DESI DESIGN GN OF 2 VEN VENT TS BOX BOX CUL CULVE VERT RT
3 X 6 X 5.50 5.50
GENERAL GENER AL DATA DATA 0.70
5.5
0.800 0.85 6.00
6.85 0.15
0.15
0.15
0.15
TO TOP HAUNCH DETAILS
BOTTOM HAUNCH DETAILS
DIMENSION DETAILS IN CROSS SECTION Clear width Clear height No of Cells Top slab thickness Bottom slab thickness ide wall thickness !eight of fill in left !eight of fill in "ight # idth of Carriage wa$ # earing Coat Thick Total width Total height C(C width C(C height BASIC PARAMETERS
= = = = = = = = = = = = = =
6.00 5.50 3 0.7 0.8 0.85 0.00 0.00 7.5 0.075 %&.' 7.00 6.85 6.%5
Φ
Coefficient of *cti+e press,re
=
)r$ densit$ of fill
=
Concrete )ensit$ ,rcharge li+e load B C
= = =
m m No m m m m m m m m m m m 30 )egrees 0.--1.8 t(m2.4 t(m&.%0 m 20.000 T(m%
G!"#$ D%#&"#' (%)* L+#,%!& #heel oad /rom "C ..,rcharge 0.7% T(3% 0.00
1arth 2r 2ress,re 0
0.00
0.7
0.0 T(3%
5.50
0.8 0.85
0.85
0.7% T(3%
-.75 T(3%
6.00 7.'4 T(3% Base 1arth 2ress,re
IDEALISED STRUCTURE OF BOX CULVERT FOR STAAD STAAD ANAL ANAL-SIS -SIS The str,ct,re is idealised in T**). T**). 2ro as shown below. below. The dimensions ha+e all been considered as centre to centre. The str,ct,re anal$sis has been done for one metre strip. 6.850
A
B
D
6.850
E
F
G
6.%5
2. B1T T# 1N) 2"N *T T!1 1N) / T!1 C*NT11" pacing b(w % end springs pacing b(w % int springs pacing b(w % end nodes of ide #all pacing b(w % int. nodes of ide wall 3od,l,s of ,bgrade reaction
= = = = = =
03 0.0 m &.%6- m 0.85 m 0.758 m %000 t(m-
"efpg'089/o,ndation *nal$sis *nal$sis and )esign b$ :oseph 1.Bowles ;/s='0
and s.f = %.5
pring constants at end s,pports pring constant at 2en,ltimate s,pports for the end spans pring constant at nt.,pports pring constant for 3iddle s,pport
=%000?;0.4(%> =%000?;&.%[email protected]>(% =%000?;&.%6-@&.%6->(% =%000?;[email protected]>(%
= = = =
400.00 t(m %&6%.50 t( t (m %5%5.00 t(m &800.00 t(m
pring constant at 2en,ltimate s,pports of nt pan
=%000?;&.%[email protected]>(%
=
%&6%.50 t(m
L+#, C#$/$#)%+! 1
COMPUTATION OF EARTH PRESSURE SIDE A
SIDE B 1*"T! CA!N
0.---<&.8<0 = 0.000 T(3% 0.---<&.8<0.85 = 0.5& T(3%
=0 0.0003 0.8503
0.---<&.8<&.608 = 0.46 T(3% &.6083 0.---<&.8<%.-67 = &.'% T(3% %.-673 0.---<&.8<-.&%5 = &.87 T(3% -.&%53 0.---<&.8<-.88- = %.-- T(3% -.88-3 0.---<&.8<'.6'% = %.78 T(3% '.6'%3 0.---<&.8<5.'00 = -.%' T(3% 0.---<&.8<6.%50 = -.75 T(3% 2
5.'00 6.%503
SURCHARGE LIVE LOAD SURCHARGE LIVE LOAD IS CONSIDERED TO BE EQUIVALENT TO 1.2 M OF EARTH FILL = 0.--- < &.8 < &.%
3
0.7&4 T(3 %
=
DEAD LOADS 1/ #1!T / T2 *B = 0.7&%.' = 1/ #T. / BTT3 *B = 0.8&%.' = 1/ #1!T / )1 #* = 0.85&%.' = *) )A1 T #(C = 0.075&%.% = *) )A1 T / = 0&&.8 = #1!T / /N!1 = #1!T / !*ANC! =&% 0.&50.50.&5%.' = #1!T / C"*! B*""1" ; 0.67t(m> = 0.67& = TOTAL TT* B*1 *"1* TT* *1"*1 BTT3 2"1A"1 = ;&'-.&7-@%.5&-6.85&>(%&.'
&.68 T(m &.4% T(m %.0' T(m 0.&7 T(m 0.00 T(m 0.00 T(m 0.-% T 0.67 T(m 6.80 T' = =
-5 -4 5& ' 0 0 0.-% &' 143 %&.'0 3% 7.'4 T(3%
T T T T T T T T T
D BC o9 afe 4 #.
LIVE LOADS #ater i+e load inside the Bo cell
=
5.5 kN(m%
t is +er$ negligible +al,es it will not go+ern the
.
(*$ L+#, CASE 1
CLASS 70R TRAC LOAD
MAXIMUM BENDING MOMENT AT MID SPAN ;b( l0 > =
C*CA*TN /" 1//1CT1 #)T! / *)N DIRECTION OF TRAFFIC TT* *)
&.045
70T 0.8'
'.57 -5T
-5T
6.85
%.05 E bw
= =
6.85 ( % 0.8'@%E;[email protected]>
= =
-.'%5 0.44
3 3
= =
%.%' '.8%6
*s per "CF%&F%000
= = = = =
6.583 5.420 5.'%0 5.'%0 '.445
3 3 3 3 3
=70(;6.58-<5.'%> =70(;6.58-<5.'%> =70(;6.58-<5>
= = =
&.46% &.46% %.&%4
T(3% T(3% T(3%
&8.06 I &8.06 I %.-&6 %.-&6 %.5&-
*s per "CF6F%0009 cl%&&.-
=&.46%&.&8=&.46%&.&8=%.&%4&.&8-
= = = = =
*s per "CF6F%000
k B eff
0.990+2.24X3.4251!3.425"#.$5%%
'.8%6(%G%.05(% T!1"1/"1 1"*2N )A1 T *) )21"N CCA" 1//1CT1 #)T! =0.5@&.%@0.8'(%@%.05@'.8%6(% Total )ispersion width along pan dir ='.57@%?;[email protected](%@0.00> ='.57@%?;[email protected]@0.7(%> #)T! *N 2*N 1!C1 2*C1) *T 3))1 / TT* BE #)T! *N 2*N 1!C1 2*C1) *T 3))1 / 1N) 2*N
='.57@%?;[email protected]@0.7(%>
#)T! *N 2*N 1!C1 2*C1) *T T*"T / 1N) 2*N
='[email protected]@[email protected](%
*) NT1NTH *T 3))1 / TT* BE 1NT! *) NT1NTH *T 3))1 / 1N) 2*N *) NT1NTH#!1N 1!C1 2*C1) *T T*"T / 1N) 2*N mpact factor = &0 @ ;;%5F&0>(;4F5>> ;4F6.85> *ct,al mpact factor =;-F0> &8.06-(NC"1*N )A1 T 32*CT /" 1!1 N 3))1 / BE NC"1*N )A1 T 32*CT /" 1!1 N 3))1 / 1N) 2*N NC"1*N )A1 T 32*CT #!1N 1!C1 2*C1) *T T*"T / 1N) 2*N
3
T(3% T(3% T(3%
CASE 2 CLASS A LOAD 2 (EELS OF 11.4T M# L+#,9 /+!9%,", MAXIMUM BENDING MOMENT AT MID SPAN TT* *) %%.8T 0.5 0.%5 5.7
5.7
5.7
5.7
1.45
&.%
6.85
%.-
X :
= =
#.$5 " 2!1.2"2 0.5+2 X0.0&5+0.000%
= =
%.8%5 0.65
3 3
= =
%.%' '.-68
*s per "CF%&F%000 3
'.-68(%G%.-(% T!1"1/"1 1"*2N )A1 T *) )21"N CCA" EFFECTIVE (IDTH =0.5+1.2+0.5"2+2.3+4.3#$"2 T+)#$ D%9<"9%+! :%,)* +; $+#, %! $+!& ,%"/)%+! =1.45+2,0.0&5+0.00+0.&"2% #)T! *N 2*N 1!C1 2*C1) *T 3))1 / TT* BE =1.45+2,0.0&5+0.00+0.&"2% #)T! *N 2*N 1!C1 2*C1) *T 3))1 / 1N) 2*N KN*31L #)T! *N 2*N 1!C1 2*C1) *T T*"T / 1N) 2*N
= = = = =
6.'-' %.%.%.&.875
3 3 3 3 3
LOAD INTENSIT- AT MIDDLE OF TOTAL BOX LENGTH LOAD INTENSIT- AT MIDDLE OF END SPAN LOAD INTENSIT-(HEN VEHICLE PLACED AT START OF END SPAN
= = =
&.5'07%74 T(3% &.5'07%74 T(3% &.8844546 T(3%
A' ()* IRC!#!2000 B ;;
0.650@%.%'E%.8%5;&F;%.8%5(6.85>>
mpact factor = &0 @ ;;%5F&0>(;4F5>> ;4F6.85> *ct,al mpact factor =;-F0> &8.06-(NC"1*N )A1 T 32*CT /" 1!1 N 3))1 / BE NC"1*N )A1 T 32*CT /" 1!1 N 3))1 / 1N) 2*N NC"1*N )A1 T 32*CT #!1N 1!C1 2*C1) *T T*"T / 1N) 2*N
=22.$"#.434-2.3% =22.$"#.434-2.3% =22.$"#.434-1.$
%$=&.5'&&.&8=&.5'&&.&8=&.84&.&8-
= = = = =
&8.06 I &8.06 I &.8&4 &.8&4 %.%-&
J J
*s per "CF6F%0009 cl%&&.-
T(3% T(3% T(3%
STAAD INPUT FILE T**) 2*N1 T*"T MB N/"3*TN 1NN11" )*T1 17=>$=15 1N) MB N/"3*TN N2AT #)T! 74 ANT 31T1" 3ton MNT C")N*T1 <1N) )1 #* & 0.00 0 0.00 % 0.00 0.85 0.00 - 0.00 &.608 0.00 ' 0.00 %.-67 0.00 5 0.00 -.&%5 0.00 6 0.00 -.88- 0.00 7 0.00 '.6'% 0.00 8 0.00 5.' 0.00 4 0.00 6.%5 0.00 < T2 *B &0 0.4 6.%5 0.00 && %.&6- 6.%5 0.00 &% -.'%5 6.%5 0.00 &- '.688 6.%5 0.00 &' 5.45 6.%5 0.00 &5 6.85 6.%5 0.00 &6 7.75 6.%5 0.00 &7 4.0&- 6.%5 0.00 &8 &0.%75 6.%5 0.00 &4 &&.5-8 6.%5 0.00 %0 &%.8 6.%5 0.00 %& &-.7 6.%5 0.00 < 1N) )1 #* %% &-.7 5.' 0.00 %- &-.7 '.6'% 0.00 %' &-.7 -.88- 0.00 %5 &-.7 -.&%5 0.00 %6 &-.7 %.-67 0.00 %7 &-.7 &.608 0.00 %8 &-.7 0.85 0.00 < BTT3 *B %4 &-.7 0 0.00 -0 &%.8 0 0.00 -& &&.5-8 0 0.00 -% &0.%75 0 0.00 -- 4.0&- 0 0.00 -' 7.75 0 0.00 -5 6.85 0 0.00 -6 5.45 0 0.00 -7 '.688 0 0.00 -8 -.'%5 0 0.00 -4 %.&6- 0 0.00 '0 0.4 0 0.00 <NT1"31)*T1 )1 #* '& 6.85 5.' 0.00 '% 6.85 '.6'% 0.00 '- 6.85 -.88- 0.00 '' 6.85 -.&%5 0.00 '5 6.85 %.-67 0.00 '6 6.85 &.608 0.00 '7 6.85 0.85 0.00 313B1" NC)1NC1 & & % % % - - - ' ' ' 5 5 5 6 6 6 7 7 7 8 8 8 4 4 4 &0 &0 &0 && && && &% &% &% &- &- &- &' &' &' &5 &5 &5 &6 &6 &6 &7 &7 &7 &8 &8 &8 &4 &4 &4 %0 %0 %0 %& %& %& %% %% %% %- %- %- %' %' %' %5 %5 %5 %6 %6 %6 %7 %7 %7 %8 %8 %8 %4 %4 %4 -0 -0 -0 -& -& -& -% -% -% -- -- -- -' -' -' -5 -5 -5 -6 -6 -6 -7 -7 -7 -8 -8 -8 -4 -4 -4 '0'0 '0 & <NT1"31)*T1 )1 #*
'& &5 '& '% '& '%'- '% '-'' '- '''5 '' '5'6 '5 '6'7 '6 '7'8 '7 -5 )1/N1 3*T1"* T*"T T"2C 3*T1"*& 1 %.7-86&e@006 2N 0.&5 )1NTH %.' )*32 %.80%6eF0'' 1N) )1/N1 3*T1"* CNT*NT 3*T1"* 3*T1"*& 313B & T '8 313B1" 2"21"TH N)*N & T 8 %& T %8 '& T '8 2" H) 0.85 O) & 4 T %0 2" H) 0.7 O) & %4 T '0 2" H) 0.8 O) & <<A22"T 21C<<<<<<<<<
- T"*2 E %.78% %.-%8 % T"*2 E -.%-7 %.78% & T"*2 E -.7'6 -.%-7 %& T"*2 E 0 F0.504 %% T"*2 E F0.504 F0.46' %- T"*2 E F0.46' F&.'&4 %' T"*2 E F&.'&4 F&.87%5 T"*2 E F&.87- F%.-%8 %6 T"*2 E F%.-%8 F%.78% %7 T"*2 E F%.78% F-.%-7 %8 T"*2 E F-.%-7 F-.7'6 *) - A"C!*"1 313B1" *) 8 AN E 0.7&4%8 7 AN E 0.7&4%8 6 AN E 0.7&4%8 5 AN E 0.7&4%8 ' AN E 0.7&4%8 - AN E 0.7&4%8 % AN E 0.7&4%8 & AN E 0.7&4%8 %& AN E F0.7&4%8 %% AN E F0.7&4%8 %- AN E F0.7&4%8 %' AN E F0.7&4%8 %5 AN E F0.7&4%8 %6 AN E F0.7&4%8 %7 AN E F0.7&4%8 %8 AN E F0.7&4%8 *) ' 70" T"*CJ1) N 3))1 / 1N) 2*N 313B1" *) TO 14 UNI G- =2.316 15 UNI G- =2.316 0 0.060 *) 5 70" T"*CJ1) N 3) 2*N " 21N*AT3*T1 A22"T 313B1" *) 12 TO 17 UNI G- =2.316 11 UNI G- 0 0.845 0.6 18 UNI G- 0 0 0.115
*) 6 70" T"*CJ1) *T T*"T / 1N) 2*N 313B1" *) TO 13 UNI G- =2.513 14 UNI G- =2.5130 0.30 *) 7 C** 1 *) N 3))1 / 1N) 2*N 313B1" *) 10 TO 13 UNI G- =1.81 UNI G- =1.81 0.4835 0.5 14 UNI G- =1.81 0 0.0165 *) 8 C** 1 *) N 3) 2*N " 21N*AT3*T1 A22"T 313B1" *) 14 TO 15 UNI G- =1.81 13 UNI G- =1.81 0.0135 0.48 16 UNI G- =1.81 0 0.4665 *) 4 C** 1 *) *T T*"T / 1N) 2*N 313B1" *) TO 11 UNI G- =2.231 12 UNI G- =2.231 0 0.258 <<<<*) C3BN*TN<<<<<<<<<<<<<<< *) C3B &0 ) @ 12 @ A" @ 70" N 3))1 / 1N) 2*N & &.0 % &.0 - &.0 ' &.0 *) C3B && ) @ 12 @ A" @ 70" N 3) 2*N " 21N*AT3*T1 A22"T & &.0 % &.0 - &.0 5 &.0 *) C3B &% ) @ 12 @ A" @ 70" *T T*"T / 1N) 2*N & &.0 % &.0 - &.0 6 &.0 *) C3B &- ) @ 12 @ A" @ C** N 3))1 / 1N) 2*N & &.0 % &.0 - &.0 7 &.0 *) C3B &' ) @ 12 @ A" @ C** N 3) 2*N " 21N*AT3*T1 A22"T & &.0 % &.0 - &.0 8 &.0 *) C3B &5 ) @ 12 @ A" @ C** *T T*"T / 1N) 2*N & &.0 % &.0 - &.0 4 &.0 *) C3B &6 ) @ 12 @ A"C!*"1 & &.0 % &.0 - &.0 21"/"3 *N*H 2"NT 3*E/"C1 1N121 T & T '8 T*"T C"2T *NA*1 ANT 31T JN 21N /1 "1*CTN.)*T /" A22"T * /" *) * #"T1 "1*CTN MNT /H 3E 3O /"3*T=59-/8.% C1 1N) C"2T *NA*1 /N!
STRUCTURAL DESIGN SUMMAR- OF MOMENTS FROM STAAD P"+ MAXIMUM MOMENTT='
LOAD COMBINATIONS
TOP SLAB
LC
MAXIMUM
BOTTOM SLAB
S#&&%!&
H+&&%!&
S#&&%!&
H+&&%!&
SIDE (ALLS
INT (ALLS
TOP SLAB
BOTTOM SLAB
&0
)@12@A"@70" in middle of end span
50.4
47.0
5%.&
84.7
%4.%
0.-
6&.'
6&.0
&&
)@12@A"@70" in mid span
50.-
47.%
5&.6
84.&
%4.%
0.0
6&.0
60.6
&%
)@12@A"@70" at start of end span
5&.-
47.%
5%.'
84.0
%4.-
0.5
6&.6
6&.&
&-
)@12@A"@B in middle of end span
50.-
46.&
5&.5
88.5
%4.0
0.-
60.7
60.-
&'
)@12@A"@B in mid span
'4.4
46.&
5&.0
88.0
%8.8
0.0
60.5
60.&
&5
)@12@A"@B at start of end span
5&.0
46.7
5&.4
88.%
%4.0
0.7
6&.0
60.%
&6
)@12@A"C!*" 1
'4.0
4'.8
50.'
87.0
%8.7
0.0
54.5
54.%
S+ G+?"!%!& L+#, C+'%!#)%+! %9 3*E. 331NT N T2 *B N 3) 2*N 3*E. 331NT N T2 *B *T A22"T 3*E. 331NT N )1 #* 3*E. 331NT N NT1"31)*T1 #* 3*E. 331NT N BTT3 *B N 3) 2*N 3*E. 331NT N BTT3 *B *T A22"T
= = = = = =
)12T! / T2 *B )12T! / )1 #* )12T! / NT1"31)*T1 #* )12T! / BTT3 *B
= = = =
700 850 800 800
33 33 33 33
3-0
=
&000 T(3%
/e'&5
= = = = =
%0000 T(3% &0 0.--0.884 &5&.0%
"*)1 / CNC"1T1 "*)1 / T11 3)A*" "*T k : P
&&.-00 TF3 %%.%00 TF3 %'.400 TF3 &%.500 TF3 &5.600 TF3 %'.400 TF3
= &(;&@σst(m<σcbc> = &Fk(= 0.5
TOP SLAB DEPTH CHEC
Considering clear co+er of 75 mm for the base slab and '0 mm for all the othert faces
)12T! / T2 *B 2")1) 1//1CT1 )12T! 2")1) 3*E3A3 331NT 1//1CT1 )12T! "1PA"1)
= 700 '' 33 = 650 33 = %%.% T3 = 383 33 DEPTH PROVIDED IS SUFFICIENT
700F'0F&0 P"T;%%.%(;&5&.0%>><&000
SHEAR CHEC FOR TOP SLAB AT THE LOCATION OF THE (ALLS 1T A 2")1 * T2 !*ANC! / 1//1CT1 )12T! ; deff > =
150 '' 150 '' 650
=
650 mm
O
TT* !1*" /"C1 TT* !1*" /"C1 *T B1*3 ; deff from s,pport >
=
&6.000 T =
0T
SF ) /#""%, )/ @ N''2 /+!/") )/,
3*E3A3 !1*" /"C1 )112 *T B1*3 % S*#" /#""%, @ /+!/")
-0
S$. N+.
S/)%+! /+!9%,",
S/)%+! $+/#)%+!
N) S*#" F )
&
Top slab(#all oc.
#) ,;;.
16
)?
N''2
)'#
0.%'6
N''2
"
%.%00
0
0.-%%
&.00 H!/ O F0.'5% 3t
= *sw = s s(;σs d>
hear "einforcement
=
8 '' ,%# 300'' CC *rea of steel pro+ided
=
0.%5-
16.45
F&0.'-%- As per IRC-21-2000 cl:304.7.1.4 167.55 mm%
O
A) !/)%+! +; )+< 9$# #!, !, 9%, :#$$ R%!;+"/'!) D)#%$9 )epth of slab = 3a moment on top s,rface 2ro+ide 20 '' ,%# 300'' CC *rea of steel pro+ided )epth of slab = 3a moment on bottom s,rface 2ro+ide 12 '' ,%# 200'' CC *rea of steel pro+ided
700 mm =
700 mm
1ffecti+e depth = 650 mm %%.%0 tm teel red = &4%&.% mm% @ 20 '' ,%# 300'' CC = 204.40 mm% O 1ffecti+e depth = 650
=
&&.-0 tm @ =
teel red = 12 '' ,%# 200'' CC 1130.7 mm% O
477.4 mm%
BOTTOM SLAB DEPTH CHEC )12T! / BTT3 *B 2")1) 1//1CT1 )12T! 2")1) 800F75F&0 3*E3A3 331NT 1//1CT1 )12T! "1PA"1) P"T;%'.4(;&5&.0%>><&000
= 800 33 = 715 33 = %'.4000 T3 = 406 33 DEPTH PROVIDED IS SUFFICIENT
SHEAR CHEC FOR THE BOTTOM SLAB AT THE LOCATION OF THE (ALLS TT* !1*" /"C1
=
%&.-00 T
O
S*#" /#""%, @ /+!/")
S$. N+.
&
S/)%+! /+!9%,",
S/)%+! $+/#)%+!
N) S*#" F )
Bottom lab(#all oc.
#) ,;;.
21
)?
2
N''
)'#
0.%48
2
N''
%.%00
"
0.-5%
&.00
SF ) /#""%, )/ @ N''2 /+!/") ) /, 0.%6%
18.77
P"+?%, S*#" R%!;+"/'!) hear trength hear "einforcement
= *sw = s s(; σs d> 10 '' ,%# 300'' CC *rea of steel pro+ided
R%!;+"/'!) D)#%$9 )epth of slab = 3a moment on top s,rface = 2ro+ide 16 '' ,%# 200'' CC *rea of steel pro+ided )epth of slab = 3a moment on bottom s,rface 2ro+ide 20 '' ,%# 250'' CC *rea of steel pro+ided
%.5-- 3t
= =
800 mm
800 =
5-.&%48 As per IRC-21-2000 cl:304.7.1.4 261.80 mm%
1ffecti+e depth = &5.60 tm 16 '' ,%# = 2010.62 1ffecti+e depth = %'.40 tm 20 '' ,%# = 2513.27
O
7&5 mm teel red = &%%7.- mm% 200'' CC mm% O 7&5 teel red = &458.4 mm% 250'' CC mm% O
SIDE (ALL DEPTH CHEC )12T! / )1 #* 2")1) 1//1CT1 )12T! 2")1) 850F'0F&0 3*E3A3 331NT 1//1CT1 )12T! "1PA"1) P"T;%'.4(;&5&.0%>><&000
= 850 33 = 800 33 = %'.400 T3 = 406 33 DEPTH PROVIDED IS SUFFICIENT
O
SHEAR CHEC FOR SIDE (ALLS TT* !1*" /"C1
=
&0.&00 T
S*#" /#""%, @ /+!/")
S$. N+.
&
S/)%+! /+!9%,",
S/)%+! $+/#)%+!
N) S*#" F )
Top slab
#) ,;;.
10.1
E!, 9%, :#$$ )epth of wall = 3a moment on o,ter s,rface 2ro+ide 16 '' ,%# 200'' CC *rea of steel pro+ided 2ro+ide same reinforcement on the inner face 3inim,m reinforcement on the inner face 3inim,m teel = 0.&% I of C( 2ro+ide 16 '' ,%# 300'' CC *rea of steel pro+ided
)?
N''2
0.&%6
850 mm =
)'#
N''2
%.%00
"
0.%5&
&.00
SF ) /#""%, )/ @ N''2 /+!/") )/, 0.%5H!/ O
20.25
1ffecti+e depth = 800 mm %'.40 tm teel red = &750.8 mm% @ 16 '' ,%# 200'' CC = 2010.62 mm% O
= @ =
460 mm% 16 '' ,%# 300'' CC 1340.41 mm% O
INTERMEDIATE (ALL DEPTH CHEC )12T! / NT1"31)*T1 #* 2")1) 1//1CT1 )12T! 2")1) 3*E3A3 331NT 1//1CT1 )12T! "1PA"1)
800F'0F&0
P"T;&%.5(;&5&.0%>><&000
= 800 33 = 750 33 = &%.500 T3 = 288 33 DEPTH PROVIDED IS SUFFICIENT
SHEAR CHEC FOR INTERMEDIATE (ALL TT* !1*" /"C1
=
&%.500 T
O
S*#" /#""%, @ /+!/")
S$. N+.
&
S/)%+! /+!9%,",
S/)%+! $+/#)%+!
N) S*#" F )
Top slab
#) ,;;.
12.5
)?
2
N''
0.&67
)'#
2
N''
%.%00
SF ) /#""%, )/ @ N''2 /+!/") )/,
"
0.&68
&.00
0.%%-
H!/ O
I!)"',%#) 9%, :#$$ )epth of wall = 3a moment on o,ter s,rface 2ro+ide 16 '' ,%# 300'' CC *rea of steel pro+ided 2ro+ide same reinforcement on the inner face 3inim,m reinforcement on the inner face 3inim,m teel = 0.&% I of C( 2ro+ide 16 '' ,%# 300'' CC *rea of steel pro+ided
850 mm =
1ffecti+e depth = &%.50 tm teel red = @ 16 '' ,%# 300'' CC = 1340.41 mm% O
= @ =
800 mm 878.4 mm%
400 16 '' ,%# 300'' CC 1340.41 mm% O
DISTRIBUTION STEEL TOP SLAB 0.12 E;;/)%? A"# C#91 3N T11 0.2DL0.3LL C#92 3*E3A3 B1N)N 331NT /" )T. T11 *) C3BN*TN *"1* / T11 "1PA"1) =%.'( ;%0000<0.84<650><&0Q4 T*9 AREA OF STEEL REUIRED 2")1 12 '' ,%# 200'' CC *rea of steel pro+ided BOTTOM SLAB C#91 0.12 E;;/)%? A"# 3N T11 C#92 0.2DL0.3LL 3*E3A3 B1N)N 331NT /" )T. T11 *) C3BN*TN *"1* / T11 "1PA"1) =%.'(;%0000<0.84<7&5><&0Q4 T*9 AREA OF STEEL REUIRED 2")1 12 '' ,%#
200'' CC
*rea of steel pro+ided SIDE (ALL C#91 0.12 E;;/)%? A"# 3N T11 C#92 0.2DL0.3LL 3*E3A3 B1N)N 331NT /" )T. T11 *) C3BN*TN
12 '' ,%#
=
780 mm%
= =
2.40 TF3 207.6 mm%
780.00 MM2 200'' CC = 1130.7 mm% O
12 '' ,%# =
=
858 mm%
= =
2.40 TF3 188.81 mm%
200'' CC
858.00 MM2
1130.7 mm%
= =
O
460 mm% 2.40 TF3
17.85
*"1* / T11 "1PA"1)
=%.'(;%0000<0.84<800><&0Q4
T*9 AREA OF STEEL REUIRED 2")1 12 '' ,%#
200'' CC
12 '' ,%#
*rea of steel pro+ided INTERMEDIATE (ALL C#91 0.12 E;;/)%? A"# 3N T11 C#92 0.2DL0.3LL 3*E3A3 B1N)N 331NT /" )T. T11 *) C3BN*TN *"1* / T11 "1PA"1)
=
200'' CC
*rea of steel pro+ided
168.75 mm%
200'' CC
60.00 MM2
1130.7 33%
=
=&.8(;<0.84<800><&0Q4
T*9 AREA OF STEEL REUIRED 2")1 12 '' ,%#
=
12 '' ,%# =
O
400 mm%
=
&.800 TF3
135.00 mm%
= 200'' CC
00.00 MM2
1130.7 33%
O
D9%&! +; S: B+ /$?")
*ngle *ngle
L
kew Bo C,l+ert
= 8.86
*ngle
0 t(m
0 t(m
%40
KN(*
DL
LL
8m
#idth of the *ss,med beam lab thickness #earing coat thickness /illing height )ensit$ of slab
= = = = =
&50 800.000 0.065 5.500 %.'00
)ensit$ of wc )ensit$ of filling Normal Clear pan of C,l+ert *ngle
= = = = =
%.%00 &.800 7.700 %4.6% 0.5&7
C#$/$#)%+! +; ,#, $+#, ),e to lab thickness ),e to wc ),e to filling ) intensit$
= = = =
%88.000 0.0%& &.'85 %84.506
t(m t(m t(m t(m
intensit$ Total intensit$ )esign intensit$ of load oad per m r,n of the beam pan of the ass,med beam
= = = = =
KN(* KN(* KN(* KN(* 8.856
t(m t(m t(m t(m m
D9%&! B!,%!& M+'!)
=
NA tFm
rade of Concrete
=
3-0
&000 T(3%
rade of teel P J
= = =
/e'&5
%0000 T(3%
= = =
0.884
M ,"J, dpro+d. *st red. 2ro+ide N+. +; B#"9 *st pro+ide
KN(*
@σst m σc c = = F = 0.5
KN(* -32
*t
0.%m
t(mt(mm deg radians
&.'8& 3pa
. KN(* mm &%00 mm
=
KN(* mm%
=
3 !+9.
=
%'&% mm%
NA
70 '' spacing
=@;-.&'?-%Q%('>?-
B.M. F+" ,%9)"%)%+! 9)$ *st red. 2ro+ide -25 *t
mm m m m t(m-
= = 75 '' spacing
KN(* tFm KN(* mm%
NA
N+. +; B#"9 *st pro+ide
= =
% 48&
NA
b(l0
α
0.& 0.% 0.0.' 0.5 0.6 0.7 0.8 0.4 &.0 &.& &.% &.&.' &.5 &.6 &.7 &.8 &.4 %
0.' 0.8 &.&6 &.'' &.68 &.8' &.46 %.08 %.&6 %.%' %.%8 %.-6 %.' %.'8 %.'8 %.5% %.56 %.6 %.60 %.60
Live load intensity : Clear San !"#
E$$e%tive San !"#
Intensity d-e to live load !t."+#
&'((
)'*(
+'*,
BAR BENDING SCHEDULE FOR THE BOX CULVERT For Normal Spans: For 1 m leng! o" !e #$l%er S.No. & 2 3 4 5 6 + 8 &0 && &2 &3 &4
Bar Mark 5 6 6a 2 & &a 4 3 &2 &2 + 8 +
Usage Bar $op S#a' Bottom $op S#a' $op)$hro"gho"t $op S#a' $op)S"pp *tra Bottom S#a' $op Bottom S#a' Bottom)$hr ottom S#a' Bottom)S"pp *tr Si,e -a## nner ae Si,e -a## 1"ter ae nterme,iate -a## nn nterme,iate -a## 1"t Distri'"tion ($op S#a' Distri'"tion (Bottom S#a' a"nh ein Distri'"tion (nt.-a##
Dia(mmBar Shape &6 &6 &6 &6 &6 &6 &6 &6 &6 &6 &0 &0 8 &0
Density (kg/m !"t #ength(mm &.58 050 &.58 &0230 &.58 3250 &.58 000 &.58 &0&80 &.58 3250 &.58 5080 &.58 300 &.58 300 &.58 300 0.62 &&50 0.62 &&50 0.4 24 0.62 &&50
Nos. 6 6 6 6 8 8 5 5 35 35 3& 20
$ota# %ength (m 8&.45 6&.4 &.5 8&.0 6&.& &.5 40.6 3&.2 &.50 &.50 80.5 80.5 28.+ 46.0
&5
&0
,ge Beam
&0
0.62
300
5+
222.3
&6
&&
,ge Beam
&0
0.62
8500
&2
&02.0 TOTAL
VOLU&E OF CONCRETE FOR 1 m LENGTH : einorement Density
23.4 44
"m kg/"m
-ith ,ge Beams
VOLU&E OF CONCRETE FOR 1 m LENGTH : einorement Density
&+.0 4
"m kg/"m
itho"t ,ge Beams
$ota# -eight (kg &28.6 6.8 30.8& &2+.8 6.5& 30.8& 64.2& 4.30 30.8& 30.8& 4.& or $op an, Bottom 4.& or $op an, Bottom &&.46 n 4 ha"nhes 28.52 or nner an, 1"ter &3+.83 63.24 1'()*))
NOT CONSIDERED IN TENDER
COMPARISON OF 3.75 X 3.0 << (ITH 4.0 3.0 B+ C$?") teel #eight per c,m of Concrete
Clear width Clear height Top slab thickness Bottom slab thickness ide wall thickness !eight of fill in left !eight of fill in "ight #idth of Carriage wa$ !a,nch iRe C( area )ia of Bar
Bar No.
hear
= = = = = = = =
= pacing
0.&5 0.&5 %0.4'5 m#eight(m ength N,mber %.'66&5 &%.5%0
6.00 5.50 0.70 0.80 0.85 0.00 0.00 7.50
m m m m m m m m
Total Jg ' &%-.5
&
%0 mm dia
%50 mm c(c
%
&6 mm dia
%00 mm c(c
&.578-'
%'.8'0
' 5
&6 mm dia
%00 mm c(c
&6 mm dia
%00 mm c(c
&6 mm dia
-00 mm c(c
&.578-' &.578-' &.578-'
4.%%0 '.%00 8.6%0
5 7%.76& 5 --.&'5 8 &08.8'
6 7 8
&% mm dia
%00 mm c(c
&% mm dia
%00 mm c(c
%0 mm dia
-00 mm c(c
0.8878& 0.8878& %.'66&5
4.%%0 '.%00 &%.5%0
5 '0.4%8 5 &8.6'' ' &%-.5
7
&% mm dia
%00 mm c(c
0.8878&
&.000
&'0 &%'.%4
8
&% mm dia
%00 mm c(c
0.8878&
&.000
&5% &-'.45
4
&0 mm dia
&%0 mm c(c
0.6&65'
%.-50
-6 5%.&54
8 mm dia
-00 mm c(c
5
&46
&0%4
)ensit$ of teel
=
'4.& Jg(m-
teel #eight per c,m of Concrete
Clear width Clear height Top slab thickness Bottom slab thickness ide wall thickness !eight of fill in left !eight of fill in "ight #idth of Carriage wa$
= = = = = = = =
!a,nch iRe 0.&5 0.&5 C( area = %0.4'5 mBar No. )ia of Bar pacing #eight(m ength N,mber & &0 mm dia 0.6&65' &%.5%0 %00 mm c(c
6.00 5.50 0.70 0.80 0.85 0.00 0.00 7.50
m m m m m m m m
Total Jg 5 -8.545
%
%0 mm dia
%00 mm c(c
%.'66&5
%'.8'0
' 5
&% mm dia
%00 mm c(c
&6 mm dia
%00 mm c(c
&% mm dia
&75 mm c(c
0.8878& &.578-' 0.8878&
4.%%0 '.%00 8.6%0
5 '0.4%8 5 --.&'5 &% 4&.8-5
6 7 8
&6 mm dia
%00 mm c(c
8 mm dia
%00 mm c(c
&0 mm dia
%00 mm c(c
&.578-' 0.-4'58 0.6&65'
4.%%0 '.%00 &%.5%0
5 7%.76& 5 8.%865 -8.545
7
&0 mm dia
%00 mm c(c
0.6&65'
&.000
&'0 86.-&5
8
&0 mm dia
%00 mm c(c
0.6&65'
&.000
&5% 4-.7&'
4
&0 mm dia
&50 mm c(c
0.6&65'
%.-50
%8 '0.568 85&.0'
)ensit$ of teel
=
5
-06.-
'0.6 Jg(m-