ADDITIONAL MATHEMATICS CHAPTER 1 : FUNCTION
BY : cg.aiman FUNCTIONS Function
Relations 1. #rro #rro$ $ %iag %iagra ram m
• • • •
ON! to ON! ON! to "#NY "#NY to ON! "#NY to "#NY
Function
f:2
Comosite
inverse function
f'2+ 3 4
fg'2+ 3 f
4
f 51'4+ 3 2
Or 888888888888 888888888888
1. Or%e Or%ere re% % air airs s
gf
&'()*+)',)-+) '*)1+/
g 2
(. ras
f 4
1.0Relation f 51
g51
!2ress te relation et$een te follo$ing airs of set in te form of arro$ %iagram) or%ere% air an% gra. #rro$ %iagram a+ Set # 3 &;elantan) Selangor) / Relation: =Numer of e%ge? c+ Set # 3 & -) 1) */ Set B 3 & *) ( ,/ Relation: =S@uare root of numer?
Or%ere% air
ra
9
!2ress te relation et$een te follo$ing airs of set in te form of arro$ %iagram) or%ere% air an% gra. #rro$ %iagram
Or%ere% air
ra
a+ Set # 3 &;elantan) Selangor) / Relation: =Numer of e%ge? c+ Set # 3 & -) 1) */ Set B 3 & *) ( ,/ Relation: =S@uare root of numer? %+ Set 2 3 & () >) ) A/ Set 4 3 & *) 1() 10) 1*/ Relation: (2
1.1etermine %omain) co%omain) oect) image an% range of relation Dist %o$n te %omain) co%omain) oect) image an% range of te follo$ing realtion
omain
3 &EEEEEEEEEE/
Co%omain 3 &EEEEEEEEEE./ Oect
3 EEEEEEEEEEE
Image
3 EEEEEEEEEE..
Range
3 &EEEEEEEEEE/
State te t4e of te follo$ing relation
1.1etermine %omain) co%omain) oect) image an% range of relation
State te t4e of te follo$ing relation
Dist %o$n te %omain) co%omain) oect) image an% range of te follo$ing realtion
omain
3 &EEEEEEEEEE/
Co%omain 3 &EEEEEEEEEE./ Oect
3 EEEEEEEEEEE
Image
3 EEEEEEEEEE..
Range
3 &EEEEEEEEEE/
(.0 Function 1.(Classif4ing te t4es of te relations
a+ Fin% te image for eac of te follo$ing function i+f:2 (2 f'>+ 3
x
ii+g:2
5
iii+'2+ 3 ⎸2 5 ,⎹ Gn% '*+ an% '5,+.
!H!RCIS! 'CDON! #SS Y!#R S"+ 1. iven te function f:x ⎸2 5 (⎹) Gn% te values of 2 suc tat f'2+ 3 . (00A aer 1:@uestion (
Gn% g'5,+
+ Fin% te oect for eac of te follo$ing function i+ f'2+ 3 (2 A for $ic f'2+ 3,
8
ii+ g'2+ 3
2 x + 1
for $ic g'2+ 3 *
iii+ '2+ 3 ⎸2 5 ,⎹ for $ic ave te image >.
(. It is given tat te function f(x)3 p J , x ) $ere is a constant. Fin% te value of suc tat f ' p+ 3* (01( aer 1: @uestion ,
a+ Fin% te image for eac of te follo$ing function i+f:2 (2 f'>+ 3
x
ii+g:2
5
iii+'2+ 3 ⎸2 5 ,⎹ Gn% '*+ an% '5,+.
!H!RCIS! 'CDON! #SS Y!#R S"+ 1. iven te function f:x ⎸2 5 (⎹) Gn% te values of 2 suc tat f'2+ 3 . (00A aer 1:@uestion (
Gn% g'5,+
+ Fin% te oect for eac of te follo$ing function i+ f'2+ 3 (2 A for $ic f'2+ 3,
8
ii+ g'2+ 3
2 x + 1
iii+ '2+ 3 ⎸2 5 ,⎹ for $ic ave te image >.
for $ic g'2+ 3 *
(. It is given tat te function f(x)3 p J , x ) $ere is a constant. Fin% te value of suc tat f ' p+ 3* (01( aer 1: @uestion ,
,.0 Comosite function
,.1 a+ Fin% te follo$ing comosite functions. i+f'2+ 3 (2 , g'2+ 3 152 fg'2+ 3
ii+ g'2+ 3 ( >2 Gn% g('2+
,.1 c+ Solve x
iii+ g'2+ 3 1 5
2 4
'2+ 3
x
g'2+3
,.1 + Fin% te value for eac of te follo$ing comosite functions. i+f'2+ 3 (2 , g'2+ 3 152 fg'*+
ii+ f'2+ 3 (2 , g'2+ 3 ( >2( gf',+ 3
iii+ f'2+ 3 (2 1 g'2+ 3 a2( gf'2+ 3 1(2( 1(2 A a+Gn% a an% + Gn% g('>+
,.1 a+ Fin% te follo$ing comosite functions. i+f'2+ 3 (2 , g'2+ 3 152 fg'2+ 3
ii+ g'2+ 3 ( >2 Gn% g('2+
,.1 c+ Solve x
iii+ g'2+ 3 1 5
2 4
'2+ 3
x
g'2+3
,.1 + Fin% te value for eac of te follo$ing comosite functions. i+f'2+ 3 (2 , g'2+ 3 152 fg'*+
ii+ f'2+ 3 (2 , g'2+ 3 ( >2( gf',+ 3
iii+ f'2+ 3 (2 1 g'2+ 3 a2( gf'2+ 3 1(2( 1(2 A a+Gn% a an% + Gn% g('>+
!H!RCIS! 'CDON! #SS Y!#R S"+ *.0 Inverse function
12
1. iven te function '2+ 3
x
)2
≠
0 an%
te comosite function g'2+ 3 *2) Gn% a+ g'2+ + te value of 2 $en g'2+ 3 K (00* aer 1: @uestion ,
(. L : 2 2 @) $ere an% @ are constants) an% M 0. L( : 2 (>2 *( Fin% te values of an% @.
f'2+ 3 4 f 51'4+ 3 2 a+ Fin% te inverse function of eac of te follo$ing functions.
!H!RCIS! 'CDON! #SS Y!#R S"+ *.0 Inverse function
12
1. iven te function '2+ 3
x
)2
≠
0 an%
te comosite function g'2+ 3 *2) Gn% a+ g'2+ + te value of 2 $en g'2+ 3 K (00* aer 1: @uestion ,
f'2+ 3 4 f 51'4+ 3 2 a+ Fin% te inverse function of eac of te follo$ing functions.
(. L : 2 2 @) $ere an% @ are constants) an% M 0. L( : 2 (>2 *( Fin% te values of an% @. (00A: aer 1:@uestion,
+ Fin% te inverse function of eac of te follo$ing function in term of an% @.
Solving comosite an% inverse function x
a+ iven tat f '2+ 3 a2 an% f 51 '2+ 3
−3 4
)
Gn% i+Te values of a an% ii+ Te value of f'5+ iii+Te value of 51',+
+ iven te functions g '2+ 3 ,2 1 an% '2+ 3 2(
+ Fin% te inverse function of eac of te follo$ing function in term of an% @.
Solving comosite an% inverse function x
a+ iven tat f '2+ 3 a2 an% f 51 '2+ 3
−3 4
)
Gn% i+Te values of a an% ii+ Te value of f'5+ iii+Te value of 51',+
+ iven te functions g '2+ 3 ,2 1 an% '2+ 3 2( J 2 () Gn% i+te value of g 51'(+ ii+te comosite function g'2+.
S" #SS Year !2am 1. 'sm (01*)aer 1) 1+
S" #SS Year !2am 1. 'sm (01*)aer 1) 1+
(. 'Sm (01*) aer 1)(+
,. 'sm (01*) aer () ,+
*. 'sm (01,) aer 1) 1+
>. 'sm (01,) aer 1) (+
. 'sm (01,) aer 1) ,+
A. 'sm) (01() aer 1) 1+
K. 'sm (01() aer 1) (+
-. 'sm (01() aer 1) ,+