Modul Pengajaran Fizik Tingkatan 4
Tahun 2013
BAB 4 HABA 4.1 Keseimbangan Terma/Thermal Terma/Thermal equilibrium Suhu Temperature
Haba Heat
Sentuhan terma Thermal contact Keseimbangan terma Thermal equilibrium
Suhu ialah darjah kepanasan suatu objek. Unit SI ialah Kelvin, K. Suatu objek panas mempunyai suhu yang lebih tinggi daripada objek sejuk. Suhu suatu objek bergantung kepada purata tenaga kinetik molekul-molekul dalam objek itu. Semakin tinggi tenaga kinetik molekul-molekul dalam suatu objek, semakin tinggi suhunya. Haba ialah satu bentuk tenaga. Unit ukurannya ialah Joule, J Haba dipindahkan dari objek yang lebih panas kepada objek yang lebih sejuk. Apabila satu objek dipanaskan, ia akan menyerap tenaga haba dan suhu objek akan meningkat. Apabila objek disejukkan, ia akan membebaskan tenaga haba dan suhu objek akan berkurang. Dua objek berada dalam keadaan sentuhan terma apabila tenaga haba boleh dipindahkan di antara mereka. Sebelum keseimbangan terma dicapai Objek A
Objek B
Haba
Apabila dua objek A dan B diletakkan berhampiran, berhampiran, tenaga haba akan mengalir daripada jasad A yang lebih tinggi suhunya ke objek B yang lebih rendah suhunya sehingga objek A dan B mencapai suhu yang sama. Apabila keseimbangan terma tercapai Objek A
Objek B Haba Haba
Apabila objek A dan B mencapai suhu yang sama, kadar pemindahan tenaga haba dari objek A ke objek B dan dari objek B ke objek A adalah sama. Apabila keadaan ini berlaku, objek A dan B dikatakan berada dalam keadaan keseimbangan terma antara satu sama lain. Apabila keseimbangan terma dicapai pada dua objek, maka tiada haba bersih (0 J) yang mengalir antara keduanya iaitu kadar penyerapan tenaga haba adalah sama dengan kadar pembebasan tenaga haba pada suhu yang sama. Cikgu Khairul Anuar, SMK Seri Mahkota, Kuantan
1
Modul Pengajaran Fizik Tingkatan 4
Tahun 2013
Contoh situasi yang melibatkan keseimbangan terma Meletakkan tuala basah di atas dahi pesakit demam panas. Pada permulaan suhu tuala basah lebih rendah berbanding suhu badan pesakit demam panas. Tenaga haba dipindahkan dari dahi pesakit ke tuala basah sehingga keseimbangan terma dicapai. Dengan cara ini, tenaga haba mampu disingkirkan daripada pesakit dan dapat menurunkan suhu badan pesakit demam panas.
Minuman sejuk Minuman yang panas boleh disejukkan dengan menambahkan beberapa ketul ais ke dalam minuman tersebut. Haba dari minuman panas akan dipindahkan kepada ais sehingga keseimbangan terma antara ais dan air dicapai. Suhu minuman dan ais adalah sama apabila keseimbangan terma dicapai. Mengukur suhu badan pesakit Apabila termometer klinik digunakan untuk menyukat suhu badan, kedua-dua alkohol dalam termometer dan badan akan mencapai keadaan keseimbangan terma. Ini membolehkan termometer klinik menunjukkan dengan tepatnya suhu badan.
Termometer Cecair-Dalam-Kaca Ciri-ciri cecair yang digunakan dalam termometer cecair-dalam-kaca
1. Mudah dilihat atau cecair berwarna legap 2. Mengembang dengan seragam apabila dipanaskan 3. Tidak melekat pada dinding kaca 4. Konduktor haba yang baik 5. Takat didih tinggi dan takat beku rendah.
Bagaimana termometer cecair-dalam-kaca berfungsi?
Bebuli termometer mengandungi cecair merkuri dengan jisim tetap. Isipadu merkuri bertambah apabila ia menyerap haba.
Cecair merkuri mengembang dan meningkat naik di dalam kapilari tiub. Panjang turus merkuri dalam kapilari tiub dapat menunjukkan nilai suhu sesuatu objek.
cecair
Bebuli Termometer makmal
Cikgu Khairul Anuar, SMK Seri Mahkota, Kuantan
2
Modul Pengajaran Fizik Tingkatan 4
Bagaimana termometer ditentuukur?
Takat didih
Tahun 2013
Skala suhu dan unit suhu diperoleh denga memilih dua suhu yang dikenali sebagai takat tetap atas dan takat tetap bawah. Takat tetap bawah adalah suhu ais yang melebur dan diambil sebagai 0C. Takat tetap atas adalah suhu stim di atas air yang mendidih pada tekanan atmosfera 76 cm Hg dan diambil sebagai 100C.
L100 100 bahagian yang sama
L0
Ais melebur
Untuk menentukan suhu sesuatu objek lain dengan menggunakan termometer tanpa sesenggat, rumus berikut digunakan:
Takat beku
=
Bebuli
Air mendidih
Lθ
L0
L100 L0
100
C
Di mana L adalah panjang turus merkuri pada suhu, tertentu yang belum diketahui.
Prinsip kerja termometer berdasarkan prinsip keseimbangan terma Apabila termometer dimasukkan dalam air panas, haba mengalir daripada air panas ke termometer. Apabila berlaku keseimbangan terma kadar pemindahan haba bersih adalah sifar. Suhu termometer adalah sama dengan suhu air panas. Oleh iu bacaan termometer ketika itu adalah merupakan suhu air panas. Ciri-ciri merkuri yang sesuai digunakan sebagai cecair dalam termometer.
Bagaimana meningkatkan kepekaan termometer merkuri?
1. Konduktor haba yang baik. 2. Takat didih tinggi iaitu 375 C. 3. Mengembang secara seragam bila dipanaskan dan mengecut secara seragam bila disejukkan. 4. Warna legap (Tidak boleh ditembusi cahaya) dan mudah dilihat. 5. Takat beku rendah iaitu -39 C, oleh itu ia tidak sesuai digunakan di kawasan bersuhu kurang daripada ini seperti di kutub selatan. 1. Menggunakan tiub kapilari yang lebih kecil/halus. 2. Menggunakan bebuli kaca yang berdinding nipis 3. Menggunakan bebuli kaca yang lebih kecil.
Cikgu Khairul Anuar, SMK Seri Mahkota, Kuantan
3
Modul Pengajaran Fizik Tingkatan 4
Tahun 2013
Latihan 4.1 (Keseimbangan (Keseimbangan terma) (1) Sebuah termometer merkuri yang belum ditentukurkan mempunyai panjang merkuri 12 cm dan 20 cm apabila dimasukkan ke dalam ais lebur dan stim masing-masing. Apabila dimasukkan dalam suatu air panas panjangnya menjadi 15 cm. Berapakah suhu air panas itu. (2) Sebuah termometer merkuri yang belum ditentukurkan mempunyai panjang merkuri 5 cm dan 25 cm apabila dimasukkan dalam ais lebur dan stim masing-masing. Apabila dimasukkan dalam suatu cecair didapati panjangnya menjadi 12 cm. Berapakah suhu cecair tersebut? (3) Panjang turus merkuri sebuah termometer adalah 20 cm dan 8 cm masing-masing apabila dimasukkan dalam stim dan ais lebur. Berapakah panjang turus merkuri apabila dimasukkan dalam suatu bahan bersuhu o -25 C? 4. Rajah di atas menunjukkan sebuah termometer merkuri (a) Nyatakan bahagian yang bertanda P............................................................. Q............................................................. (b) Apakah prinsip yang digunakan dalam termometer ini. (c) Semasa menentukurkan termometer ini didapati panjang turus merkuri apabila dimasukkan dalam ais lebur dan stim adalah 12 cm dan 20 cm masing-masing.Tentukan (i)
Panjang turus merkuri jika termometer ini dimasukkan ke dalam bahan yang bersuhu 20o C.
(ii)
Suhu suatu bahan jika panjang turus merkuri menjadi 7 cm apabila termometer dimasukkan dalam bahan itu.
Cikgu Khairul Anuar, SMK Seri Mahkota, Kuantan
4
Modul Pengajaran Fizik Tingkatan 4
Tahun 2013
4.2 Muatan Haba Tentu (Specific (Specific heat capacity) Muatan haba
Muatan haba suatu bahan ditakrifkan sebagai kuantiti haba yang diperlukan untuk menaikkan suhu bahan itu sebanyak 1 C atau 1 K.
Hubungan antara jenis bahan dengan muatan haba Termometer
1 kg parafin
1 kg air
Hubungan antara jisim bahan dengan muatan haba Termometer
Bikar A
Bikar B
Hubungan antara kuantiti haba dengan muatan haba
Bikar C
Bikar D
Kesimpulan: Muatan Haba Tentu
Unit muatan haba ialah J C-1 atau J K-1. Menjana idea tentang muatan haba Jika kedua-dua bikar itu dipanaskan selama 5 minit dengan penunu Bunsen yang sama, didapati kenaikan suhu parafin adalah lebih tinggi daripada kenaikan suhu air. Kesimpulan: Eksperimen ini menunjukkan bahan-bahan yang berlainan mengalami kenaikan suhu yang berbeza jika kuantiti haba yang sama dibekalkan dan jisim bahan-bahan itu adalah sama.
Jika air dalam bikar A dan bikar B dipanaskan selama 5 minit dengan menggunakan penunu Bunsen yang sama, kenaikan suhu air dalam bikar A lebih tinggi daripada kenaikan suhu air dalam bikar B. Kesimpulan: Eksperimen ini menunjukkan bahawa kenaikan suhu suatu bahan bergantung kepada jisim bahan itu jika kuantiti haba yang dibekalkan adalah sama.
Jika air dalam bikar C dipanaskan selama 1 minit dan air dalam bikar D dipanaskan selama 5 minit dengan menggunakan penunu Bunsen yang sama, kenaikan suhu air dalam bikar C didapati lebih kecil daripada kenaikan suhu air dalam bikar D. Eksperimen ini menunjukkan bahawa kenaikan suhu suatu bahan bergantung kepada kuantiti haba yang dibekalkan, jika jisim bahan itu adalah sama. sama. Muatan haba suatu bahan bergantung kepada jenis bahan, jisim bahan dan kuantiti haba yang yang dibekalkan. Muatan Haba Tentu sesuatu bahan ialah kuantiti haba yang diperlukan untuk menaikkan suhu 1 kg bahan sebanyak 1 C.
Simbol: c Unit SI bagi muatan haba tentu, c = J kg-1 C-1
Formula muatan haba tentu: Q c = = m Q = Haba diserap atau dibebaskan, unit J m = Jisim bahan, unit kg = Perbezaan Perbezaan suhu bahan bahan awal dan dan akhir, unit unit C.
Cikgu Khairul Anuar, SMK Seri Mahkota, Kuantan
5
Modul Pengajaran Fizik Tingkatan 4
Kuantiti haba yang diserap atau dibebaskan oleh bahan, Q Apakah maksud muatan haba tentu aluminium = 900 J kg-1 C-1 Apakah maksud muatan haba tentu air =4200 J kg-1 C-1
Tahun 2013
Q = mc 900 J tenaga haba diperlukan oleh 1 kg aluminium bagi menghasilkan kenaikan suhu sebanyak 1 C.
Latihan 4.2 (Muatan Haba Tentu) (1) Hitungkan jumlah tenaga haba yang diperlukan untuk memanaskan 2 kg keluli dari suhu 30 C kepada suhu 70 C . (muatan haba tentu keluli = -1 500 J kg-1 C )
(2) Sebuah pemanas rendam berlabel 2 kW, 240 V digunakan untuk memanaskan 3 kg air. Berapakah kenaikan suhu air apabila pemanas itu diguna selama 8 minit. (Muatan haba tentu air = 4200 J kg-1 C-1) (3) 4 kg air membebaskan haba sebanyak 8.4 x 105 J apabila disejukkan dari suhu 90 C kepada suhu 40 C. Kirakan muatan haba tentu air.
(4) 0.2 kg air panas pada suhu 100 C dicampurkan dengan 0.25 kg air sejuk pada suhu 10 C. Berapakah suhu akhir campuran?
Cikgu Khairul Anuar, SMK Seri Mahkota, Kuantan
6
Modul Pengajaran Fizik Tingkatan 4
Tahun 2013
(5) Jumlah haba yang dibebaskan apabila suatu logam X berjisim 5.0 kg disejukkan dari suhu 30 C ke 20 C adalah, (muatan haba tentu logam X = -1 500 J kg C-1)
(6) 420 kJ haba dibebaskan apabila 2 kg air disejukkan dari suhu 70 C. Berapakah suhu akhir air? (muatan haba tentu air = -1 4.2 x 103 J kg-1 C )
(7) 600 g air sejuk berada pada suhu 40 C. Apabila air panas berjisim 400 g pada suhu 90 C dicampurkan kepada air sejuk, suhu akhir campuran adalah?
(8) Cecair M berjisim 0.5 kg berada pada suhu 40 C dimasukkan dalam sebuah bikar yang mengandungi 2 kg cecair cecair N yang berada pada suhu 25 C. Suhu akhir campuran adalah, ( muatan haba tentu cecair, 3 -1 M = 8.4 x 10 J kg-1 C ) ( muatan haba tentu cecair, -1 N = 4.2 x 10 103 J kg-1 C )
Cikgu Khairul Anuar, SMK Seri Mahkota, Kuantan
7
Modul Pengajaran Fizik Tingkatan 4
Tahun 2013
Eksperimen untuk menentukan muatan haba tentu suatu pepejal (Bongkah Aluminium)
Kuasa Pemanas, P = = .................. Watt
Catatkan kuasa pemanas rendam yang digunakan = P Watt
Jisim bongkah Al, m = ................. kg
Timbang jisim bongkah aluminium = m
Suhu awal bongkah Al, Suhu akhir bongkah Al,
1
= ............ C Catatkan suhu awal bongkah aluminium =
2
= ............ C
Masa pemanasan, t = = ..................s Muatan haba tentu bongkah Al = Q Pt c = = m( θ θ 2 θ 1 ) m( θ θ 2 θ 1 )
1
Hidupkan pemanas rendam dan serentak dengan itu mulakan jam randik. Selepas masa, t , matikan pemanas rendam dan catatkan suhu maksimum bongkah aluminium = 2 Kirakan tenaga yang dibebaskan oleh pemanas, Q = Pt Kirakan tenaga haba, Q yang diterima oleh bongkah = mc ( 2 - 1 ) Dengan menganggap tiada kehilangan haba ke persekitaran, persekitaran, Pt = mc ( 2 - 1 ) Pt c = m( θ θ 2 θ 1 )
Sebagai langkah berjaga-jaga, Balutkan bongkah aluminium dengan felt/kapas/tisu untuk mengurangkan kehilangan haba ke sekeliling. Masukkan sedikit minyak ke dalam lubang yang mengandungi termometer supaya berlaku sentuhan terma antara bongkah aluminium dengan termometer. Cikgu Khairul Anuar, SMK Seri Mahkota, Kuantan
8
Modul Pengajaran Fizik Tingkatan 4
Tahun 2013
Eksperimen untuk menentukan muatan haba tentu suatu cecair (air) Catatkan kuasa pemanas rendam yang digunakan = P Watt Timbang jisim bikar kosong = m1 Masukkan air dalam bikar dan timbang semula jisim bikar = m2 Catatkan suhu awal air = Kuasa Pemanas = .................. Watt Jisim bikar kosong, m1 = ................. kg Jisim bikar + air, m2 = ................ kg Suhu awal air,
1
Suhu akhir air,
= ............... C
2=
............... C
1
Hidupkan pemanas rendam dan serentak dengan itu mulakan jam randik. Selepas masa, t , matikan pemanas rendam dan catatkan suhu maksimum air = 2 Kirakan tenaga yang dibebaskan oleh pemanas, Q = Pt
Masa pemanasan, t = = ..................s
Kirakan tenaga haba yang diterima oleh air, Q = (m2 - m1 ) c ( 2 - 1 )
Muatan haba tentu air, cair = Q c = (m 2 - m1 )( θ θ 2 θ 1 )
Dengan menganggap tiada kehilangan haba ke persekitaran,
=
Pt (m 2 - m1 )( θ θ 2 θ 1 )
Pt = ( m2 - m1 ) c ) c ( 2 - 1 ) Q c = (m 2 - m1 )( θ θ 2 θ 1 ) c =
Pt (m 2 - m1 )( θ θ 2 θ 1 )
Sebagai langkah berjaga-jaga , Masukkan bikar dalam bekas polisterin mengurangkan kehilangan haba ke sekeliling. Kacau air setiap masa supaya suhu air sentiasa seragam pada semua bahagian.
Perbandingan nilai muatan haba tentu, c yang didapati eksperimen dan nilai teori
Nilai muatan haba tentu, c yang diperolehi daripada eksperimen adalah lebih besar daripada nilai teori. Ini disebabkan kehilangan haba ke persekitaran menyebabkan kenaikan suhu menjadi lebih kecil.
Cikgu Khairul Anuar, SMK Seri Mahkota, Kuantan
9
Modul Pengajaran Fizik Tingkatan 4
Tahun 2013
Aplikasi muatan haba tentu dalam kehidupan seharian Perbezaan sifat fizikal bahan-bahan yang mempunyai muatan haba tentu yang berbeza.
Sifat bahan yang mempunyai muatan haba tentu yang kecil
Muatan haba tentu
Dipanaskan
Disejukkan
Kecil
Suhu meningkat dengan cepat
Suhu menurun dengan cepat
Besar
Suhu meningkat dengan perlahan
Suhu menurun dengan perlahan
1. Suhu bahan bahan meningkat meningkat dalam dalam masa masa yang yang singkat singkat apabila dipanaskan dan menurun dalam masa yang singkat apabila disejukkan (Konduktor haba yang baik). Contoh: Logam seperti besi, keluli, tembaga dan aluminium biasa digunakan sebagai periuk dan kuali. Ini kerana logam ini boleh dipanaskan dengan cepat. 2. Bahan ini peka peka terhadap terhadap perubahan suhu. Contoh: Logam merkuri dalam termometer mempunyai muatan haba tentu yang kecil yang membolehkannya membolehkannya menyerap dan membebaskan membebaskan haba dengan mudah.
Sifat bahan yang mempunyai muatan haba tentu yang besar
1. Suhu bahan bahan meningkat meningkat dalam dalam masa masa yang yang panjang panjang (lambat) apabila dipanaskan dan menurun dalam masa yang panjang (lambat) apabila disejukkan. (Konduktor haba yang lemah). 2. Bahan ini boleh menyerap tenaga haba dalam kuantiti yang besar tanpa mengalami peningkatan suhu yang tinggi. Contoh: Air digunakan sebagai ajen penyejuk dalam radiator kenderaan.
Contoh-contoh aplikasi muatan haba tentu dalam kehidupan harian 1. Periuk dan kuali kuali diperbuat diperbuat daripada logam seperti tembaga dan aluminium yang mempunyai muatan haba tentu yang ................... 2. Ini membolehkan membolehkan periuk dan kuali kuali dipanaskan dipanaskan dengan cepat bagi mengurangkan penggunaan bahan api. 3. Pemegang periuk dan kuali kuali diperbuat diperbuat daripada bahan bukan logam seperti plastik dan kayu yang mempunyai haba tentu yang ...................... 4. Ini memastikan memastikan pemegang periuk dan kuali kuali tidak mudah menjadi panas dan mudah dikendalikan.
Cikgu Khairul Anuar, SMK Seri Mahkota, Kuantan
10
Modul Pengajaran Fizik Tingkatan 4
Fenomena bayu laut
Tahun 2013
1. Daratan mempunyai muatan haba tentu yang lebih rendah berbanding dengan laut. Maka suhu daratan meningkat dengan lebih cepat berbanding suhu laut di waktu siang. 2. Udara di daratan daratan menjadi menjadi panas panas dan naik ke ke atas. 3. Udara yang lebih sejuk daripada lautan bergerak dari laut menuju kea rah daratan sebagai bayu.
Fenomena bayu darat
1. Lautan mempunyai muatan haba tentu yang lebih tinggi berbanding daratan. Maka, suhu lautan menurun lebih lambat berbanding suhu daratan di waktu malam. 2. Udara di atas permukaan lautan yang yang panas panas akan naik ke atas. 3. Udara yang lebih lebih sejuk daripada daratan akan bergerak ke arah lautan sebagai bayu darat.
Air sebagai agen penyejuk dalam radiator kenderaan
1. Air mempunyai mempunyai muatan haba tentu yang yang tinggi. Oleh itu, ia digunakan sebagai agen penyejuk dalam radiator kenderaan. 2. Haba yang yang terhasil terhasil daripada daripada enjin diserap oleh air yang mengalir di sepanjang ruang dinding enjin. Air mampu menyerap haba yang banyak dengan peningkatan suhu yang perlahan. 3. Air yang telah panas panas akan dialirkan melalui melalui sirip penyejuk dan dibantu oleh kipas untuk menurunkan kembali suhu air. Air yang telah disejukkan akan dialirkan semula ke ruang dinding enjin.
Menghirup sup menggunakan sudu
1. Suhu tomyam tomyam di dalam sudu dan di dalam mangkuk adalah sama. 2. Kita mendapati mendapati tomyam yang panas itu mudah dihirup menggunakan sudu berbanding menghirup terus daripada mangkuk. 3. Ini kerana, kerana, kuah tomyam di dalam sudu mempunyai kuantiti haba yang lebih kecil berbanding kuah tomyam di dalam mangkuk. 4. Ini disebabkan disebabkan jisim tomyam di dalam dalam sudu lebih kecil berbanding jisim tomyam di dalam mangkuk.
Cikgu Khairul Anuar, SMK Seri Mahkota, Kuantan
11
Modul Pengajaran Fizik Tingkatan 4
Tahun 2013
4.3 Haba Pendam Tentu/ Specific latent heat Haba pendam
Pendidihan air
Peleburan ais
Haba yang diserap atau haba yang dibebaskan pada suhu tetap semasa perubahan keadaan jirim suatu bahan tertentu. Menjana idea tentang haba pendam Apabila air dipanaskan, suhunya akan meningkat sehingga ia mencapai takat didih.
Semasa pendidihan, suhu air sentiasa tetap pada suhu 100C walaupun air itu terus dipanaskan.
Semasa pendidihan, air (cecair) bertukar kepada wap air (gas).
Ais melebur pada takat lebur 0C . Apabila ais melebur, tenaga haba diserap daripada persekitaran.
Semasa ais melebur, suhu ais sentiasa tetap pada suhu 0C walaupun ais itu terus menyerap haba daripada persekitaran.
Semasa proses peleburan, ais (pepejal) bertukar kepada air (cecair).
Perbincangan: Semua proses perubahan keadaan jirim berlaku tanpa sebarang perubahan suhu.
Oleh kerana proses perubahan keadaan jirim berlaku tanpa perubahan suhu, haba yang diserap atau yang dibebaskan oleh bahan itu seolah-olah terpendam atau tersembunyi.
Haba yang diserap atau dibebaskan di bebaskan semasa proses perubahan jirim tanpa sebarang perubahan suhu disebut haba pendam.
Haba pendam
Diserap apabila
Dibebaskan apabila
(a) Ais bertukar menjadi menjadi air pada takat leburnya.
(a) Stim bertukar menjadi menjadi air pada takat kondensasi.
(b) Air bertukar stim pada takat didihnya
(b) Air bertukar menjadi ais pada takat bekunya
Cikgu Khairul Anuar, SMK Seri Mahkota, Kuantan
12
Modul Pengajaran Fizik Tingkatan 4
Tahun 2013
Perubahan keadaan jirim & haba pendam Pelakuran
Pengewapan
Pepejal
Gas (stim)
Cecair
Proses di mana pepejal berubah menjadi cecair dikenali sebagai pelakuran (peleburan). Suhu semasa pelakuran berlaku dikenali sebagai takat lebur. Proses di mana cecair berubah menjadi gas dikenali sebagai pengewapan (pendidihan). Suhu semasa pengewapan berlaku dikenali sebagai takat didih.
Lengkung pemanasan (Tenaga haba diserap) Takat didih
Suhu/ C
Takat lebur
Peleburan cecair Pepejal
Pendidihan Cecair Gas
Cecair
Pepejal Masa/ t
Lengkung penyejukan (Tenaga haba dibebaskan) Suhu/ C
Gas
Kondensasi Gas cecair
Takat kondensasi
Cecair
Pemejalan pepejal Cecair
Takat beku
Pepejal Masa/ t
Cikgu Khairul Anuar, SMK Seri Mahkota, Kuantan
13
Modul Pengajaran Fizik Tingkatan 4
Ciri-ciri sepunya keempat-empat perubahan keadaan jirim
Hubungan suhu suatu bahan dengan tenaga kinetik zarah dalam bahan
Kenapa suhu bahan tetap semasa perubahan keadaan jirim berlaku?
Haba pendam tentu, L
Tahun 2013
Suatu bahan mengalami perubahan keadaan jirim apabila mencapai suhu tertentu (takat). Tenaga haba dipindahkan semasa perubahan keadaan jirim. Semasa perubahan keadaan jirim, suhu adalah tetap walaupun pemindahan haba terus berlaku. Suhu bahan bertambah apabila tenaga kinetik purata zarah dalam bahan bertambah. Suhu bahan berkurang apabila tenaga kinetik purata zarah dalam bahan berkurang. Suhu bahan tetap apabila tenaga kinetik purata zarah dalam bahan tidak berubah. Semasa perubahan keadaan jirim, pemindahan tenaga haba tidak menyebabkan perubahan kepada tenaga kinetik zarah dalam bahan. Semasa proses peleburan, tenaga haba yang diserap digunakan untuk memutuskan ikatan antara zarah-zarah dalam pepejal. Zarah-zarah terbebas daripada kedudukan tetapnya dan bergerak lebih bebas. Dalam keadaan ini bahan pepejal bertukar kepada cecair. Semasa pendidihan, tenaga haba yang diserap digunakan untuk memutuskan ikatan antara zarah-zarah dalam cecair dengan sempurna bagi membentuk gas (wap).
Haba pendam tentu suatu bahan ialah kuantiti haba yang diperlukan untuk mengubah keadaan jirim 1 kg bahan tanpa perubahan suhu. Q = mL Q L= m Q ialah tenaga haba yang diserap atau dibebaskan m ialah jisim bahan L ialah haba pendam tentu -1 Unit S.Inya ialah J kg .
Haba pendam tentu pelakuran
Haba pendam tentu pelakuran: Kuantiti haba yang diperlukan untuk mengubah 1 kg bahan daripada keadaan pepejal kepada cecair (atau sebaliknya) tanpa perubahan suhu.
Haba pendam tentu pengewapan
Haba pendam tentu pengewapan: Kuantiti haba yang diperlukan untuk mengubah 1 kg bahan daripada keadaan cecair kepada wap (atau sebaliknya) tanpa perubahan suhu.
Cikgu Khairul Anuar, SMK Seri Mahkota, Kuantan
14
Modul Pengajaran Fizik Tingkatan 4
Tahun 2013
Latihan 4.3 (Haba pendam tentu) (1) Berapakah jumlah tenaga haba yang diperlukan untuk menukarkan 0.1 kg ais menjadi air pada takat leburnya. (Haba pendam tentu pelakuran ais = 3.34 x 105 J kg-1) (2) Berapa banyak haba yang terbebas apabila 0.5 kg stim terkondensasi menjadi air pada 100 C? (Haba pendam pendam pengewapan pengewapan air = 2.26 x 6 -1 10 J kg ) (3) Cecair X yang mendidih kehilangan jisimnya sebanyak sebanyak 4 kg apabila dipanaskan dengan sebuah pemanas rendam 240 V, 10 kW selama 5 minit. Tentukan haba pendam pengewapan cecair itu. (4) 400 g air dalam bikar berada pada suhu 100 C. Berapakah haba yang diperlukan untuk menukarkan keseluruhan air ini kepada stim? (Haba pendam tentu pengewapan air =2.3x106 Jkg-1 ) (5) Jika haba pendam tentu pelakuran ais ialah 3.3 x105 J kg-1, hitungkan jumlah haba yang dibebaskan semasa 300 g air pada suhu 0 C membeku?
(6) Berapa banyak habakah yang diperlukan untuk memanaskan 2 kg ais hingga menjadi air pada suhu 80 C? -1 (Muatan haba tentu air = 4.2 x 103Jkg-1 C , Haba pendam tentu pelakuran ais = -1 3.34 x 105 J kg )
(7) Berapakah kuantiti haba yang diperlukan untuk menukarkan 20 g ais pada 0 C kepada air pada suhu 40 C? (Muatan haba tentu air = 4.2 x 103 J kg-1 C-1 Haba pendam tentu pelakuran ais = 3.34 x105 Jkg-1)
Cikgu Khairul Anuar, SMK Seri Mahkota, Kuantan
15
Modul Pengajaran Fizik Tingkatan 4
Tahun 2013
Aplikasi Haba Pendam Tentu Ketulan ais ditambah ke dalam air minuman untuk menurunkan suhu air minuman. Ketulan ais melebur dengan menyerap tenaga haba daripada air minuman. Apabila tenaga diserap oleh ais untuk melebur, maka suhu minuman dapat dikurangkan. Ketulan ais diletakkan di atas permukaan ikan atau makanan laut lain bagi memastikan kesegarannya kesegarannya dapat dikekalkan. Ais melebur dengan menyerap tenaga haba daripada ikan sekaligus menurunkan suhu ikan tersebut. Suhu ikan yang rendah iaitu menghampiri suhu takat lebur ais dapat menyebabkan menyebabkan aktiviti bakteria dapat diberhentikan atau diperlahankan. Air mempunyai haba pendam tentu pengewapan yang tinggi. Apabila wap air terkena pada makanan yang lebih sejuk suhunya, maka wap air akan terkondensasi. Makanan yang dimasak akan menyerap haba yang dikeluarkan oleh wap air semasa proses kondensasi. Ini menyebabkan makanan akan masak dengan lebih cepat kerana menyerap tenaga haba dengan banyak dalam keadaan tertutup.
Eksperimen: Menentukan haba pendam tentu pelakuran ais Kaki retort
Pemanas rendam Ais Corong turas
Kaki retort
Pemanas rendam ditutup Ais Corong turas
Bekalan elektrik
Radas (a) digunakan untuk menentukan haba pendam tentu ais Prosedur: 1. Timbang jisim bikar (a). 2. Pemanas berkuasa 25 W digunakan untuk mencairkan ais selama 5 minit. 3. Timbang jisim bikar (a) + air. 4. Ukur jisim ais yang dileburkan oleh pemanas. 5. Ukur nilai haba pendam Lpelakuran ais =
Q Pt = = m m
Cikgu Khairul Anuar, SMK Seri Mahkota, Kuantan
Radas (b) ialah radas kawal Prosedur: 1. Timbang jisim bikar (b). 2. Ais dibiarkan melebur dengan menggunakan haba persekitaran selama 5 minit. 3. Timbang jisim bikar (b) + air. 4. Ukur jisim ais yang dileburkan oleh haba persekitaran. Q ialah haba yang dibekalkan oleh pemanas rendam. m ialah jisim ais yang dileburkan di leburkan oleh pemanas sahaja. t ialah masa pemanasan.
16
Modul Pengajaran Fizik Tingkatan 4
Tahun 2013
4.4 Hukum-hukum Gas
Kuantiti-kuantiti fizik gas Terdapat 4 kuantiti fizik yang melibatkan gas iaitu tekanan, isi padu, suhu dan jisim gas. Bagi gas yang berjisim tetap, perubahan pada satu kuantiti fizik akan menyebabkan perubahan pada kuantiti-kuantiti fizik yang lain. Tekanan gas Tekanan gas adalah disebabkan oleh daya per unit luas dihasilkan oleh molekul-molekul gas apabila ia berlanggar dengan dinding bekas yang mengandunginya. Menurut teori kinetik jirim, molekul-molekul gas sentiasa bergerak secara rawak dan sentiasa berlanggar antara satu sama lain dan dengan dinding bekas. Apabila molekul-molekul gas berlanggar dengan dinding bekas, ia akan terpantul balik dengan laju yang sama tetapi dalam arah yang bertentangan. Perubahan momentum yang berlaku semasa perlanggaran menyebabkan satu daya impuls dikenakan ke atas dinding bekas. Daya yang bertindak pada satu luas dinding bekas menghasilkan tekanan gas. Semakin besar kadar perlanggaran (kekerapan) molekul-molekul molekul-molekul gas per unit luas permukaan dinding bekas, semakin besar tekanan gas dihasilkan. Kekerapan perlanggaran molekul-molekul gas pula bergantung kepada ketumpatan gas dan suhu gas. Apabila ketumpatan gas bertambah, bilangan molekul gas seunit isi padu bertambah, dan dengan itu kekerapan perlanggaran antara molekul-molekul molekul-molekul gas dengan dinding bekas bertambah.
Tekanan gas tinggi
Ketumpatan tinggi
Tekanan gas rendah
Ketumpatan rendah
Apabila suhu gas bertambah, halaju molekul-molekul gas bertambah dan dengan itu kekerapan perlanggaran molekul-molekul gas dengan dinding bekas bertambah. Maka, tekanan tekanan gas bertambah.
Molekul gas bersuhu rendah
Cikgu Khairul Anuar, SMK Seri Mahkota, Kuantan
Molekul gas bersuhu tinggi
17
Modul Pengajaran Fizik Tingkatan 4
Hukum Boyle Hukum Boyle menyatakan bahawa bagi suatu gas yang jisimnya tetap, tekanan gas, P berkadar songsang dengan isi padunya, V jika suhu gas, T adalah malar. P
Tahun 2013
1 , V
P = pemalar
1 , V
PV = pemalar
Menurut hukum Boyle, jika tekanan dan isi padu awal suatu gas yang jisimnya tetap ialah P1 dan V1, dan nilai akhirnya bertukar menjadi P2 dan V2 dengan syarat suhu gas itu adalah malar. P1 V1 = P2V2
Tekanan, P1 Tekanan, P2
Isi padu, V1
Isi padu, V2
Hukum Boyle berdasarkan Teori kinetik jirim Pada suhu malar, tenaga kinetik purata molekul-molekul gas adalah malar. Jika isi padu suatu gas berjisim tetap dikurangkan, bilangan molekul seunit isi padu akan bertambah (ketumpatan gas bertambah). Peningkatan bilangan molekul seunit isi padu akan meninggikan kadar perlanggaran antara molekul dengan dinding bekas dan dengan itu meningkatkan daya yang dikenakan ke atas dinding bekas. Apabila daya yang bertindak ke atas dinding bekas bertambah, tekanan gas akan turut bertambah. Oleh itu, tekanan suatu gas yang jisimnya tetap akan bertambah, apabila isi padunya berkurang dengan syarat suhu gas itu adalah malar. Tekanan gas tinggi, Isi padu gas rendah
Tekanan gas rendah, Isi padu gas tinggi
Cikgu Khairul Anuar, SMK Seri Mahkota, Kuantan
18
Modul Pengajaran Fizik Tingkatan 4
Tahun 2013
Latihan: Hukum Boyle P1 V1 = P2V2 (1) Suatu gas mempunyai tekanan 3 x 104 Pa dan berisipadu 0.4 m3. Gas itu mengalami pengembangan sehingga tekanannya menjadi 6 x 104 Pa. Berapakah isipadu gas itu sekarang?
(2) Suatu gelembung udara terbentuk di dasar sebuah laut yang dalamnya 40m. Isipadu gelembung ketika itu ialah 2.0 cm3. Berapakah isipadu gelembung itu apabila tiba di permukaan? (Tekanan atmosfera = 10 m air laut)
(3) Sebiji belon berisipadu 5 cm3 diisikan dengan udara pada tekanan 1 x 105 Pa. Apabila belon ditiup sehingga isipadu 20 cm3, berapakah tekanan gas dalam belon itu sekarang?
(4) Satu gelembung udara berisipadu 0.1 cm3 berada pada dasar sebuah tasik. Jika kedalaman tasik adalah 20 m dan tekanan atmosfera ialah 10 m air, hitungkan isipadu gelembung udara apabila tiba di permukaan air?
(5) Sebuah bikar 500 cm3 ditelangkupkan di permukaan air dan ditenggelamkan sedalam 2.5 m. Berapakah isipadu air yang masuk pada kedalaman tersebut. (Tekanan atmosfera= 10 m air)
(6) Berapa dalamkah sebiji belon perlu ditenggelamkan dalam air supaya isi 2 padunya menjadi isipadu asalnya. 5 (Tekanan atmosfera= 10 m air)
Cikgu Khairul Anuar, SMK Seri Mahkota, Kuantan
19
Modul Pengajaran Fizik Tingkatan 4
(7) Rajah menunjukkan satu tiub kaca yang diisi 5 cm merkuri untuk memerangkap 10 cm udara. Merkuri ditambah sehingga panjang udara terperangkap menjadi 8 cm. Berapakah panjang merkuri ketika itu? (Tekanan atomosfera = 75 cm Hg)
Tahun 2013
(8) Rajah(a) di atas menunjukkan udara terperangkap sepanjang 30 cm oleh 15 cm cm merkuri dalam sebuah tiub kapilari. Tiub kapilari kemudiannya diufukkan sehingga panjang udara udara terperangkap terperangkap menjadi 24 24 cm seperti rajah(b). Tentukan tekanan atmosfera yang bertindak. bertindak.
(9) Terangkan mengapa isi padu gelembung udara semakin bertambah semasa ia bergerak dari bawah ke permukaan air. Gelembung Air laut udara Pam udara
Akuarium
.................................................................................................................................................. .................................................................................................................................................. .................................................................................................................................................. .................................................................................................................................................. .................................................................................................................................................. .................................................................................................................................................. Cikgu Khairul Anuar, SMK Seri Mahkota, Kuantan
20
Modul Pengajaran Fizik Tingkatan 4
Tahun 2013
Eksperimen Hukum Boyle
Graf Hukum Boyle Graf P melawan V P
Hubungan graf P melawan V: ........................................................................ ........................................................................
V
Graf P melawan
1 V
Hubungan graf P melawan melawan
P
1 : V
........................................................................ ........................................................................
1 V
Cikgu Khairul Anuar, SMK Seri Mahkota, Kuantan
21
Modul Pengajaran Fizik Tingkatan 4
Tahun 2013
Hukum Charles Hukum Charles menyatakan bahawa bagi suatu gas yang berjisim tetap, isi padu gas, V berkadar langsung dengan suhu mutlaknya, mutlaknya, T jika tekanan gas itu adalah malar. V VT V = pemalar T = pemalar T Menurut hukum Charles, jika isi padu dan suhu awal suatu gas yang jisimnya tetap ialah V1 dan T1 dan nilai akhirnya bertukar menjadi V2 dan T2 , maka V1 T1
V2 T2
dengan syarat tekanan gas itu adalah malar. Isi padu gas (V1)
Suhu gas (T1)
Isi padu gas (V2)
Suhu gas (T2)
Hukum Charles berdasarkan Teori kinetik jirim Apabila suhu suatu gas ditambah, molekul-molekul gas akan bergerak dengan halaju yang lebih tinggi oleh kerana tenaga kinetik purata molekul bertambah.
Jika isi padu gas kekal malar, tekanan gas akan bertambah kerana molekul-molekul molekul-molekul gas dengan halaju yang lebih tinggi akan berlanggar dengan dinding bekas dengan lebih kerap dan lebih kuat.
Jika tekanan gas perlu dikekalkan, isi padu gas terpaksa bertambah supaya bilangan molekul seunit isi padu dikurangkan dan dengan itu mengekalkan kekerapan perlanggaran perlanggaran antara molekul-molekul gas dengan dinding bekas.
Oleh yang demikian, isi padu suatu gas yang jisimnya tetap akan bertambah apabila suhunya bertambah dengan syarat tekanan gas itu adalah malar.
Suhu gas rendah, isi padu gas rendah
Cikgu Khairul Anuar, SMK Seri Mahkota, Kuantan
Suhu gas tinggi, isi padu gas tinggi
22
Modul Pengajaran Fizik Tingkatan 4
Tahun 2013
Skala Suhu Mutlak
Bagi Suatu gas yang mematuhi hukum Charles, graf isi padu melawan suhu (dalam unit C) ialah satu garis lurus yang tidak melalui asalan. Jika graf ini diekstrapolasikan ke belakang, ia akan memotong paksi suhu pada suhu -273 C.
Suhu -273 C merupakan suhu di mana isi padu gas sepatutnya menjadi sifar jika gas terus mempunyai kelakuan yang sama pada suhu sehingga -273 C.
Oleh itu suhu -273 C merupakan suhu terendah yang mungkin untuk sesuatu gas.
Suhu -273 C juga dikenali sebagai sifar mutlak.
Jika asalan graf dipindahkan ke -273 C iaitu sifar mutlak, graf isi padu melawan suhu kini menjadi satu garis lurus yang melalui asalan.
Skala suhu yang baru dengan asalan pada sifar dikenali sebagai Skala suhu mutlak atau Skala Kelvin.
Isi padu/ cm3
-273 C
/ C
Isi padu/ cm3
T/K Penukaran unit C kepada Kelvin (K)
o
C=(
Contoh penukaran penukaran unit daripada C kepada kepada K: -273 C = (-273 + 273) K = 0 K 0 C = (0 + 273) K = 273 K 100 C = (100 + 273) K = 373 K
+ 273 ) K Penukaran unit ini penting dalam menyelesaikan masalah melibatkan hukum Charles dan hukum tekanan.
Latihan : Hukum Charles V1 V2
T1
T2
T ialah nilai suhu dalam unit Kelvin (1) Suatu jisim gas tertentu pada tekanan tetap mempunyai isipadu 4.0 m3 pada suhu 30 C. Berapakah isipadu gas pada suhu 60 C?
Cikgu Khairul Anuar, SMK Seri Mahkota, Kuantan
23
Modul Pengajaran Fizik Tingkatan 4
(2) Jadual di sebelah menunjukkan nilainilai isipadu dan suhu suatu gas pada tekanan tetap. Hitungkan nilai X.
Tahun 2013
V /cm3
150
300
T / oC
-23
X
(3) Satu salur kaca memerangkap memerangkap udara sepanjang 29 cm pada suhu 17 C dengan menggunakan merkuri sepanjang 5 cm. Berapakah panjang udara terperangkap bila salur kaca ini dipanaskan pada suhu 57 C?
(4) Rajah menunjukkan turus udara terperangkap sepanjang 10 cm oleh sejalur merkuri 5 cm pada suhu 270C. Pada suhu berapakah turus udara terperangkap perlu dipanaskan supaya panjangnya menjadi 10.9 cm?
(5) Rajah menunjukkan turus udara terperangkap sepanjang 9 cm oleh sejalur merkuri 5 cm pada suhu 27oC. Berapakah panjang udara terperangkap itu pada suhu 67oC?
Cikgu Khairul Anuar, SMK Seri Mahkota, Kuantan
24
Modul Pengajaran Fizik Tingkatan 4
Tahun 2013
Eksperimen Hukum Charles
Asid sulfurik ekat s u r u t a r g a n d a u j n a P
Graf bagi Hukum Charles Graf isi padu udara melawan suhu mutlak Hubungan graf V melawan melawan suhu suhu mutlak, T:
Isi padu udara, V
................................................................ ................................................................ ................................................................ Suhu mutlak, T/K Graf isi padu udara melawan suhu Isi padu udara, V
Hubungan graf V melawan suhu, : ................................................................ ................................................................ ................................................................
- 273
Suhu, / C
Cikgu Khairul Anuar, SMK Seri Mahkota, Kuantan
25
Modul Pengajaran Fizik Tingkatan 4
Hukum Tekanan Hukum Tekanan menyatakan bahawa bagi suatu gas yang jisimnya tetap, tekanan gas, P berkadar langsung dengan suhu mutlaknya, T jika isi padu gas itu adalah malar. P T
Tahun 2013
P
P = pemalar T
T
pemalar
Menurut hukum tekanan, jika tekanan dan suhu awal suatu gas yang jisimnya tetap ialah P1 dan T1, dan nilai akhirnya bertukar menjadi P2 dan T2, maka
P1 T1
P2 T2
dengan syarat isi padu gas itu adalah malar.
Hukum tekanan berdasarkan Teori kinetik jirim Apabila suhu suatu gas dinaikkan, molekul-molekul gas akan bergerak dengan halaju yang lebih tinggi.
Jika isi padu gas kekal malar, molekul-molekul gas dengan halaju yan lebih tinggi akan berlanggar dengan dinding bekas dengan lebih kerap dan lebih kuat.
Dengan itu molekul-molekul gas mengenakan daya yang lebih besar ke atas dinding bekas yang mengandunginya.
Apabila daya yang dikenakan ke atas dinding bekas bertambah, tekanan gas akan turut bertambah.
Oleh yang demikian, tekanan suatu gas yang jisimnya tetap akan bertambah apabila suhunya bertambah dengan syarat isi padu gas itu malar.
Apabila suhu berkurang, maka tekanan udara berkurang
Cikgu Khairul Anuar, SMK Seri Mahkota, Kuantan
Apabila suhu bertambah, maka tekanan udara bertambah
26
Modul Pengajaran Fizik Tingkatan 4
Tahun 2013
Latihan: Hukum Tekanan P1 P2 T1
T2
T ialah nilai suhu dalam unit Kelvin (1) Sebuah bekas kedap udara (2) Tekanan udara dalam sebuah tayar mengandungi udara pada tekanan 1 kereta sebelum memulakan perjalanan atm. Suhu awal udara dalam bekas itu adalah 22 kPa. Pada ketika itu suhu udara ialah 27 C. Berapakah tekanan udara di dalam tayar adalah 30 C. Tekanan udara dalam bekas itu jika suhu udara di di dalam tayar meningkat menjadi 25 kPa selepas perjalanan jauh. Berapakah suhu dalamnya ditingkatkan menjadi 87 C? udara di dalam kereta pada ketika itu? Anggap isi padu tayar tidak berubah.
Eksperimen Hukum tekanan
Cikgu Khairul Anuar, SMK Seri Mahkota, Kuantan
27
Modul Pengajaran Fizik Tingkatan 4
Tahun 2013
Graf bagi Hukum Hukum Tekanan Graf tekanan, P melawan suhu mutlak, T
Hubungan graf tekanan, P melawan suhu mutlak, T:
Tekanan, P
................................................................ ................................................................ ................................................................ Suhu mutlak/K Graf tekanan, P melawan suhu Tekanan, P
Hubungan graf tekanan, P melawan suhu: ................................................................ ................................................................ ............................................................... Suhu/ C
- 273
Gambar rajah Susunan radas eksperimen Hukum Boyle
Udara terperangkap
Tolok Bourdon
Injap
Minyak
Pam angin Cikgu Khairul Anuar, SMK Seri Mahkota, Kuantan
28
Modul Pengajaran Fizik Tingkatan 4
Tahun 2013
Susunan radas eksperimen Hukum Charles
Termometer
Tiub kapikari
L
Getah gelang
L ialah panjang turus gas yang mewakili isi padu gas terperangkap. Susunan radas eksperimen Hukum Tekanan
Termometer
Tiub getah
Tolok Bourdon Air
Udara
Cikgu Khairul Anuar, SMK Seri Mahkota, Kuantan
29
Modul Pengajaran Fizik Tingkatan 4
Cikgu Khairul Anuar, SMK Seri Mahkota, Kuantan
Tahun 2013
30