KUDGI SUPER SUPER THERMAL POWER PROJECT STAGE-I (3X800 MW) NTPC Limited
OWNER
(A Government of India Enterprise)
CONTRACTOR
TOSHIBA JSW TURBINE & GENERATOR PRIVATE LIMITED
CONTRACT CONTR ACT NO.
CS-9573-110-2-FC -COA-5661, CS-9573-110-2-SC-C CS-9573-110-2-SC-COA-5662, OA-5662, CS-9573-110-2-TC-C CS-9573-110-2-TC-COA-5663 OA-5663
TOSHIBA CORPORATION, JAPAN
SUB-CONTRACTOR OWNER’S DOC. NO.
SUB-CONTRACTOR’s DOC. NO.
9573-110-PVM-U-018 REV.
DDKV71215
d
DRG. / DOC. TITLE
SIZING CALCULATION OF CONDENSER
PURPOSE
FOR APPROVAL / FOR INFORMATION ’
[Revision [Revision Stat us for for Own er s Document No.]
N O I S I V E R
02
13/Sep/2012
Revised as per design progress
R. Y
Y. F
Y. F
01
25/July/2012
Revised as per design progress
R. Y
S. M
Y. F
REV. NO.
DATE
DESCRIPTION
REVISED BY
CHECKED BY
APPROVED BY
ISSUED BY -
TOSHIBA JSW TURBINE & GENERATOR PVT. LTD. LTD.
APPROVED BY
CHECKED BY
PREPARED BY
NAME
SIGNATURE
Y. Fuki
Y. F
Y. Fuki
Y. F
S. Mori
S. M
REV. NO.
00
DATE
7/June/2012
TOSHIBA JSW TURBINE & GENERATOR PVT. LTD.
s INTELLECTUAL PROPERTY INCLUDING KNOW-HOW. IT SHALL NOT BE DISCLOSED TO ANY THIRD PARTY, COPIED, REPRODUCED, USED FOR UNAUTHORIZED PURPOSES NOR MODIFIED WITHOUT PRIOR WRITTEN CONSENT OF TOSHIBA. © THE INFORMATION IN THIS MATERIAL IS CONFIDENTIAL AND CONTAINS TOSHIBA’
DD KV71215-d 1
名称
20
TITLE
Sizing Calculation of Condenser 客先名
CUSTOMER
: NTPC Limited
系統機器
EQ/SYS.
: Condenser
製番
JOB
: --
プラント
PROJECT
: KUDGI SUPER THERMAL POWER PROJECT
STAGE-I (3X800 MW)
The information in this material is confidential and contains Toshiba s intellectual property including know-how. ’
It shall not be disclosed to any third party, copied, reproduced, used for unauthorized purposes nor modified without prior written consent of Toshiba. Toshiba Corporation
承
発行部課名 ISSUED BY
社内配付先 DISTRIBUTION
認 APPROVED BY
Y.Fuki
Sep.13,2012
タービン機器部 熱交換器設計担当
NETSU-SETSU
TURBINE PLANT EQUIPMENT DEPT. HEAT EXCHANGER DESIGN GROUP
調
査
REVIEWED BY
Y.Fuki
Sep.13,2012 担 当
PREPARED BY
R.Yasuki
Sep.13.2012
DD KV71215-d 2
20
Contents
1. Design Specification
3
2. Calculation of Circulating Water flow rate
4
3. Thermal Calculation
5
3.1 L.P. Condenser
5
3.2 H.P. Condenser
8
4. Hydraulic Calculation
11
4.1 L.P. Condenser
11
4.2 H.P. Condenser
12
4.3 Total loss of Condenser
12
5. Hotwell Storage Capacity
13
6. Steam and Condensate flow
14
Appendix
・ UNCORRECTED HEAT TRANSFER COEFFICIENTS
Figure 1 *
・ INLET WATER TEMPERATURE CORRECTION FACTOR
Figure 2 *
・ TUBE MATERIAL AND GAUGE CORRECTON FACTORS
Table 3 *
・ TEMPERATURE CORRECTION FOR FRICTION LOSS IN TUBES
Figure 7 *
・ WATER BOX AND TUBE END LOSSES SINGLE PASS CONDENSER
Figure 8 *
*HEI STANDARD for STEAM SURFACE CONDENSERS 10 th EDITION
DD KV71215-d 3
1.D esign S pecification N um ber T ype
O ne(1)/unit
(L.P .)
O ne(1)/unit
(H .P .)
H orizonalsurface cooling
Tube surface area
2
(m )
29,011
(L.P .)
29,011
(H .P .) d
Tube S pecification
d
M aterial
A S T M A 249 TP 316L (S tainless)
O utside diam eter
(m m )
D =25.4
T hickness
(m m )
t=0.711 (R efer to below table.)
(m m )
t=0.889 (R efer to below table.)
Effective length
(m m )
14,375
O verall length
(m m )
14,431
N um ber of tubes (per shell) Location
T hickness (m m )
N um ber
C ondensing Zone
t=0.711
22,764
t=0.889
2,528
-
25,292
T otal N um ber of w ater passes
O ne(1)
C ooling w ater source
Fresh W ater
C leanliness factor
Fc=0.90 (90%) 3
M ain C ooling W ater (m /m in.) A pplied C odes & S tandards H eat Exchange Institute 10th (H EI 10th)
3
1,310 (78,600 m /hr)
20
DD KV71215-d 4
20
2.C alculation of C irculating W ater flow rate. a.H eat duty (L.P .C ondenser) H eat B alance :3G M G 04302 (V W O , 3% m .u.,67m m H g)
Flow R ate kg/h 659,579 67,223 1,614
M ain T urbine E xhaust B FP T urbine Exhaust T urbine G land S eal S team
S pecific E nthalpy kcal/kg × ( 564.1 × ( 590.2 × ( 750.4
Enthalpy of C ondensate kcal/kg − 40.9 ) = − 40.9 ) = − 40.9 ) =
HEAT (Enthalpy) kcal/h 3.4509173E+08 3.69256E+07 1.14513E +06
Total=
3.83162E +08
nt a py o C ondensate kcal/kg − 46.1 ) = − 46.1 ) = − 46.1 ) = − 4 6.1 ) = − 46.1 ) = − 46.1 ) =
HEAT (Enthalpy) kcal/h 3.6446663E+08 3.77820E+07 7.096 70E +04 1.198 46E +06 0.000 00E +00 -3.78776E+06
Total=
3.99730E +08
d
H eat D uty :D 1 =
3.83162E +08
kcal/h
b.H eat duty (H .P .C ondenser) H eat B alance :3G M G 04302 (V W O , 3% m .u.,67m m H g)
Flow R ate kg/h 695,547 68,895 1,3 39 1 73,6 89 73,6 56 728,416
M ain T urbine E xhaust B FP T urbine Exhaust D rain from G land S team C ondenser D rain From LP N o.1H eater M ake-up W ater L.P C ondenser D rain
S pecific E nthalpy kcal/kg × ( 570.1 × ( 594.5 × ( 99.1 × ( 53.0 × ( 46.1 × ( 40.9
d
H eat D uty :D 2 =
ca
3.99730E +08
c.C irculating W ater 3
Cp・γ= 9.920E +02
kcal/m ℃
U pper Lim it of Tem perature R ise : Δt ’ Q=
D 1 + D2 C p ・γ ・Δt’ =
1310
C irculating W ater Flow R ate Q= 1310 (78600 m 3/h)
=
d
10.04 ℃
7.82893E+08 9.920E+02 x 10.04 m
3
m in
m 3/m in
60
d
d
d
DD KV71215-d 5
3.Therm al C alculation 3.1L.P . C ondenser a.W ater velocity in T ubes T hickness 0.711 m m T hickness 0.889 m m
(1)W ater velocity in T ubes :V 1 m /s V1 =
= =
N u m ber of T ube N u m ber of T ube
22,764 2,528
Inner D iam eter of T ubes di1 = 0.0240 m Inner D iam eter of T ubes di2 = 0.0236 m
( T hickness 0.711 m m )
Q π 4
2
2
( 1/1.4)
・60 ・( d i1 ・N 1 + d i2 ・N 2・ (di2/di1)
= 2 π×60 × 0. 0240 4 = 1.919
)
1310 × 22764 +
2
0.023622
×
2528 ×
m /s
V 1 = 1.92 m /s (2)W ater velocity in T ubes :V 2 m /s V2 = V1 X
1.92×
di2 di1
(1/1.4)
0.0236 0.0240
(1/1.4)
=1.900m /s V 2 = 1.90 m s
( T hickness 0.889 m m )
0.0236 0.0240
1/1.4)
)
20
DD KV71215-d 6
20
b.H eat Transfer C oefficient H eat T ransfer C oefficient : U
kcal/m 2 h ℃
U = U 1×F W ×F M ×F C U1 F W FM FC
:U ncorrected H eat Transfer C oefficients( Figure.1) :Inlet W ater T em perature C orrection F actor(Figure.2) :T ube M aterial and G auge C orrection Factor(T able.3) :C leanliness Factor
(1)H eat T ransfer C oefficient : U a U 1 = 3220.7 kcal/m 2 h ℃
( Thickness 0.711m m )
from Fig.1 V= 1.92 m /s (6.299 ft/s ) U 1= 659.71 B tu/h・ft2・F
, Diam eter of Tubes
25.4 m m ( 1.0 in )
F W = 1.079 F ) C orrection Factor ℃ ( 91.4°
from Fig.2 Inlet W ater T em perature 33.0 F M = 0.854
d
from T able.3 T ube M ateria (S tainless S teel), T hickness ( 0.711m m ) C orrection Factor F C = 0.9 C leanliness Factor :90% d
U a = 3220.7 ×
1.079
× 0.854
2 H eat T ransfer C oefficient : U b
X 0.90 =
2670.9 kcal/m 2 h ℃
( Thickness 0.889m m )
U 1 = 3203.5 kcal/m 2 h ℃ from Fig.1 V = 1.900 m /s ( 6.233 ft/s ) U 1= 656.19 B tu/h・ft2・F F M = 0.815
, D iam eter of Tubes
25.4 m m ( 1.0 in )
d
from T able.3 T ube M ateria (S tainless S teel), T hickness ( 0.889m m ) C orrection Factor C
= 0.9 C leanliness Factor :90% d
U b = 3203.5 ×
1.079
× 0.815 × 0.90 =
2535.3
(3)A verage H eat Transfer C oefficient :U m U a XN 1+ U b XN 2 Um = N1 + N2 =
2670.9 × 22764 22764
+ +
2535.3 × 2528
2528
= 2657.35 U m =2657.3
kcal/m 2 h ℃
d
kcal m 2 h ℃
DD KV71215-d 7
c.Logarithm ic M ean Tem perature D ifference :θm C irculating W ater T em perature rise :Δt Δt =
D1 3.83162E +08 = C p ・γ ・Q ・60 9.920E+02 X 1310
=
4.91 ℃
× 60
d
S aturated S team T em perature
ts =
40.84 ℃ ( at 702.1m m H g_vac)
t2 = t1 =
θm =
(s ln
(ts (ts
2)
t1) t2)
d
Δ t = 4.91 ℃
33.0 ℃
1) ( s
37.91 ℃
7.84 −
2.93
=
= ln
d
4.98 ℃
7.84 2.93
d.R equired T ube S urface A rea :A req m 2 A req =
D1 U m ・θm
=
28953.9m
3.83162E+08 2657.3 × 4.98
= 2
d
e.A ctual T ube S urface A rea :A A= π ×
0.02540 ×
14.375 ×
25292 =
29011.8 m
2
→ 29011 m
2
> Areq
20
DD KV71215-d 8
3.2H .P C ondenser a.W ater velocity in T ubes T hickness 0.711 m m T hickness 0.889 m m
(1)W ater velocity in T ubes :V 1 m /s V1 =
= =
N u m ber of T ube N u m b er of T ube
22,764 2,528
Inner D iam eter of T ubes di1 = 0.0240 m Inner D iam eter of T ubes di2 = 0.0236 m
( T hickness 0.711 m m )
Q π 4
・60 ・( d i1 2・N 1 + d i2 2・N 2・ (di2/di1)(1/1.4) )
= 2 π ×60 × 0.0240 4 = 1.919
1310 × 22764 +
2
0.023622
×
2528 ×
m /s
V 1 = 1.92 m /s (2)W ater velocity in T ubes :V 2 m /s V2 = V1 X
1.92×
di2 di1
(1/1.4)
0.0236 0.0240
(1/1.4)
=1.900m /s V 2 = 1.90 m s
( T hickness 0.889 m m )
0.0236 0.0240
(1/1.4)
)
20
DD KV71215-d 9
20
b.H eat Transfer C oefficient H eat T ransfer C oefficient : U
kcal/m 2 h ℃
U = U 1×F W ×F M ×F C U1 F W FM FC
:U ncorrected H eat Transfer C oefficients(Figure.1) :Inlet W ater T em perature C orrection Factor(Figure.2) :T ube M aterial and G auge C orrection Factor T able.3) :C leanliness Factor
(1)H eat T ransfer C oefficient : U a U 1 = 3220.7 kcal/m 2 h ℃
( Thickness 0.711m m )
from F ig.1 V = 1.92 m /s ( 6.299 ft/s ) U 1= 659.71 B tu/h・ft2・F
, D iam eter of T ubes
25.4 m m ( 1.0 in )
F W = 1.101 F ℃ ( 100.2°
from Fig.2 Inlet W ater Tem perature 37.91 F M = 0.854
) C orrection Factor
d
from T able.3 T ube M ateria (S tainless S teel), T hickness ( 0.711m m ) C orrection Factor F C = 0.9 C leanliness Factor :90% d
U a = 3220.7 ×
1.101
× 0.854
(2)H eat T ransfer C oefficient : U b U 1 = 3203.5 kcal/m 2 h ℃
0.90 =
2725.4 kcal m 2 h ℃
( Thickness 0.889m m )
from Fig.1 V= 1.900 m /s (6.233 ft/s ) U 1= 656.19 B tu/h・ft2・F F M = 0.815
, Diam eter of Tubes
25.4 m m ( 1.0 in )
d
from T able.3 T ube M ateria (S tainless S teel), T hickness ( 0.889m m ) C orrection Factor F C = 0.9 C leanliness Factor :90% d
U b = 3203.5 ×
1.101
× 0.815 × 0.90 =
2587.0 kcal/m 2 h ℃
(3)A verage H eat Transfer C oefficient :U m U a XN 1+ U b XN 2 Um = N1 + N2 =
2725.4 × 22764 22764
+ +
2587 × 2528
2528
= 2711.57 d
U m =2711.6
kcal/m 2 h ℃
DD KV71215-d 10
c.Logarithm ic M ean Tem perature D ifference :θm C irculating W ater T em perature rise :Δt Δt =
D2 3.99730E +08 = C p ・γ ・Q ・60 9.920E+02 X 1310 × 60
=
5.13
℃
d
S aturated S team T em perature
ts =
46.09 ℃ ( at 683.9m m H g_vac)
t2 = Δt = 5.13 ℃
d
t1 = 37.91
θm =
(s ln
1) ( s (ts (ts
2)
t1) t2)
43.04 ℃
℃ 8.18 −
3.05
=
= ln
5.2 ℃
8.18 3.05
d.R equired T ube S urface A rea :A req m 2 A req =
D2 U m ・θm
=
28349.5m
= 2
3.99730E+08 2711.6 × 5.20
d
e.A ctual T ube S urface A rea :A A= π ×
0.02540 ×
14.375 ×
25292 =
29011.8 m
2
→ 29011 m
2
> A req
20
DD KV71215-d 11
20
4.H ydraulic C alculation (A s per clause 4.5 of H EI 10th) 4.1 L.P .C ondenser (a)B asic inform ation C W N ozzle S ize
ID 2,400
C W Flow per nozzle
(m 3/m in)
655
C W V elocity per nozzle
(m /sec)
2.42
(ft/sec)
7.94 (V w )
(m /sec)
1.92
(ft/sec)
6.30 (V w )
C W V elocity per tube C W Inlet / O utlet tem perature
(D eg.C ) (D eg.F)
33.0 / 37.91
d
91.4 / 100.24 (T 1/T2)
T ube inside diam eter
(m m )
23.98
T ube inside diam eter
(in)
T ube length
(m )
14.431
(ft)
47.346 (Lt)
0.94 (D i)
(a)W aterbox and T ube E nd Losses End loss
(ft)
0.70 C urve (a) of Figure 8
W aterbox Inlet
(ft)
0.98 C urve (b) of Figure 8
W aterbox O utlet
(ft)
0.30 C urve (c) of Figure 8
(ft)
1.98 (ΣR e)
S um of above (b)T ube Loss T ube loss (uncorrected)
(ft of w ater/ft length)
0.173 (R 2 x R t)
T em perature correction factor
-
0.954 (R 1:Figure 7)
T ube loss per length
(ft of w ater/ft length)
0.165 (R t x R 2 x R 1)
T ube loss
(ft)
7.81
(c)T otal Loss (a) + (b)
(ft)
9.785 (R tt)
(m A q)
2.983
H ydraulic loss adapted (5% M argin) (m A q)
3.140
DD KV71215-d 12
20
4.2 H .P .C ondenser (a)B asic inform ation C W N ozzle S ize
ID 2,400
C W Flow per nozzle
(m 3/m in)
655
C W V elocity per nozzle
(m /sec)
2.42
(ft/sec)
7.94 (V w )
(m /sec)
1.92
(ft/sec)
6.30 (V w )
C W V elocity per tube C W Inlet / O utlet tem perature
(D eg.C ) (D eg.F)
37.91 / 43.04
d
100.24 / 109.47 (T 1/T2)
T ube inside diam eter
(m m )
23.98
T ube inside diam eter
(in)
T ube length
(m )
14.431
(ft)
47.346 (Lt)
0.94 (D i)
(a)W aterbox and T ube E nd Losses End loss
(ft)
0.70 C urve (a) of Figure 8
W aterbox Inlet
(ft)
0.98 C urve (b) of Figure 8
W aterbox O utlet
(ft)
0.30 C urve (c) of Figure 8
(ft)
1.98 (ΣR e)
S um of above (b)T ube Loss T ube loss (uncorrected)
(ft of w ater/ft length)
0.173 (R 2 x R t)
T em perature correction factor
-
0.936 (R 1:Figure 7)
T ube loss per length
(ft of w ater/ft length)
0.162 (R t x R 2 x R 1)
T ube loss
(ft)
7.66
(c)T otal Loss (a) + (b)
(ft)
9.638 (R tt)
(m A q)
2.938
H ydraulic loss adapted (5% M argin) (m A q)
3.080
4.3 T otal loss of C ondenser LP C ondenser + H P C ondenser
(m A q)
6.220
DD KV71215-d 13
5.H otw ell storage C apacity a.C ondensate W ate C ondensate Flow :Q c c= =
1741639 29.03
kg/h 3 m /m in
b.R equired storage capacity 3 m inutes storage capacity Q req=
Q c×3
=
87.08 m
3
c.R equired H otw ell H eight :H req S ize of C ond Low er S hell a=
13895
b=
7960
b a S ize of C ond L ow er S hell
H req' =
Q req a×b
9 ×10 =
87.08 13895×7960
×109
=
787.3 m m
H eight of LLW L - B ottom :HLLWL-B H LLWL-B =
200 m m
H re =
H re ' + H LLW L-B
=
987.3 m m
d.A ctual H otw ell H eight : H (H eight of N W L - B ottom ) He ght o N W L - LLW L :H NW L-LLW L NW L-LLW L
=
800 m m
H = H NW L-LLWL + H LLW L-B
=
1000 m m
> H req
20
DD KV71215-d 14
20
6. Steam and condensate flow The condensate (generated in LP Condenser) passing through the perforated plates is reheated by the steam from HP Condenser. The condensate is led to HP Condenser through connection pipe between HP and LP Condenser. The Hotwell of LP Condenser has two different pressure zones. The pressure zone (Reheating Section) has the same pressure as HP Condenser.
Condenser is designed for exhaust steam from steam turbine, BFP drive turbine, LP bypass system, heater drains and vents, boiler separator drains during start up, low load and abnormal conditions and other miscellaneous drains.
DD KV71215-d 15
Appendix
20
DD KV71215-d 16
20
DD KV71215-d 17
20
DD KV71215-d 18
20
DD KV71215-d 19
20
DD KV71215-d 20
変更箇所及び内容
変更 REV.
PAGE
CHANGED PLACE AND CONTENT
a
-
Initial Issue
b
c
d
11,12
-
-
Corrected value.
Revised as marked
Revised as marked
according to progress of design.
according to progress of design.
承認
調査
APPROVED REVIEWED
20
担当 PREPARED
Y.Fuki
Y.Fuki
S.Mori
Jun.05.2012
Jun.05.2012
Jun.05.2012
Y.Fuki
Y.Fuki
S.Mori
Jun.07.2012
Jun.07.2012
Jun.07.2012
Y.Fuki
S.Mori
R.Yasuki
Jul.25.2012
Jul.25.2012
Jul.25.2012
Written in
Written in
Written in
page 1.
page 1.
page 1.