complete course of calculus for engineeringDescripción completa
Descripción completa
Calculus with Analytic Geometry Published by Earl W. Swokowski Alternate EditionFull description
Analytic Geometry by Love and Rainville
A concise presentation of analytic geometry and basic vector operations.Deskripsi lengkap
Analytic Geometry, MATH 004, TIP Reviewer, James LindoFull description
Calculus with Analytic Geometry Published by Earl W. Swokowski Alternate EditionDescripción completa
Analytic Geometry
Calculus by ZillFull description
TECHNOLOGICAL INSTITUTE OF THE PHILIPPINES MANILA ANALYTIC ANALYTIC GEOMETRY NAME:__________________________________ DATE:JULY 30, 2014 ENGR. LORRAINE CARRILLO INSTRUCTIONS: Enc!c"# $%# c&!!#c$ 'n()#! 'n* +!&*# $%# (&"-$&n( &! +!&/"# (&"n -#($&n( 1. Give iven an el ellips lipsee (x (x2 / 36) + (y 2 / 32) = 1. Determine the distance between the !ci. a. " b. # c. 2 d. 3
2.
3.
#.
.
$he se%m se%ment ent r!m r!m (&1'#) (&1'#) t! (2'&2 (2'&2)) is extende extended d three three times times three times its !wn len%th. $he terminal p!int is a. (11'&2#) b. (&11'2) c. (11'&1") d. (11'&2) 2
2
ind ind the the val*e val*e ! !r which which the the e,*at e,*ati!n i!n x + y + #x - 2y - = represents a p!int circle. a. b. 6 c. & d. &6
!int !int (x'y (x'y)) m!ves m!ves with with a distanc distancee r!m p!in p!intt ('1) ('1) !ne hal ! its distance r!m line y = #. $he e,*ati!n ! its l!c*s is a. 2x2y2= b. #x2+3y2= 2 2 c. 2x +y =3 d. x2+2y2=# ind ind the area area ! the tria trian% n%le le which which the line line 2x&3y 2x&3y+6 +6= = !rm with the c!!rdinate axes. a. 3 b. # c. d. 2
6.
0 the p!int p!intss (&2'3)' (&2'3)' (x'y (x'y)) and (&3') (&3') lip lip !n a strai%ht strai%ht line' line' then the e,*ati!n ! the line is a. x&2y&1= b. 2x+y&1= c. x+2y&1= d. 2x+y+1=.
.
ind ind the c!!rd c!!rdina inates tes ! the the vertex vertex ! the the parab! parab!la la y=x2& #x+1 by main% *se ! the act that at the vertex' the sl!pe ! the tan%ent line is er!. a. (2'&3) b. (&2'&3) c. (&1'3) d. (3'&2)
".
.
$he parab!lic antenna has an e,*ati!n Determine the len%th ! the lat*s rect*m. a. " b. 1 c. 12
y2+"x=.
c. "2.#
d. 2.#
13. ind ind the val*e ! i the distance distance r!m r!m the p!int (2'1) (2'1) t! the line x+12y+= is 2. a. b. 2 c. # d. 3 1#. Determin Determinee the arthest arthest distance distance r!m r!m the p!int (3') (3') t! the 2 2 circle x +y +#x&6y&12=. a. 6.# b. 1.# c. 11.# d. #.6
1. 0 the lines lines #x&y+2= #x&y+2= and x+2y+1= x+2y+1= are perpendic perpendic*lar *lar t! each !ther' determine the val*e ! . a. 3 b. # c. 1 d. 2
16. 9hat 9hat is the e,*ati e,*ati!n !n ! the line line thr!*% thr!*%h h (&3' (&3')) which which maes an an%le ! # de%rees with the line 2x+y=12: a. x+3y&12= b. x+3y+1"= c. x+2y&= d. x&3y&1"= 1. Determin Determinee the e,*ati!n e,*ati!n ! the perpendic*la perpendic*larr bisect!r bisect!r ! the se%ment ; i (&2'3) and ;(#'&). a. 3y&3x+= b. #x&3y+= c. 6x&"y&1#= d. 3xy&= 1". 0 the p!ints p!ints (&3'&)' (&3'&)' (p',) (p',) and (3'#) (3'#) lie !n a strai%ht strai%ht line' line' which ! the !ll!win% is c!rrect: a. 2p&3,=1 b. p+,=&3 c. 3p&2,=1 d. 2p&,=3 1.
2. 2. 0 the the stra strai% i%ht ht line liness ax+by ax+by+c +c= = and and bx+cy bx+cy+a +a= = are are parallel' then then which ! the !ll!win% is c!rrect: a. b2ac b. b2=ac c. b2+ac= d. a2=bc 21. !mp*te !mp*te the len%th len%th ! the lat*s rect*m rect*m ! the parab!la parab!la y 2& #y&12x&32=. a. 1 b. 12 c. 11 d. 16
d.
ind ind the area area ! the the hexa%!n hexa%!n 45D 45D7 7 !rm !rmed ed by 8!inin 8!inin% % the p!ints 4(1'#)' 5('&3)' (2'3)' D(&1'2)' 7(&2'&1) and (3'). a. 2# b. 2 c. 22 d. 1
1. ind the e,*ati! e,*ati!n n ! the parab!la parab!la wh!se axis is paralle parallell t! the x&axis and passes thr!*%h the p!ints (3'1)' (') and ("'). a. x2&2x&y= b. x2+2x+y= c. y2+2y+x= d. y2+2y&x= 11. 11. 4 p!int p!int (x'2) is e,*idista e,*idistant nt r!m the p!ints p!ints (&2') and (#'&). $he val*e ! x is a. 11/3 b. 2/3 c. 1/3 d. 6
12. 12. ind ind the the an%l an%lee betw betwee een n the the plan planes es 3x&y 3x&y+ +& &= = and and x+2y+2+2=. a. 62.# b. 2.#
22. ind ind the e,*ati!n e,*ati!n ! the circle circle havin% (1'2) (1'2) and (6'#) (6'#) as ends ! a diameter: a. x2+y2&16x+2y+2= b. x2+y2&1#x+2y+2= c. x2+y2&16x+"y+1= d x2+y2+1"x+2y+2= 23. 23. 4 para parab! b!li licc arc arc !ver !ver a t*nn t*nnel el !r !r a r!ad r!ad thr! thr!*% *%h h a m!*ntain is 2 t hi%h. $he width ! the arc 12 t r!m the t!p is 6 t. !w wide is the arc at the b!tt!m: a. "" t b. 6 t c. " t d. "# t
2#. ind ind the eccentricity eccentricity ! a hyperb!la hyperb!la wh!se transver transverse se and c!n8*%ate axes are e,*al in len%th. a. ."23 b. 1.2 c. 1.#1# d. 1.3#
2. ind ind the distance distance between between p!int (1''&3) (1''&3) r!m r!m the plane #x+y+"+33=. a. 3 b. # c. 2 d. 1