Wavelength (nm)
ITU Channel Number
Frequency (THz)
Wavelength (nm)
60
196.00
1529.55
38
193.8
1546.92
59
195.9
1530.33
37
193.7
1547.72
58
195.8
1531.12
36
193.6
1548.51
57
195.7
1531.90
35
193.5
1549.32
56
195.6
1532.68
34
193.4
1550.12
55
195.5
1533.47
33
193.3
1550.92
54
195.4
1534.25
32
193.2
1551.72
53
195.3
1535.04
31
193.1
1552.52
52
195.2
1535.82
30
193.0
1553.33
51
195.1
1536.61
29
192.9
1554.13
50
195.0
1537.40
28
192.8
1554.94
49
194.9
1538.19
27
192.7
1555.75
48
194.8
1538.98
26
192.6
1556.55
47
194.7
1539.77
25
192.5
1557.36
46
194.6
1540.56
24
192.4
1558.17
45
194.5
1541.35
23
192.3
1558.98
44
194.4
1542.14
22
192.2
1559.79
43
194.3
1542.94
21
192.1
1560.61
42
194.2
1543.73
20
192.0
1561.42
41
194.1
1544.53
19
191.9
1562.23
40
194.0
1545.32
18
191.8
1563.05
39
193.9
1546.12
17
191.7
1563.86
Figure 41 - hiT 7025 DWDM Wavelenthes
Copyright 2013 Coriant. All rights reserved.
68/101
6.4.7
Technical Description hiT 7025 July 15, 2013 / Issue 12
GE Optical Transmitter and Receiver Interfaces 6.4.7.1
1000 Base-SX interface parameters Parameter
62.5 µm MMF
50 µm MMF
Unit
Laser Type
Shortwave Laser
-
Signal Rate
1.25 ± 100 ppm
GBd
Wavelength Range
770 to 860
nm
Trise/Tfall (max; 20%-80%;ë> 830 nm)
0.26
ns
Trise/Tfall (max; 20%-80%;ë= 830 nm)
0.21
ns
Maximum RMS Width
0.85
nm
Mean Launch Power (Maximum)
-3
dBm
Mean Launch Power (Minimum)
–9.5
dBm
Mean Launch Power when transmitter is OFF (max)
–30
dBm
Minimum Extinction Ratio
9
dB
RIN (max)
–117
dB/Hz
9 < CPR
dB
Coupled Power Ratio (CPR) (min)
c
a. The 1000 Base-SX launch power is the lesser of the class 1 safety limit as defined by IEEE Standard 802.3 Clause 38.7.2 or the average receive power (max) defined i n herein. b. Examples of an OFF transmitter are: no power supplied to the PMD, laser shutdown for safety cond itions, activation of a “transmit disable” or other optional module laser shut down conditions. During all conditions when the PMA is powered, the ac signal (data) into the transmit port will be valid encoded 8B/10B patterns (this is a requirement of the PCS layers) except for short durations during system power-on-reset or diagnostics when the PMA is placed in a loopback mode. l overfilled launches as described in IEEE Standard 802.3 Clause 38A.2, while they may meet CPR ranges, e avoided.
Figure 42 - 1000 Base-SX transmitter interface parameters
Parameter
62.5 µm MMF
50 µm MMF
Unit
Signal rate
1.25 ± 100 ppm
GBd
Wavelength Range
770 to 860
nm
Mean Receiving Power (Max.)
0
dBm
Receiving Sensitivity
–17
dBm
Minimum Return Loss
12
dB
Stressed receive sensitivity
a,
–12.5
–13.5
dBm
Vertical eye-closure penalty
c
2.60
2.20
dB
Copyright 2013 Coriant. All rights reserved.
69/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
Receive electrical 3 dB upper cutoff frequency (max)
1500
MHz
a. Measured with conformance test signal at TP3 (see IEEE Standard 802.3 Clause 38.6.11) for BER = 10 –12 at the eye center. b. Measured with a transmit signal having a 9 dB extinction ratio. If another extinction ratio is used, the stressed receive sensitivity should be corrected for the extinction ratio penalty. c. Vertical eye-closure penalty is a test condition for measuring stressed receive sensitivity. It is not a required characteristic of the receiver.
Figure 43 - 1000 Base-SX receiving interface parameters
6.4.7.2
1000 Base-LX Interface Parameters
Parameter
62.5 µm MMF
50 µm MMF
10 µm MMF
Unit
Laser Type
Longwave Laser
Signal Rate
1.25 ± 100 ppm
GBd
Wavelength Range
1270 to 1355
nm
Trise/Tfall (max; 20%-80% response time)
0.26
ns
Maximum RMS Width
4
nm
Mean launch power (Max.)
-3
dBm
Mean launch power (Min.)
-11.5
Average launch power of OFF transmitter (max)
-30
dBm
Minimum Extinction Ratio
9
dB
RIN (max)
-120
dB/Hz
Coupled Power Ratio (CPR) (min)
28 < CPR < 40
-11.5
-11.0
12 < CPR< 20 NA
dBm
dB
* Due to the dual media (single-mode and multimode) support of the LX transmitter, fulfillment of this specification requires a single-mode fibre offset-launch mode-conditioning patch cord described in IEEE Standard 802.3 Clause 38.11.4 for MMF operation. This patch cord is not u sed for single-mode operation.
Figure 44 - 1000 Base-LX Transmitter interface parameters
Copyright 2013 Coriant. All rights reserved.
70/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
Parameter
62.5 µm MMF
50 µm MMF
10 µm MMF
Unit
Signal rate
1.25 ± 100 ppm
GBd
Wavelength Range (ë)
1270 to 1355
nm
Maximum Mean Receiving Power
-3
dBm
Receiving Sensitivity
-19
dBm
Minimum Return Loss
12
dB
Stressed receive sensitivity
a,
-14.4
dBm
Vertical eye-closure penalty
c
2.60
dB
1500
MHz
Receive electrical 3 dB upper cutoff frequency (max)
red with conformance test signal at TP3 (see IEEE Standard 802.3 Clause 38.6.11) for BER = 10 –12 at the er. ured with a transmit signal having a 9 dB extinction ratio. If another extinction ratio is used, the stressed ensitivity should be corrected for the extinction ratio penalty. al eye-closure penalty is a test condition for measuring stressed receives sensitivity. It is not a required ristic of the receiver.
Figure 45 - 1000 Base-LX receiver interface parameters
6.4.8
Electrical Interface Performances
This section provides the E1 and T1 electrical interface specifications:
1) 2,048 Kbit/s digital interface 2) Allowable bit rate deviation of 2,048 Kbit/s, and 10/100M Base-T Output Signals 3) Allowable attenuation at the 2,048 Kbit/s input port 4) Allowable frequency deviation at the 2,048 Kbit/s, and 10/100M BaseT interface 5) Anti-interference capability of the 2,048 Kbit/s input port
Copyright 2013 Coriant. All rights reserved.
71/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
6.4.8.1
Electrical Interface Parameters Specification
The following table shows the parameters for the 2048 Kbit/s digital interface:
Pulse Shape (Nominally Rectangular)
All marks of a valid signal must conform to the mask irrespective of the sign. The value V corresponds to the nominal peak value.
Pair(s) in each direction
One coaxial pair
Test load impedance
75 Ohms resistive
Nominal peak voltage of a mark (pulse)
2.37 V
Peak voltage of a space (no pulse) 0 ± 0.237 V Nominal pulse width
244 ns
Ratio of the amplitudes of p ositive and negative pulses at the center of 0.95 to 1.05 the pulse interval Ratio of the widths of positive and negative pulses at the nominal half amplitude
0.95 to 1.05 Interface Threshold Measurement Filter Bandwidth
Rate
Maximum peak-to-peak itter at an output port
2048 kbit/s
20 Hz – 100 kHz
18 kHz – 100 kHz
1.5 UI
0.2 UI
Figure 46 - 2048 kbit/s Electrical Interface Parameters
6.4.8.2
Allowable Bit Rate Deviation of Output Signals
Allowable Bit Rate Deviation of Output Signals is the difference between the actual signal bit rate and the nominal bit rate measured under AIS output condition. hiT 7025 meets the standard requirements of output signal allowable bit rate deviation as shown in table below:
Electrical Interface Types
Standard Requirements (ppm)
2048 kbit/s
±50
10/100M Base-T
±100
Figure 47 - Electrical Interface Output Signals Bit Rate Allowable Deviation
Copyright 2013 Coriant. All rights reserved.
72/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
6.4.8.3
Allowable Attenuation at the Input Port
hiT 7025 meets the standard requirements for the allowable attenuation at the input port:
Electrical Interface Types 2048 kbit/s
Standard Requirements (dB) 0~6 860 to 1720 kHz
34 368 kbit/s
1720 to 34 368 kHz 34 368 to 51 550 kHz
155 520 kbit/s
0 ~ 12.8
Figure 48 - Electrical Interface Allowable Input Attenuation
6.4.8.4
Allowable Frequency Deviation at the Input Port
Allowable input signals frequency deviation is the signal bit rate variation range that the system can tolerate. The following table shows the standard requirements for the allowable frequency deviation at the input port:
Electrical Interface Types
Standard Requirements (ppm)
2048 kbit/s
±50
10/100M Base-T
±100
Figure 49 - Electrical Interface Allowable Input Port Frequency Deviation
6.4.8.5
Anti-interference Capability of the Input Port
hiT 7025 meets the standard requirements for the anti-interference capability of the input port:
Electrical Interface Types
Standard Requirements (dB)
2048 kbit/s
18
155 520 kbit/s
≥15
Figure 50 - Electrical Interface Input Port Anti-interference Capability
Copyright 2013 Coriant. All rights reserved.
73/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
6.4.9
Timing and Synchronization Performance 6.4.9.1
Output Jitter
The following table shows the maximum acceptable level of network output jitter for the timing (synchronization) interface:
Output Interface
Measuring band (-3dB frequencies)
Peak-to-peak Amplitude (UIpp)
PRC
20 ~ 100 K
0.05 UI
SSU
20 ~ 100 K
0.05 UI
20 ~ 100 K
0.5 UI
49 ~ 100 K
0.2 UI
20 ~ 100 K
1.5 UI
18 ~ 100 K
0.2 UI
SEC SECPDH Synchronization (2048 kbit/s)
Figure 51 - Timing Output Jitter
6.4.9.2
Internal Timing Source Output Frequency
The following table shows the output accuracy of the timing interface in its free-run mode:
Timing Interface System Clock
Standard requirement (ppm) ± 0.5
Figure 52 - Internal Timing Source Output Frequency
6.4.10
Jitter Performance
Jitter and wander tolerance, transfer, and production specifications comply with the ITU- T Recommendations G.783, G.813 Option 1, G.823, G.824, G.825, and G.958, the China MII standard YD/T 1146-2001 and ETSI standards.
Copyright 2013 Coriant. All rights reserved.
74/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
6.4.11
STM-N Interface Output Jitter
The following table shows the maximum acceptable level of output jitter at any STM-N output within a digital network (measured of a 60 second interval):
Interface
STM-1 (Optical)
STM-1 (Electrical)
STM-4 (Optical)
STM-16 (Optical)
Measuring band (-3dB frequencies)
Peak-to-peak Amplitude (UIpp)
500 Hz ~ 1.3 MHz
1.50 UI
65 KHz ~ 1.3 MHz
0.15 UI
500 Hz ~ 1.3 MHz
1.50 UI
65 KHz ~ 1.3 MHz
0.075 UI
1000 Hz ~ 5 MHz
1.50 UI
250 KHz ~ 5 MHz
0.15 UI
5000 Hz ~ 20 MHz
1.50 UI
1 MHz ~ 20 MHz
0.15 UI
Figure 53 - STM-1/-4/-16 Interface Output Jitter
6.4.11.1
STM-N and PDH Input Interface Jitter Tolerance
The following tables show the input jitter tolerance for the STM-N interfaces: Interface
STM-1 (Optical)
STM-1 (Electrical)
Frequency (Hz)
Peak-to-Peak Jitter Amplitude
10 < f <= 19.3
38.9 UI (.25 us)
19.3 < f <= 68.7
750 f UI
68.7 < f <= 500
750 f UI
500 < f <= 6.5 k
1.5 UI
6.5 k < f <= 65k
9.8 x 103 f UI
65 k < f <= 1.3 M
0.15 UI
10 < f <= 19.3
38.9 UI (.25 us)
19.3 < f <= 500
750 f UI
500 < f <= 3.3 k
1.5 UI
3.3 k < f <= 65 k
4.9 x 103 f UI
65 k < f <= 1.3 M
0.075 UI
-1 -
-1
-1
-
Figure 54 - STM-1 Interface Jitter Tolerance
Copyright 2013 Coriant. All rights reserved.
75/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
Interface
Frequency (Hz)
STM-4 (Optical)
Peak-to-Peak Jitter Amplitude -
9.65 < f <= 100
1500 f UI
100 < f <= 1000
1500 f UI
1 k < f <= 25 k
1.5 UI
25 k < f <= 250 k
3.8 x 104 f UI
250 k < f <= 5 M
0.15 UI
-1
-
Figure 55 - STM-4 Interface Jitter Tolerance
Interface
Frequency (Hz)
STM-16 (Optical)
Peak-to-Peak Jitter Amplitude
10 < f <= 12.1
622 UI
12.1 < f <= 500
7500 f P
-
500 < f <= 5 k
7500 f
-1P
5 k < f <= 100 k
1.5 UI
100 k < f <= 1 M
1.5 x 105 f
P
P
UI UI
P
-
PPP
UI
Figure 56 - STM-16 Interface Jitter Tolerance
Maximum Peak-to-Peak Jitter
G.703 (PDH)
Filter Characteristics
Interface
f1 High pass
f3 High pass
f4 Low pass
f1-f4
1 544 Kbit/s
10 Hz 20 dB/dec
8 kHz
40 kHz –20 dB/dec
0.7 (A0)
2 048 Kbit/s
20 Hz 20 dB/dec
18 kHz (700 Hz) 20 dB/dec
100 kHz –60 dB/dec
0.075 UI
34 368 Kbit/s
100 Hz 20 dB/dec
10 kHz 20 dB/dec
800 kHz –60 dB/dec
0.075 UI
44 736 Kbit/s
10 Hz
30 kHz
400 kHz –20 dB/dec
139 264 Kbit/s
200 Hz 20 dB/dec
10 kHz 20 dB/dec
3 500 kHz –60 dB/dec
Mapping
0.40 UI (A0)
Figure 57 - PDH mapping jitter generation specification
Copyright 2013 Coriant. All rights reserved.
f3-f4
0.075 UI
76/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
G.703 (PDH) Interface
Maximum Peak-Peak Jitter
Filter Characteristics f1 high pass
f3 high pass
Combined f4 low pass
1 544 Kbit/s
10 Hz 20 dB/dec
8 kHz
40 kHz –20 dB/dec
2 048 Kbit/s
20 Hz 20 dB/dec
18 kHz (700 Hz) 20 dB/dec
100 kHz –60 dB/dec
34 368 Kbit/s
100 Hz 20 dB/dec
10 kHz 20 dB/dec
800 kHz –60 dB/dec
f1-f4
f3-f4
0.4 UI
0.4 UI 0.75 UI
0.075 UI
0.075 UI
Figure 58 - hiT 7025 PDH interface combined jitter generation spec
6.5
Timing
hiT 7025 provides the following timing clock interfaces:
External clock source (T3): 2 input port, 2048kbit/s (G.703-6) or 2048 kHz (G.703-10)75 Synchronize output (T4): 2 output port, 2048kbit/s (G.703) or 2048 kHz 75
hiT 7025supports the selection of the following 4 timing references: Line/tributary External Internal E1
timing (STM-1/-4/-16 lines, or E1 tributary)
station clock timing
clock (ITU-T G.813 option 1)
tributary timing (any E1 port can be selected as the timing source)
Additionally, hiT 7025 is able to provide retiming for E1 (2Mbit/s) traffic interfaces to provide synchronized reference to another equipment.
Copyright 2013 Coriant. All rights reserved.
77/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
6.6
Power Source
6.6.1
Power Supply
hiT 7025 supports -48V/60V (-40.5~-72.0 V) DC power supply, support load balanced 1+1 power supply modular protection.
6.6.2
Power Consumption
Maximum power consumption: 250W (Full Configuration) Average power consumption: 122W (Typical Configuration)
6.6.3
Cooling
The equipment is assembled with one fan unit. It is field replaceable. Fan failure does not affect service.
6.7
Mechanical Structure
hiT 7025 chassis mechanical parameters: Height:
238mm (5U)
Width:
445mm
Depth:
240mm (300 mm back-to-door)
hiT 7025 can be installed in the following types of racks: EIA
310 19”
2200mm(Height) 600mm
(Width) 300mm (Depth)
2600mm(Height)×600mm(Width)×300mm(Depth)
Depending on the electrical cabel load you can install up to six hiT 7025 chassis into a 2200mm high ETSI rack or an EIA 310 19” rack ( typically four systems per rack ).
Copyright 2013 Coriant. All rights reserved.
78/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
6.8
Environment Requirements
hiT 7025 system is designed to comply with the following ETSI requirements (ETS 300 019) on environmental conditions:
ETSI
Class 3.2 on Environment
ETSI
Class 1.2 on Storage
ETSI
Class 2.3 on Transportation
The environmental conditions required by hiT 7025 are as follows:
Environmental Condition
Temperature
Relative Humidity
Transport and storage
-20º ~ 60ºC
2% ~ 98%
Operation for long term
-5º ~ 45ºC
5% ~ 90% (30ºC)
Operation for short term
-10º ~ 50ºC
5% ~ 90% (30ºC)
Figure 59 - hiT 7025 Environment Requirements
6.8.1
Enhanced Temperature Variant
Depending on the used chassis variant of hiT 7025 also an operating temperature up to 55 degree is available. This enhanced temperature variant has a more powerful fan assembly and is introduced with system software R4.2. To comply with the operation in a higher temperature range, the chassis has to be mounted in vertical position. Performance Guaranteed: Operation for long term: -5°C~55°C Relative Humidity: 10%~100% (30°C)
Copyright 2013 Coriant. All rights reserved.
79/101
6.9
Technical Description hiT 7025 July 15, 2013 / Issue 12
Electromagnetic Compatibility
hiT 7025 meets the present customer oncoming mandatory requirements Of ETSI EN 300 386 v1.4.1, which is based on EN 55022 (emission) and EN 61000-4-x series (immunity)
Emission (EN 55022) Radiated emission
EN 55022, Class A
Conducted emission
EN 55022, Class A
DC power port
EN 55022, Class A
Signal ports
EN 55022, Class A
Immunity (EN 61000-4-x series)
i
Electrostatic Discharge
EN 61000-4-2, level 2
Radiated immunity
EN 61000-4-3, level 2 & level 3
Electrical fast transients
EN 61000-4-4
DC power port
EN 61000-4-4, level 1
Signal ports
EN 61000-4-4, level 1
Surges
EN 61000-4-5
Indoor signal ports
EN 61000-4-5, level 1
Continuous wave
EN 61000-4-6
All ports (telecom ports, AC, DC)
EN 61000-4-6, level 2
Note This is a class A product. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.
hiT 7025 meets the present customer oncoming mandatory requirements Of FCC 47 CRF Ch.1, Part 15 S ubpart B, Class A, radiated emission limit for unintentional radiators
Emission (FCC 47 Ch.1, part 15 Subpart B) Radiated emission
FCC 47 Ch.1, part 15 Subpart B, Class A
Conducted emission
N/A for DC power port
hiT 7025 meets IEC TS 61000-6-5 (2001), immunity requirements for the power station and substation. Which is based on the IEC 61000-4-x series (immunity)
Immunity (IEC 61000-4-x series) Electrostatic Discharge
IEC 61000-4-2
level 3
Radiated immunity
IEC 61000-4-3
level 3
Electrical fast transients
IEC 61000-4-4
DC power port
IEC 61000-4-4 substation
level 3 for power station and MV
level 4 for HV substation Signal ports
IEC 61000-4-4
Copyright 2013 Coriant. All rights reserved.
level 3 for local connection
80/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
level 4 for in field connection Surges
IEC 61000-4-5
DC power port
IEC 61000-4-5
level 2 for line to line
level 3 for line to ground signal ports
IEC 61000-4-5
level 2 for local connection
level 3 for in field connection Continuous wave
IEC 61000-4-6
All ports (signal ports, AC, DC)
IEC 61000-4-6
Damped wave
IEC 61000-4-12
DC power port
IEC 61000-4-12 substation
level 3
level 2 for power station and MV
level 3 for HV substation Indoor signal ports
IEC 61000-4-12 level 2 for in field connection
Mains frequency voltage
IEC 61000-4-16
DC Power port
IEC 61000-4-16 substation
level 3 for power station and MV
level 4 for HV substation Signal ports
IEC 61000-4-16 level 4 for in field connection
Ripple on DC port
IEC 61000-4-17 level 3
Voltage dips & interruption
IEC 61000-4-29 ΔU 30% for 0.1s
Criteria B
ΔU 60% for 0.1s ΔU 100% for 0.05s
hiT 7025 meets IEC 61000-6-2 : 2005, immunity requirement for industry environment. Which is based on the IEC 61000-4-x series (immunity)
Immunity (IEC 61000-4-x series) Electrostatic Discharge
IEC 61000-4-2
level 2 and level 3
Radiated immunity
IEC 61000-4-3
level 1, level 2 and level 3
Electrical fast transients
IEC 61000-4-4
DC power port
IEC 61000-4-4
level 3
Signal ports
IEC 61000-4-4
level 2
Surges
IEC 61000-4-5
DC power port
IEC 61000-4-5
level 1
signal ports
IEC 61000-4-5
level 2
Continuous wave
IEC 61000-4-6
All ports (signal ports, AC, DC)
IEC 61000-4-6
level 3
Figure 60 - hiT 7025 Electromagnetic Compatibility Requirements
Copyright 2013 Coriant. All rights reserved.
81/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
6.10
Vibration Tests
6.10.1
Shipping Test
hiT 7025 meets the following shipping test standards.
Test
Test Standard
Amplitude (>= 0.6 mm)
ETSI
Acceleration (>= 15 m/s—X, Y, Z three directions)
ETSI
Test time (>=3 hours)
ETSI
Figure 61 - Shipping Test Standards
6.10.2
Office Test
hiT 7025 meets the following office test standards.
Test
Test Standard
Amplitude (>= 0.6 mm)
ETSI
Acceleration (>= 15 m/s—X, Y, Z three directions)
ETSI
Test time (>= 3 hours)
ETSI
Figure 62 - Office test standards
6.11
Alarms and Events
6.11.1
Alarm Types
There are five types of failure in the system:
Communication Failure: Failures related to communication status (such as LOS, LOF, AIS, DEG and LAN) or other communication protocol related failures (such as, STMfLOS).
Quality of Service Failure: Failure related to system performance, such as responding time too long, threshold crossing, and performance degrading. Copyright 2013 Coriant. All rights reserved.
82/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
Equipment Failure: Failures related to the hardware equipment, such as power system defect, timing interface failures, processor defect, transmit/receiver equipment defect or any other equipment component faults (such as, EQfFLT).
Processing Error Failure: Failures related to the software, memory overflow, version incompatibility, software errors, program illegal interruption, NE configuration errors and NE inaccessible.
Environmental Failure: Failures related to environment changes, such as unacceptable temperature and humidity, ventilation or cooling system faults, excessive vibration, and door open/close.
6.11.2
Alarm Severity Level
There are five alarm severity levels defined in the system:
Critical—Service-interrupting alarms.
Major —Service-affecting alarms.
Minor —Non-Service-affecting alarms, but can potentially become service-affecting alarms. You need to perform fault inspection and any necessary fixes to prevent it from becoming worse.
Warning—Non-Service-affecting, information presented to the operator for the purpose of maintenance.
Indeterminate—The alarm severity level is undefined.
The system has a red LED alarm indicator for Prompt (service-affecting) and a yellow LED alarm indicator for Deferred/Info (non-service-affecting).
6.11.3
Alarm Reports
The Element Management software logs the 10,000 latest failures in the alarm log and independently reports the failure status change to the EMS. hiT 7025 allows users to query alarm logs using a variety of criteria.
6.11.4
Events
There are three types of events defined in the system: Management, Hardware, and Software. hiT 7025 requires every event to be time-stamped. An Event (as defined by ITU-T Recommendation M.2410) is an instantaneous occurrence that changes the global status of an object. This status change may be persistent or Copyright 2013 Coriant. All rights reserved.
83/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
temporary, allowing for surveillance, monitoring, and performance measurement functionality, etc. Events may or may not generate reports; they may be spontaneous or planned; they may trigger other events or may be triggered by one or more other events. (Recommendation M.60)
6.11.4.1
Management Events
The attributes of the management events include: Event name, Timestamp, User name and privilege level, and Description.
Name
Description
User login
Identifies the user that has just logged in.
User logout
Identifies the user that has just logged out.
User auto-logout due to timeout
Identifies the user that was just logged out by the system because of inactivity.
User password change
The password of a user account has been changed.
Unauthorized login attempt
A user has attempted and failed to log in.
Alarm log cleared
A user has cleared out the alarm log file.
Event log cleared
A user has cleared out the event log file.
Figure 63 - Management Events
6.11.4.2
Hardware Events
The object (located as precisely as possible) that generates the event is also reported.
Name
Description
Auto acceptance
A module of a different type from the previous module was installed and booted. The configuration of the previous module was automatically deleted.
Card booted
The module has been booted.
Card reset
The module has been reset.
Card disabled
The module has been disabled.
Card removed
The module has been removed from its slot
SFP changed
The SFP module has been changed.
Figure 64 - Hardware Events Copyright 2013 Coriant. All rights reserved.
84/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
6.11.4.3
Software Events
Some of these types of software events may never happen on a certain products.
Name
Description
Protection switch completed
The protection switch occurred and was completed. (It applies to all types of protection schemes. The protection group is identified.)
Protection switch back completed
The protection group switched from the protection state to the normal state. (It applies to all types of protection schemes. The protection group is identified.)
Software download started
Software files are being downloaded to the backup storage place through FTP.
Software download completed
Software files are successfully downloaded to the backup storage place through FTP.
Software upgrade started
The software files in the backup storage place have started to be activated.
Software upgrade completed
A software upgrade has completed.
MIB upload started
The MIB files in the backup place are being uploaded to a server through FTP.
MIB upload completed
The MIB files in the backup place are successfully uploaded through FTP.
MIB download started
The MIB files are being downloaded from a server to the MIB backup place through FTP.
MIB download completed
The MIB files are successfully downloaded from a server to the MIB backup place through FTP.
MIB backup started
The active MIB files are being backed up.
MIB backup completed
The active MIB files are backed up.
MIB restore started
The MIB files in the backup are being restored to active MIB files.
MIB restore completed
The MIB restoration has successfully completed.
System reset
The system is resetting.
System start
The system is starting up.
Timing configuration changed
One or more timing sources/references changed.
Port administratively down
A port has been administratively set to down.
Port administratively up
A port has been administratively set to up.
Figure 65 - Software Events
Copyright 2013 Coriant. All rights reserved.
85/101
7.
Technical Description hiT 7025 July 15, 2013 / Issue 12
Standard Compliance
The design of the hiT 7025 system is based on the f ollowing ollowing documents:
ITU-T
IEEE
G.691
Optical interfaces for single channel STM-64 and other SDH systems with optical amplifiers
G.692
Optical interfaces for multichannel systems with optical amplifiers
G.703
Physical / electrical characteristics of hierarchical digital interfaces
G.7041/Y.1303
Generic Framing Procedure
G.7042/Y.1305
Link Capacity Adjustment Schema (LCAS) for virtual concatenated signals
G.707
Synchronous digital hierarchy (SDH) bit rates
G.708
Network node interface for the synchronous digital hierarchy (SDH)
G.709
Synchronous multiplexing structure
G.773
Protocol suites for Q interfaces for management of transmission systems
G.781
Structure of recommendations on SDH multiplexing equipment
G.783
Characteristics of synchronous digital hierarchy multiplexing equipment functional blocks
G.784
SDH management
G.803
Architecture of transport networks based on the synchronous digital hierarchy
G.811
Timing requirements for the plesiochronous digital hierarchy (PDH)
G.813
Timing characteristics of slave clocks suitable for operation of SDH equipment
G.823
The Control of Jitter and Wander within Digital Networks which are based on the 2048 kbps Hierarchy
G.824
The control of jitter and wander within digital networks which are based on the 1544 kbit/s hierarchy
G.825
The Control of Jitter and Wander within Digital Networks which are based on the Synchronous Digital Hierarchy
G.841
Types and characteristics of SDH network protection Architectures
G.842
Interworking of SDH network protection architectures
G.957
Optical interfaces for equipment and systems relating to SDH
G.692
Optical interfaces for multichannel systems with optical amplifiers
802.1p
Standard for Local and Metropolitan Area Networks Supplement to Media Access Control (MAC) Bridges: Traffic Class Expediting and Dynamic Multicast Filtering
802.1q
IEEE Standards for Local and Metropolitan Area Networks: Virtual Bridged Local Area Networks
Copyright 2013 Coriant. All rights reserved.
86/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
802.1s
IEEE Standards for Local and Metropolitan Area Networks
802.1w
IEEE Standard for Information Technology -Telecommunications and Information Exchange Between Systems - Local and Metropolitan Area Networks - Common Specifications - Part 3: Media Access Control (MAC) Bridges:
802.17
Resilient Packet Ring
802.3
Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method & Physical Layer Specifications
802.3u
Local and Metropolitan Area Networks-Supplement - Media Access Control (MAC) Parameters, Physical Layer, Medium Attachment Units and Repeater for 100Mb/s Operation, Type 100BASE-T (Clauses 2130)
CISPR 22 EN
ETS
Limits and methods of measurement of radio interference characteristics of information technology equipment 55022
Limits and methods of measurement of radio interference characteristics of information technology equipment
6100-6-5
Immunity requirements for the power station and substation
6100-6-2
immunity requirement for industry environment
300 019
Climatic conditions
300127
Electromagnetic compatibility and Radio spectrum Matters (ERM); Radiated emission testing of physically large te lecommunication systems
300 386
Electromagnetic compatibility
China MII Standard YD/T 11462001
Copyright 2013 Coriant. All rights reserved.
87/101
8.
Technical Description hiT 7025 July 15, 2013 / Issue 12
Appendix 1: Definitions and Abbreviations Abbreviation
Definition
ADM
Add-Drop Multiplexer
AIS
Alarm Indication Signal
APS
Automatic Protection Switching
ASON
Automatic Switched Optical Network
ASTN
Automatic Switched Transport Network
ATM
Asynchronous Transfer Mode
AU
Administrative Unit
AU-n
Administration Unit ,level n
AUG
Administration Unit Group
AU-PTR
Administration Unit Pointer
BA
Booster Amplifier
BBE
Background Block Error
BBER
Background Block Error Ratio
BER
Bit Error Ratio
BITS
Building Integrated Timing Supply
BML
Business Management Layer
BoD
Bandwidth on Demand
B-RAS
Broadband-Remote Access Server (or Broadband Access Management Switch)
CDV
Cell Delay Variation
CLR
Cell Loss Rate
CMI
Coded Mark Inversion
C-n
Container- n
CORBA
Common Object Request Broker Architecture
Copyright 2013 Coriant. All rights reserved.
88/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
Abbreviation
Definition
CTD
Cell Transfer Delay
CV
Code Violation
DB
Data Base
DBMS
Data Base Management System
DCC
Data Communications Channel
DCE
Data Circuit-terminating Equipment
DCF
Data Communications Function
DCN
Data Communications Network
DDN
Digital Data Network
DNA
Distributed Network Architecture
DNI
Dual Node Interconnection
DNU
Do Not Use for Sync.
DTE
Data Terminal Equipment
DWDM
Dense Wavelength-division Multiplexing
DXC
Digital Cross Connect
ECC
Embedded Control Channel
EM
Element Management
EMC
Electromagnetic Compatibility
EMI
Electromagnetic Interference
EML
Element Management Layer
EMS
Element Management System
EOS
Ethernet Over SDH
ES
Error Second
ESD
Electronic Static Discharge
ESR
Error Second Ratio
ETSI
European Telecommunication Standards Institute
Copyright 2013 Coriant. All rights reserved.
89/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
Abbreviation
Definition
FDM
Frequency Division Multiplexing
FDDI
Fiber Distributed Data Interface
FEBBE
Far End Background Block Error
FEES
Far End Errored Second
FESES
Far End Severely Errored Second
GMPLS
Generalized Multi-Protocol Label Switching
GUI
Graphical User Interface
HDLC
High Digital Link Control
HPC
Higher order Path Connection
IP
Internet Protocol
ITU-T
International Telecommunication Standardization Sector
L2
Layer 2
LAN
Local Area Network
LAPD
Link Access Procedure On D-channel
LCT
Local Craft Terminal
LMS
Local NE Management System
LOF
Loss Of Frame
LOM
Loss of Multi-Frame
LOP
Loss Of Pointer
LOS
Loss Of Signal
LPC
Lower order Path Connection
MAC
Medium Access Control
MAN
Metropolitan Area Network
MCU
Micro Control Unit
MDI
Miscellaneous Discrete Input
MDO
Miscellaneous Discrete Output
Copyright 2013 Coriant. All rights reserved.
Union-Telecommunication
90/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
Abbreviation
Definition
MM
Multi Mode
MS
Multiplex Section
MS-AIS
Multiplex Sections - Alarm Indication Signal
MS-PSC
Multiplex Sections - Protection Switching Count
MS-PSD
Multiplex Sections - Protection Switching Duration
MS-SPRing
Multiplexer Section Shared Protection Ring
MSAP
Multiple Service Access Platform
MSOH
Multiplex Section Overhead
MSP
Multiplex Section Protection
MSTP
Multiple Service Transport Platform
MSSP
Multiple Service Switching Platform
MTBF
Mean Time Between Failures
MTIE
Maximum Time Interval Error
NE
Network Element
NEF
Network Element Function
NEL
Network Element Layer
NML
Network Manager Layer
NMS
Network Management System
NUT
Non-preemptible and Unprotected Traffic
OAM
Operation, Administration and Maintenance
OFS
Out of Frame Second
OOF
Out of Frame
OS
Operation System
OSF
Operation System Function
OSI
Open System Interconnect
PCB
Printed Circuit Board
Copyright 2013 Coriant. All rights reserved.
91/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
Abbreviation
Definition
PCM
Pulse Code Modulation
PDH
Plesiochronous Digital Hierarchy
PGND
Protection GND
PJE+
Pointer Justification Event +
PJE-
Pointer Justification Event -
POH
Path Overhead
PPP
Point to Point Protocol
PRC
Primary Reference Clock
QA
Q Adaptor
QoS
Quality of Service
RAM
Random Access Memory
RDI
Remote Defect Indication
REI
Remote Error Indication
REG
Regenerator
RFI
Remote Failure Indication
RIP
Router Information Protocol
RMII
Reduced Medium Independent Interface
RS
Regenerator Section
RSOH
Regenerator Section Overhead
SD
Signal Degrade
SDH
Synchronous Digital Hierarchy
SEC
Station Equipment Clock
SES
Severely Errored Second
SESR
Severely Errored Second Ratio
SETS
Synchronous Equipment Timing Source
SF
Signal Failure
Copyright 2013 Coriant. All rights reserved.
92/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
Abbreviation
Definition
SFF
Small Form Factor
SFP
Small Form Factor Pluggable
SM
Single Mode
SMCC
Sub-network management control center
SML
Service Management Layer
SMN
SDH Management Network
SMS
SDH Management Sub-Network
SMT
Surface Mount Technology
SNCP
Sub-network Connection Protection
SOH
Section Overhead
SPRING
Shared Protection Ring
SSM
Synchronous State Message
STM-N
Synchronous Transport Module Level-N
TCP
Transport Control Protocol
TDEV
Time Deviation
TDM
Time Division Multiplex
TIF
Telemetry Interface
TM
Terminal Multiplexer
TMN
Telecommunications Management Network
TU
Tributary Unit
UAS
Unavailable Second
VC
Virtual Container
VC-n
Virtual Container level n
VDN
Virtual Data Network
VLAN
Virtual Local Area Network
WAN
Wide Area Network
Copyright 2013 Coriant. All rights reserved.
93/101
Abbreviation WDM
Technical Description hiT 7025 July 15, 2013 / Issue 12
Definition Wavelength Division Multiplexing
Copyright 2013 Coriant. All rights reserved.
94/101
9.
Technical Description hiT 7025 July 15, 2013 / Issue 12
Appendix 2: Basis Technologies
In this section, the following key basis technologies for hiT 70series are described: Generic Framing Procedure (GFP) Virtual Concatenation (VCat, a standard way of packing lower bandwidth circuits into SDH/SONET frames) Link Capacity Adjustment Scheme (LCAS) Ethernet Functions RPR (Resilient Packet Ring)
9.1
Generic Framing Procedure (GFP)
GFP/G.7041 provides a framing procedure for octet-aligned, variable-length payloads for subsequent mapping into SDH VC-groups. GFP differs from other packet mappings (e.g., Packet over SONET) because it is Layer 2 independent and maintains the Layer-2 header information, in a manner such that the destination node may reproduce the entire stream of Layer-2 frames. This in turn, allows the transport network to transparently connect two Layer-2 devices. GFP standard includes two modes: transparent and frame-mapped. Transparent Mode (GFP-T) allows block-coded LAN and SAN signals, such as Gigabit Ethernet, Fiber Channel, Ficon, and Escon, to be transported and switched across an optical network, while preserving the full client-signal information Frame-Mapped Mode (GFP-F), on the other hand, is used to adapt Protocol Data Unit (PDU)-oriented signals – client signals that are already framed or packetized by the client protocol – and may operate at the data-link layer (or higher) of the client signal. GFP-F maps one frame or packet of the client signal, such as IP/PPP or Ethernet MAC, into one GFP frame. GFP frames, each associated with different clients, can be multiplexed onto a single TDM channel before SDH transport. This packet aggregation capability provides greater bandwidth efficiency. hiT 7025 supports the GFP-F mode. The FCS of the GFP frame may optionally be used, additionally to the FCS of the Ethernet frame.
Copyright 2013 Coriant. All rights reserved.
95/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
Ethernet Packet
Preamble
SFD
Core Header
GFPFrame
PLI 2-bytes
control0x11
DA 6-bytes SA 6-bytes T/L 2-bytes
Payload
CRC 4-bytes
Payload Header
HEC 2 b yte
t ype 2-b ytes
HEC 2byte
GFP Ex
Payload
FCS 4-bytes
Variable 4-65535 Byte
GFP Frame
SDHFrame
VC Overhead
VC Payload
Figure 66 - GFP mapping
Benefits of GFP The key benefits of GFP are the uniform mechanism to support all L2 protocols and high encapsulation efficiency. This provides convergence of next-generation services with existing infrastructure investment to provide network consolidation and cost savings. GFP provides:
Uniform
and deterministic mapping of packet and future services to SDH/SONET transport protocols which is more robust frame delineation than flag-based mechanisms such as HDLC.
Efficient
network resource utilization via GFP’s low overhead characteristics, and compatibility with virtual-concatenation processing
Flexibility
of Extension Headers: This allows topology application specific fields t o be defined without affecting frame delineation functions
Payload
independent frame expansion, and therefore no byte stuffing.
Greater
bandwidth efficiency through GFP-F frame-mode’s support for packet-level multiplexing, which allows aggregation of multiple client streams into a single TDM channel
The
ability to identify the encapsulated client protocol separately from the Extension Header. This could be used to allow frame forwarding based on Extension Header fields without requiring recognition of the encapsulated client protocol.
GFP
provides the interworking condition among different vendors, which is not so easy to obtain with other alternatives of the Ethernet over SDH, like PPP. The following table provides with a comparison between the two methods.
Copyright 2013 Coriant. All rights reserved.
96/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
GFP
Multilink PPP, PPP
Support of topologies
Point to point, ring and linear
Point to point
Frame delineation
No need for specific frame flags, using the relationship between the PLI and cHEC to delineate frames. More stable.
Specific frame flags (opening/closing flags) are needed.
Bit/Byte stuffing
No
Mandatory
Yes, GFP frame contains data priority bits which supports for congestion control
Not supported
Extendibility
Excellent
Not supported
Mapping method
Framed, Transparent Mapped
Framed
Jumbo frame support
No limitation on the frame length
Not supported
Class of Service
Figure 67 - Comparison between GFP and PPP
9.2
Virtual Concatenation (VCat)
In order to transport payloads exceeding the payload capacity of the standard set of Virtual Container Group (VC-Group), Virtual Concatenation was defined. There are two types of concatenations defined in ITU standards: contiguous and virtual concatenation. Contiguous concatenation has been part of SDH from its early days. It was conceived to accommodate high-speed data applications that use protocols such as ATM. The ITU G.707 defined contiguously concatenated containers only to support certain rates including: STM-4c, STM-16c and STM-64c. The basic idea of virtual concatenation (VCat) acc. to ITU-T 707 is to create a f iner granularity of payloads than contiguous concatenation can offer. In addition, some legacy SDH equipment may not support contiguous concatenation transport switching, and virtually concatenated traffic is transported as individual VC-groups across the SDH network and recombined at the destination node. Carriers can map any arbitrary bandwidth to a corresponding and appropriate number of VC-12 or VC-3 or VC-4 channels. The benefits of VCat are: Efficiency: little bandwidth is wasted and carriers now have a more efficient scenario for carrying data over the SDH network. Compatibility: Virtual concatenation works across legacy networks. Only the end nodes of the network need to be aware of the virtually concatenated containers. Copyright 2013 Coriant. All rights reserved.
97/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
Intermediate SDH nodes forward the single Containers transparently throughout the network. Hence, with virtual concatenation, such channels can be routed over legacy networks that do not support contiguous channels. Reliability: Virtual Concatenation, along with LCAS, allows new and efficient shared protection mechanism.
9.3
Link Capacity Adjustment Scheme (LCAS)
LCAS (ITU-T Recommendation G.7042/Y.1305, approved by the ITU-T in November 2001) is a protocol to synchronize the re-sizing of a virtual concatenation group in use, so it can be changed without corrupting packets in the process. LCAS provides automatic recovery of a link after member failures. LCAS builds on Virtual Concatenation. While the virtual concatenation is a simple labeling of individual VC members within a virtual concatenation group, LCAS is a two-way signaling protocol that runs continuously between the two ends of the pipe and ensures that commands from the network management system to alter the pipe capacity do not impair the user’s traffic. LCAS adds several highly significant features to SDH’s capabilities: The
combination of VCat and LCAS creates fine-tuned and variable capacity SDH pipes to match the needs of packet data QOS (quality of service) and customer SLAs (service-level agreements) – and to boost carriers’ traffic-handling scalability and efficiency. LCAS allows adjustment of the size of a virtually concatenated group of channels.
The
combination of VCat and LCAS can also provide soft protection schemes. Using VCat, traffic is distributively mapped into several SDH containers (e.g. VC-12s) and sent by different paths. When certain VC-12s in the same VC group fail, LCAS can delete the failed VCs from the group. The traffic can then be dynamically adapted to the rest of the VC12s bandwidth for transmission. Otherwise – without LCAS - a failure in one path of a channel built up of diversely routed paths would lead to loss of all the traffic.
9.4
Ethernet Functions and Services
Layer 2 Ethernet functions implemented in state-of-the-art transport system may include the following: Layer
2 aggregation
Layer
2 switching
802.1p Rapid
QoS/CoS based on Ethernet port and/or VLAN
Spanning Tree Protocol (RSTP) to provide Layer 2 traffic protection
Copyright 2013 Coriant. All rights reserved.
98/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
Rate
limiting function per port and policing per Port or per VLAN basis, the maximum allowable rate per port or per VLAN is user provisionable
VLAN function Ethernet
Shared Ring (ESR): Layer 2 switch and Aggregator cards: all the traffic goes through the shared ring.
Ethernet
/ (virtual) Private Line / Ethernet Private-Line (EpL)
Ethernet
(virtual) LAN (EvLAN) / Ethernet-LAN (ELAN)
9.5
Port Cross Connection and Port+VLAN Cross Connetion
Port Cross Connection means the frame from ingress port (both WAN or LAN) will be forward to egress port (both WAN or LAN) according to the ingress port. At the ingress port a forward table is configured by operator to define the egress port base on the ingress port.
Figure 68 – Port Cross Connection
Copyright 2013 Coriant. All rights reserved.
99/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
Under port aggregation mode, four types of VLAN operation on t he input packet can be taken: (1) One port direct forwards packet to the other port without any VLAN manipulation
(2) One port direct forwards packet to the other port with adding Tag PVID, i. In coming untagged frame will be added a PVID (TPID default 0x8100) ii. In coming tagged frame with TPID 0x8100 will be forwarded without VLAN manipulation
(3) One port direct forwards packet to the other port with st ack a VLAN Tag, i. Untagged frame and tagged frame will always be added an VLAN id and
(4) One port direct forwards packet to the other port with Stripping VLAN tag at the egress
Port+VLAN Cross Connection (VLAN aggregation) means the frame from ingress port from ingress port (both WAN or LAN) will be forward to egress port (both WAN or LAN) according to its VLAN tag. At the ingress port a forward table is configured by operator to define the egress port based on VLAN. Untagged frame will be discarded.
Figure 69 – VLAN aggregation
Under port aggregation mode, four types of VLAN operation on t he input packet can be taken: (1). Forwarding the packet without any VLAN manipulation (new request) (2) Forwarding the packet with stacking a VLAN tag (double tag tunneling) (3) Forwarding the packet with translating a VLAN ID (VLAN id replace) (4) Forwarding the packet with stripping the VLAN tag at the egress (new request)
Copyright 2013 Coriant. All rights reserved.
100/101
Technical Description hiT 7025 July 15, 2013 / Issue 12
Different ingress VLAN id can be forward to the same egress port, but frame with same VLAN ID cannot be mapped to the different egress port.
Copyright 2013 Coriant. All rights reserved.