Additional Maths 360 solutions (Unofficial) [29 Sept 2014] Visit sleightofmath.com for up-to-date pdf and video solutions. Authors: Daniel and Samuel from Sleight of Math Disclaimer: Sleight of Math has no affiliations with the publisher of Additional Maths 360 i.e. Marshall Cavendish
Table of Contents Ex 1.1 ......................................................................................................... 3
Ex 6.1 ................................................................................................... 143
Ex 1.2 ......................................................................................................... 9
Ex 6.2 ................................................................................................... 149
Ex 1.3 .......................................................................................................20
Ex 6.3 ................................................................................................... 153
Ex 1.4 .......................................................................................................29
Ex 6.4 ................................................................................................... 162
Rev Ex 1..................................................................................................35
Rev Ex 6 .............................................................................................. 167
Ex 2.1 .......................................................................................................42
Ex 7.1 ................................................................................................... 174
Ex 2.2 .......................................................................................................51
Ex 7.2 ................................................................................................... 180
Ex 2.3 .......................................................................................................55
Ex 7.3 ................................................................................................... 184
Ex 2.4 .......................................................................................................60
Ex 7.4 ................................................................................................... 189
Rev Ex 2..................................................................................................63
Ex 7.5 ................................................................................................... 193 Rev Ex 7 .............................................................................................. 196
Ex 3.1 .......................................................................................................67 Ex 3.2 .......................................................................................................72
Ex 8.1 ................................................................................................... 202
Ex 3.3 .......................................................................................................78
Ex 8.2 ................................................................................................... 209
Ex 3.4 .......................................................................................................81
Rev Ex 8 .............................................................................................. 224
Ex 3.5 .......................................................................................................86 Ex 3.6 .......................................................................................................91
Ex 9.1 ................................................................................................... 233
Rev Ex 3..................................................................................................98
Ex 9.2 ................................................................................................... 242 Rev Ex 9 .............................................................................................. 252
Ex 4.1 .................................................................................................... 103 Ex 4.2 .................................................................................................... 108
Ex 10.1 ................................................................................................. 259
Rev Ex 4............................................................................................... 114
Ex 10.2 ................................................................................................. 266 Ex 10.3 ................................................................................................. 272
Ex 5.1 .................................................................................................... 118
Rev Ex 10............................................................................................ 280
Ex 5.2 .................................................................................................... 127 Rev Ex 5............................................................................................... 138
Ex 11.1 ................................................................................................. 288 Ex 11.2 ................................................................................................. 291 Ex 11.3 ................................................................................................. 298 Rev Ex 11............................................................................................ 319
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
1
Additional Maths 360 solutions (Unofficial) [29 Sept 2014] Visit sleightofmath.com for up-to-date pdf and video solutions. Authors: Daniel and Samuel from Sleight of Math Disclaimer: Sleight of Math has no affiliations with the publisher of Additional Maths 360 i.e. Marshall Cavendish Ex 12.1 ................................................................................................. 326
Ex 18.1 ................................................................................................. 495
Ex 12.2 ................................................................................................. 330
Ex 18.2 ................................................................................................. 503
Rev Ex 12 ............................................................................................ 339
Ex 18.3 ................................................................................................. 509 Ex 18.4 ................................................................................................. 512
Ex 13.1 ................................................................................................. 347
Rev Ex 18............................................................................................ 517
Ex 13.2 ................................................................................................. 356 Ex 13.3 ................................................................................................. 366
Ex 19.1 ................................................................................................. 523
Rev Ex 13 ............................................................................................ 376
Ex 19.2 ................................................................................................. 530 Rev Ex 19............................................................................................ 535
Ex 14.1 ................................................................................................. 383 Ex 14.2 ................................................................................................. 390
Ex 20.1 ................................................................................................. 539
Ex 14.3 ................................................................................................. 396
Rev Ex 20............................................................................................ 548
Ex 14.4 ................................................................................................. 400 Rev Ex 14 ............................................................................................ 407 Ex 15.1 ................................................................................................. 410 Ex 15.2 ................................................................................................. 418 Ex 15.3 ................................................................................................. 421 Ex 15.4 ................................................................................................. 423 Rev Ex 15 ............................................................................................ 430 Ex 16.1 ................................................................................................. 436 Ex 16.2 ................................................................................................. 445 Rev Ex 16 ............................................................................................ 454 Ex 17.1 ................................................................................................. 460 Ex 17.2 ................................................................................................. 470 Ex 17.3 ................................................................................................. 479 Rev Ex 17 ............................................................................................ 488
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
2
A math 360 sol (unofficial)
Ex 1.1 2(a)
Ex 1.1 1(a)
y = 2x + 1 −(1) 2 y = x + 2x − 3 −(2) sub (1) into (2): 2x + 1 = x 2 + 2x − 3 2 x −4 =0 (x + 2)(x − 2) = 0 x = −2 ✓ or x = 2 ✓ y|x=−2 = 2(−2) + 1 y|x=2 = 2(2) + 1 = −3 ✓ =5✓
1(b)
y=2+x y = 2x 2 − 5x − 6
y=2−x 2x 2 + xy + 1 = 0 sub (1) into (2): 2x 2 + x(2 − x) + 1 2x 2 + 2x − x 2 + 1 x 2 + 2x + 1 (x + 1)2 x = −1 y|x=−1 = 2 − (−1) ⇒ (−1,3) ✓
2(b)
−(1) −(2)
y = 1 − 3x x2 + y2 = 5
−(1) −(2)
=5 =5 =0 =0 =0 or
5
x=1
2
y|x=−2 = 1 − 3 (− )
y|x=1 = 1 − 3(1)
5
5
11
= −2
5 2 11
2x + y = 4 y = 4 − 2x −(1)
⇒ (− , 5
2(c)
5
)✓
⇒ (1, −2) ✓
3x + 2y = 1 2y = 1 − 3x y
=
1−3x 2
−(1)
3x 2 + 2y 2 = 11 −(2) sub (1) into (2): 3x 2 + 2 ( 3x 2 + 2 (
1−3x 2
)
2 1−6x+9x2 4
= 11 )
= 11
6x 2 + (1 − 6x + 9x 2 ) = 22 15x 2 − 6x − 21 =0 5x 2 − 2x − 7 =0 (5x − 7)(x + 1) =0 x=
7
or x = −1
5
y|x=7 =
7 5
1−3( )
5
=− 7
8
5
5
2 8 5
⇒ ( ,− ) ✓
© Daniel & Samuel A-math tuition 📞9133 9982
=3
2
x=−
=
y 2 − 4x = 0 −(2) sub (1) into (2): (4 − 2x)2 − 4x =0 2 (16 − 16x + 4x ) − 4x = 0 4x 2 − 20x + 16 =0 2 x − 5x + 4 =0 (x − 1)(x − 4) =0 x=1 or x = 4 ✓ y|x=1 = 4 − 2(1) y|x=4 = 4 − 2(4) =2✓ = −4 ✓
=0 =0 =0 =0
sub (1) into (2): x 2 + (1 − 3x)2 x 2 + (1 − 6x + 9x 2 ) 10x 2 − 6x − 4 5x 2 − 3x − 2 (5x + 2)(x − 1)
sub (1) into (2): 2+x = 2x 2 − 5x − 6 2 2x − 6x − 8 = 0 x 2 − 3x − 4 =0 (x + 1)(x − 4) = 0 x = −1 ✓ or x = 4 ✓ y|x=−1 = 2 + (−1) y|x=4 = 2 + (4) =1✓ =6✓ 1(c)
−(1) −(2)
sleightofmath.com
y|x=−1 =
1−3(−1) 2
=2 ⇒ (−1,2) ✓
3
A math 360 sol (unofficial) 3
x2
y
Ex 1.1
+ =3
−(1)
x + y= 8 y =8−x
−(2)
4
3
5(ii)
Perimeter 2x + 2y x+y y
sub (2) into (1): x2 4
+
(8−x)
(3x 2 ) + (32 − 4x) = 36 3x 2 − 4x − 4 =0 (3x + 2)(x − 2) =0 2 3
4(i) 𝑦
4x + 4y = 32 x+y =8 y =8−x ✓
−(1)
x 2 + y 2 = 34 ✓
−(2)
4(iii) sub (1) into (2): x 2 + (8 − x)2 = 34 2 2 x + (64 − 16x + x ) = 34 2x 2 − 16x + 30 =0 2 x − 8x + 15 =0 (x − 3)(x − 5) =0 x=3 or x=5 y|x=3 = 5✓ y|x=5 = 3✓ ∴ the length of the sides are 3cm & 5cm ✓ 5(i)
= 60 = 60 = 30 = 30 − x −(2)
sub (2) into (1): x(30 − x) = 216 2 (30x − x ) = 216 2 x − 30x + 216 = 0 (x − 12)(x − 18) = 0 x = 12 or y|x=12 = 30 − (12) = 18 ∴ 12 m by 18 m ✓
x = − or x = 2 ✓
4(ii)
−(1)
=3
3
𝑥
Area = 216 xy = 216
𝑦 𝑥 Area = xy ✓ Perimeter = 2x + 2y ✓
© Daniel & Samuel A-math tuition 📞9133 9982
6(a)
x = 18 y|x=18 = 30 − (18) = 12
3x − 2y = 1 2y = 3x − 1 y
=
3x−1 2
−(1)
(x − 2)2 + (2y + 3)2 = 26 sub (1) into (2): (x − 2)2
+ [2 (
3x−1 2
) + 3]
−(2) 2
= 26
x 2 − 4x + 4 + (3x − 1 + 3)2 = 26 x 2 − 4x + 4 + (3x + 2)2 = 26 2 2 (9x x − 4x + 4 + + 12x + 4) = 26 10x 2 + 8x + 8 = 26 10x 2 + 8x − 18 = 0 5x 2 + 4x − 9 =0 (5x + 9)(x − 1) = 0 x=−
9
or
5
y|x=−9 =
9 3(− )−1 5
5
=−
sleightofmath.com
2 16 5
✓
x=1✓ y|x=1 =
3(1)−1 2
=1✓
4
A math 360 sol (unofficial) 6(b)
Ex 1.1
x 2 − 2xy + y 2 = 1 x − 2y −2y
=2 = −x + 2
y
= x−1
7(a)
−(1)
xy + 20 = 5x
−(1)
x − 2y − 3 = 0 −2y = −x + 3
1
y
−(2)
2
1
3
2
2
= x−
−(2)
sub (1) into (2): 1
1
x 2 − 2x ( x − 1) + ( x − 1) 2
2
2
x − x + 2x 2x 1 2 x 4 1 2 x 4 2
sub (2) into (1):
=1
+x
=0
1
y|x=0 = (0) − 1
2 1 2 x 2 2
2
= −1 ✓
−
2 13 2
x + 20
1
3
2
2
y|x=5 = (5) −
=0
2
= −3 ✓ 7(b)
1
= x + 1 −(1)
=
⇒ (5,1) ✓
1
3
2 5
2
y|x=8 = (8) −
=1
1
= (−4) − 1
3y − x = 3 3y =x+3 y
= 5x
x − 13x + 40 =0 (x − 5)(x − 8) =0 x=5 or x = 8
x = −4 ✓ y|x=−4
2 3
1
=0 =0 or
3
2
( x 2 − x) +20 = 5x
=1 =1
1
x ( x − ) + 20
=1
+x+1
x + 4x x(x + 4) x=0✓
6(c)
2
2 1 + ( x 2 − x + 1) 4 1 2 +( x − x + 1) 4
2 5
⇒ (8, ) ✓ 2
2x − y = 4 −y = −2x + 4 y = 2x − 4
−(1)
2x 2 + 4xy − 3y = 0
−(2)
3
2
1
3y
− =2
−(2)
x
sub (1) into (2): 2
−
1 3
3( x+1) 2
−
x+3
1 1
=2
x
2x −(x + 3) 2x −x − 3 x−3 0 2x 2 + 5x + 3 (2x + 3)(x + 1) 3
x=− ✓
= 2x(x + 3) = 2x 2 + 6x = 2x 2 + 6x = 2x 2 + 5x + 3 =0 =0 or
2
1
3
3 1
2
y|x=−3 = (− ) + 1 2
sub (1) into (2): 2x 2 + 4x(2x − 4) − 3(2x − 4) 2x 2 + (8x 2 − 16x) −6x + 12 (10x 2 − 16x) −6x + 12 10x 2 − 22x + 12 5x 2 − 11x + 6 (5x − 6)(x − 1)
=2
x
= ✓ 2
© Daniel & Samuel A-math tuition 📞9133 9982
x=
6
or
5 6
y|x=6 = 2 ( ) − 4
x = −1 ✓
5
=−
1
y|x=−1 = (−1) + 1 3 2
6
8
5
5
5 8 5
⇒ ( ,− ) ✓
= ✓
=0 =0 =0 =0 =0 =0
x=1 y|x=1 = 2(1) − 4 = −2 ⇒ (1, −2) ✓
3
sleightofmath.com
5
A math 360 sol (unofficial) 7(c)
Ex 1.1
3x + y = 1 y = 1 − 3x
9 4𝑥
By Pythagoras Theorem, (4x)2 + (3x)2 = 152 16x 2 + 9x 2 = 225 25x 2 = 225 2 x =9 x = 3 or x = −3 (rej)
(x + y)(x + 2y) = 3 −(2) (1) (2): sub into [x + (1 − 3x)][x + 2(1 − 3x)] = 3 (1 − 2x)(x + 2 − 6x) =3 (1 − 2x)(2 − 5x) =3 (5x − 2)(2x − 1) =3 2 10x − 9x + 2 =3 2 10x − 9x − 1 =0 (10x + 1)(x − 1) =0 x=−
1
y|x=− 1 = 1 − 3 (− 10
= ⇒ (− 8
2x y
,
1
)
10
y|x=1 = 1 − 3(1)
13 10 13
)✓
⇒ (1, −2) ✓
10 10
y
−(1)
x
3x − y = 2 3x − 2 = y y = 3x − 2 −(2) sub (2) into (1): 2x
+
10(i) 𝑦
= −2
+ =3
3x−2 2
Width = 4(3) = 12 inch ✓ Height = 3(3) = 9 inch ✓
or x = 1
10
1
3𝑥
−(1)
3x−2
=3
x 2
2x + (3x − 2) = 3(3x 2 − 2x) 2x 2 + (9x 2 − 12x + 4) = 9x 2 − 6x 11x 2 − 12x + 4 = 9x 2 − 6x 2 2x − 6x + 4 =0 2 x − 3x + 2 =0 (x − 1)(x − 2) =0 x=1 or x = 2 y|x=1 = 3(1) − 2 y|x=2 = 3(2) − 2 =1 =4 ⇒ A(1,1) ✓ ⇒ B(2,4) ✓
© Daniel & Samuel A-math tuition 📞9133 9982
5 𝑥
By Pythagoras’ Theorem, x 2 + y 2 = 52 x 2 + y 2 = 25 ✓ −(1) 10(ii) y − x = 1 y =x+1 −(2) sub (1) into (2): x 2 + (x + 1)2 = 25 2 2 x + (x + 2x + 1) = 25 2x 2 + 2x + 1 = 25 2x 2 + 2x − 24 =0 2 x + x − 12 =0 (x + 4)(x − 3) =0 x = −4 ✓ or x=3✓ y|x=−4 = (−4) + 1 y|x=3 = (3) + 1 = −3 ✓ =4✓ 10(iii) ∵ length cannot be negative, x = 3, y = 4
sleightofmath.com
6
A math 360 sol (unofficial)
Ex 1.1
11(i) x 2 + xy + ay = b at {x = 2, y = 1} (2)2 + (2)(1) + a(1) = b 6+a =b b =a+6 −(1) 2ax + 3y = b at {x = 2, y = 1} 2a(2) + 3(1) = b 4a + 3 =b sub (1) into (2): 4a + 3 = 6 + a 3a =3 a =1✓ b|a=1 = 7 ✓
12(i) 1st eqn 12x 2 − 5y 2 = 7 At (1, p), 12(1)2 − 5(p)2 = 7 12 − 5p2 =7 2 −5p = −5 p2 =1 p = ±1
−(2)
2nd eqn 2p2 x − 5y = 7 At (1, p), 2p2 (1) − 5(p) = 7 2p2 − 5p − 7 = 0 (2p − 7)(p + 1) = 0
11(ii) Put a − 1, b = 7 into both equations, x 2 + xy + y = 7 −(1)
2
7
3
3
= − x + −(2)
2
7
3
3 7
x + x (− x + ) 2 x + (− x 2 + x) 3 3 1 2 7 x + x 3 3 1 2 5 7 2
x + x+
3 1 2 x 3 2
3 5
3 14
3
3
+ x−
or p = −1
2
∴ p = −1 (common sol) ✓
−(1)
2x − 5y = 7 −5y = −2x + 7
sub (2) into (1): 2
7
12(ii) At p = −1, 12x 2 − 5y 2 = 7
2x + 3y = 7 3y = −2x + 7 y
p=
y 2
7
3 2
3 7
3 2
3 7
3
3
2
7
5
5
= x−
+ (− x + ) = 7 + (− x + ) = 7
sub (2) into (1):
+ (− x + ) = 7
12x 2 − 5 ( x − )
=7
12x 2 − 5 (
=0
x + 5x − 14 = 0 (x + 7)(x − 2) = 0 x = −7 or x = 2 (taken) 2
7
3
3
y|x=−7 = − (−7) + =7 {x = −7, y = 7} ✓
2
7 2
5
5
4
x2 −
25
12x 2 − x 2 +
4
28
5
5
56 2 x 5
+
49
56 2 x 5
+
28 5 28 5
−(2)
x− x−
=7
28 25
x−
x+ 49 5
5
=0
(2x + 3)(x − 1)
=0
3
or
2
x = 1 (taken)
2
3
7
5
2
5
y|x=−3 = (− ) − 2
=7
=0
2x 2 + x − 3
x=−
) =7
=7
5 84
49
25
= −2 3
⇒ (− , −2) ✓ 2
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
7
A math 360 sol (unofficial)
Ex 1.1
13(i)
14(ii) If k = 1, 𝑦 h
(7𝑥 − 20)2 + (6𝑦 + 10)2 = 200
r Total surface area = 32π 2πr 2 + 2πrh = 32π 2 r + hr = 16 [shown] ✓ −(1) 13(ii) h = 4 + r sub (2) into (1): r 2 + (4 + r)r = 16 2r 2 + 4r = 16 2 2r + 4r − 16 = 0 r 2 + 2r − 8 = 0 (r + 4)(r − 2) = 0 r = −4 or (rej ∵ r > 0)
=
y r=2✓ h|r=2 = 4 + (2) =6✓
6
2
) + 10]
(7x − 20) + (20 − 21x)
2
2
(x−2.86)2 (2.02)2
=0
49x 2 − 112x + 60
=0
−(−112)±√(−112)2 −4(49)(60) 2(49)
=
112±√784 98
6
or x = ✓ 7
✓
© Daniel & Samuel A-math tuition 📞9133 9982
6
+
+
5 2 62 (y+ ) 3 5 2 (y+ ) 3 200 62
=1 2
5 3
(y−(− ))
=1
2 200 (√ 2 ) 6 2
5 3
(y−(− )) (
+
=1
200
10√2 ) 6
(y−(−1.67))
=1
2
2
=1
(2.36)2 20 7
5
,− ) 3
⇒ horizontal radius = √
200 72
200
490x 2 − 1120x + 600
3
+
⇒ centre (
= 200 = 200
=−
1
2
5 2
+
20 2 7 2 10√2 ( ) 7
= 200
490x − 1120x + 800
6 10
7
3
(x− )
= 200
2
10 10−21( ) 7
7
20 2 7 2 200 (√ 2 ) 7
−(2)
(49x 2 − 280x + 400) +(400 − 840x + 441x 2 )
7
6
2
(x− )
(7x − 20)2 + [(10 − 21x) + 10]2 = 200
y|x=10 =
1
2
) + 62 (y + ) = 200
20 2 (x− ) 7 200 72
−(1)
10−21x
7
7
20 2
72 (x −
sub (1) into (2):
x=
3
Ellipse (7x − 20)2 +(6y + 10)2 = 200
200
6
10
,− )
=− x+
20 72 (x− ) 7
Ellipse (7x − 20)2 + (6y + 10)2 = 200
x=
7
5
Line 21x + 6y = 1 6y = −21x + 1
10−21x
(7x − 20)2 + [6 (
(
20
𝑦=− 𝑥+
−(2)
14(i) If k = 10, Line 21x + 6y = 10 6y = 10 − 21x y
𝑥
𝑂
y|x=6 =
⇒ vertical radius = √
62
Using the graphing calculator to plot curves, the line and ellipse don’t intersect. Hence, there are no solutions ✓ =
112±28 98
14(iii) Geometrically, a line and ellipse can only intersect twice at most. ✓
6 7
10−21( ) 6
7
=−
4 3
✓
sleightofmath.com
8
A math 360 sol (unofficial)
Ex 1.2 4(i)
Ex 1.2 1(a)
3x 2 + 9x =1 2 3x + 9x − 1 = 0 i.e. a = 3, b = 9, c = −1 Roots: α & β Sum of roots
1(b)
Sum of roots
b a
c
=
=
a
(−1) (3)
=− ✓ 3
1 2
=( )
α
2(ii)
3
b a
=−
(−4)
=4✓
(1)
(2)
c
2
2β+2α
a
1
= (4 )
β
αβ
+ =
=
αβ
=
5(i) b a
= (1)
a
2(−3) (1)
(3)
= − (1) = −3 (1)
c
= =
=1
= −6 ✓
√33 2
✓
x 2 − 4x + c = 0 i.e. a = 1, b = −4, c = c Roots: α & (α + 2)
=−
b a (−4) (1)
2α + 2 =4 2α =2 α =1✓ α+2 =3✓ 5(ii)
Sum of roots = α + β = −
=
4
=±
⇒ 2α + 2
40x − 138x + 119 = 0 i.e. a = 40, b = −138, c = 119 Roots: α & β are heights of two men
2
= −2
Sum of roots
2
Average height =
2
33
= α + (α + 2) = −
(2α − 1)(2β − 1) = 4αβ −2α − 2β +1 = 4αβ −2(α + β) +1 = 4(1) −2(−3) +1 = 11 ✓
α+β
1
−2(−2)
4
α−β
=α+β =−
2(α+β)
(2)
=
(α − β)2 = α2 − 2αβ + β2 = (α2 + β2 ) −2αβ
=2✓
= (1)
x + 3x + 1 = 0 i.e. a = 1, b = 3, c = 1 Roots: α & β
2
(2) (−4)
4
=
Product of roots = αβ
=
(−1)
=4 ✓
2
Sum of roots
a
=−
−2(−2)
2 1
=α+β =−
Product of roots = αβ
=
a
(α + β)2 = α2 + 2αβ + β2 (α + β)2 − 2αβ = α2 + β2 α2 + β2 = (α + β)2 −2αβ
1
4x + 2x 2 = 3x 2 + 2 x 2 − 4x + 2 = 0 i.e. a = 1, b = −4, c = 2 Roots: α & β Sum of roots
c
b
(9)
= − (3) = −3 ✓
4(ii)
2(i)
=α+β =−
Product of roots = αβ
=α+β =−
Product of roots = αβ
2x 2 − x − 4 = 0 i.e. a = 2, b = −1, c = −4 Roots: α & β
69 20
2
b a
=
=− 69 40
Product of roots c = α(α + 2) = a
⇒ α(α + 2) = c 1(1 + 2) =c ∵α=1 c =3✓
(−138) (40)
=
69 20
6(a)
✓
Roots: α = 2 & β = 5 Sum of roots = α + β = (2) + (5) Product of roots = αβ = (2)(5)
=7 = (10)
x 2 − (SOR)x + (POR) = 0 x 2 − 7x + 10 =0✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
9
A math 360 sol (unofficial) 6(b)
Ex 1.2
Roots: α = −1 & β = 3 Sum of roots = α + β = (−1) + (3) = 2 Product of roots = αβ = (−1)(3) = −3
8(i)
x 2 − (SOR)x + (POR) = 0 x 2 − 2x − 3 =0✓ 7(i)
Sum of roots
1st equation 2x 2 − 4x + 5 = 0 i.e. a = 2, b = −4, c = 5 Roots: α & β
=−
= 5α
= −p ✓ =
= 4α2
=α+β =−
Product of roots = αβ
=
c a
b a
=−
(−4)
(5)
= (2)
(2)
=2 =
From (1): 5α = −p p α =−
a
−(1)
c a
=q✓
−(2)
−(3)
5
5
b
= α + 4α
Product of roots = α(4α)
8(ii) Sum of roots
x 2 + px + q = 0 i.e. a = 1, b = p, c = q Roots: α & 4α
2
sub (3) into (2): 2nd equation Roots: (α − 1) & (β − 1) Sum of roots Product of roots = (α − 1) + (β − 1) = (α − 1)(β − 1) = (α + β) −2 = αβ −α − β +1 (2) = −2 = αβ −(α + β) +1 5 =0 = ( ) −(2) +1
5
4p2
4p 9(i)
3 2
x − (SOR)x + (POR) = 0 3
2x 2 + 3 7(ii)
2x 2 − x − 2 = 0 i.e. a = 2, b = −1, c = −2 Roots: α & β =α+β =− =
b a
c
=− =
a
(−1)
(2) (−2) (2)
=
1 2
= −1
=0✓ α2 + β2 = (α + β)2 −2(αβ)
3rd equation Recall α + β = 2,
= 25q [shown] ✓
Product of roots = αβ
=0
2
2
Sum of roots
2
x 2 − 0x +
=q
25
2
=
2
1
4 (− p) = q
αβ =
5
1 2
=( )
2
−2(−1)
2 1
Roots: 2α & 2β
=2 ✓ 4
Sum of roots = 2α + 2β = 2(α + β) = 2(2) = 4
9(ii)
β α
+
α β
=
β2 +α2 αβ
1
(2 )
4 = (−1) = −2
1 4
✓
Product of roots = (2α)(2β) = 4(αβ)
5
= 4 ( ) = 10
9(iii)
2
α4 + β4
= (α2 + β2 )2 −2α2 β2 = (α2 + β2 )2 −2(αβ)2
x 2 − (SOR)x + (POR) = 0 x 2 − 4x + 10 =0 ✓
1 2
= (2 ) 4
=
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
49 16
−2(−1)2
✓
10
A math 360 sol (unofficial) 10(i)
Ex 1.2
x2 = (k − 1)x + k 2 (1 x + − k)x − k = 0 i.e. a = 1, b = (1 − k), c = −k Roots: α & (α + 3)
12(i)
Sum of roots = α + (α + 3) = −
Sum of roots
b
=−
2α + 3 k
=k−1 = 2α + 4
=α+β =−
Product of roots = αβ
a (1−k)
⇒ 2α + 3
=
b
=−
a
c
=
a
−3 2
6
=
3 2
=3
2
(1)
2nd equation −(1)
Roots:
2α β
&
2β α
Sum of roots =
Product of roots c = α(α + 3) = ⇒ α(α + 3) =
1st equation 2x 2 − 3x + 6 = 0 i.e. a = 2, b = −3, c = 6 Roots: α & β
a (−k)
=
2α β
+
2β α
=
2α2 +2β2 αβ
2[(α+β)2 −2αβ]
(1)
αβ 2α
2β
β
α
=
=
2(α2 +β2 ) αβ
3 2 2[( ) −2(3)] 2
3
=−
5 2
Product of roots = ( ) ( ) = 4
= −k −(2) sub (1) into (2): α(α + 3) = −(2α + 4) 2 α + 3α = −2α − 4 2 α + 5α + 4 =0 (α + 1)(α + 4) = 0 α = −1 or α = −4 ✓ α+3=2 α + 3 = −1 ✓ (rej ∵ negative roots)
x 2 − (SOR)x + (POR) = 0 5
x 2 − (− ) x +4
=0
2
5
x2 + x 2
2
2x +5x
+4
=0
+8
=0✓
12(ii) 3rd equation 3
Recall α + β = , αβ = 3 2
10(ii) Put α = −4 into (1): k|α=−4 = 2(−4) + 4 = −4 ✓ 11
Roots: (3α + β) & (α + 3β) Sum of roots = (3α + β) + (α + 3β) = 4α + 4β = 4(α + β)
3x 2 − 3kx + k − 6 = 0 i.e. a = 3, b = −3k, c = k − 6 Roots: α & β
3
= 4( ) 2
Sum of roots
=α+β =−
Product of roots = αβ α2 + β2
=
2
(α + β) − 2αβ k
2
−2 (
k−6 3
)
= =
=
c a
b a
=− =
(−3k)
(3) (k−6) (3)
=6 =k =
k−6 3
20 3 20 3 20
3 2
= 3 [( ) − 2(3)] 2
3
3k 2 − 2k + 12 = 20 2 3k − 2k − 8 =0 (3k + 4)(k − 2) = 0 k=−
4 3
Product of roots = (3α + β)(α + 3β) = 3α2 + 10αβ + 3β2 = 3(α2 + β2 ) +10αβ = 3[(α + β)2 − 2αβ] +10αβ
=
75 4
x 2 − (SOR)x + (POR) = 0
or k = 2 ✓
x 2 −(6)x +
75 4
4x 2 −24x +75
© Daniel & Samuel A-math tuition 📞9133 9982
+10(3)
sleightofmath.com
=0 =0✓
11
A math 360 sol (unofficial) 13(i)
Ex 1.2
1st equation 2x 2 = 8x + 3 2x 2 − 8x − 3 = 0 i.e. a = 2, b = −8, c = −3 Roots: α & β
13(iii) 4th equation Recall α + β = 4, αβ = −
=α+β =−
Product of roots
= αβ
=
b a
c
=− =−
a
(−8) (2) 3
Sum of roots = (α − β) + (β − α) =0
=4
Product of roots = (α − β)(β − α) = −(a − β)2 = −[(α + β)2 − 4αβ]
2
2nd equation 1 α2
&
1
= − [(4)2
β2
Sum of roots = =
1
+
α2
1
=
β2
(α+β)2 −2(αβ) (αβ)2
1
=
α2 +β2 α2 β2 3 2
(4)2 −2(− )
1
3
− 4 (− )] 2
= −22
3 2 (− ) 2
1
Product of roots = ( 2 ) ( 2 ) = (αβ)2 = α
2
Roots: (α − β) & (β − α)
Sum of roots
Roots:
3
β
=
1 3 2 (− ) 2
x 2 − (SOR)x + (POR) = 0 x 2 − (0)x + (−22) = 0 x 2 − 22 =0✓
76 9
=
4
14(i)
9
2x 2 − 71x + 615 = 0 i.e. a = 2, b = −71, c = 615 Roots: α & β are base and height
x 2 − (SOR)x + (POR) = 0 76
4
9
9
x2 − ( ) x + ( )
=0
Sum of roots = α + β = −
b
=−
a
2
9x − 76x +4 = 0 ✓
Product of roots = αβ
=
c a
−71
=
2 615 2
71
=
2
= 307.5
13(ii) 3rd equation Recall
α + β = 4, αβ = −
Roots:
α2 β & αβ2
Area = αβ = 307.5 ✓
3 2
71
Perimeter = 2(α + β) = 2 ( ) = 71 ✓ 2
Sum of roots = α2 β + αβ2 = αβ(α + β)
14(ii)
3
= (− ) (4) = −6
Base
2
Product of roots 3 3
27
2
8
= (α2 β)(αβ2 ) = (αβ)3 = (− ) = −
) =0
8x 2 + 48x − 27
© Daniel & Samuel A-math tuition 📞9133 9982
Base
Perimeter is not valid because the height is not the side of the quadrilateral ✓
27 8
Height
Area is valid because area = base × height
x 2 − (SOR)x + (POR) = 0 x 2 − (−6)x + (−
Height
=0✓
sleightofmath.com
12
A math 360 sol (unofficial) 15
Ex 1.2
kx 2 + (k − 1)x + 2k + 3 = 0 i.e. a = k, b = (k − 1), c = (2k + 3) Roots: α & 2α Sum of roots = α + (2α) = − ⇒ 3α
=−
3α
=
α
=
1st equation x 2 − 3x − 2 = 0 i.e. a = 1, b = −3, c = −2 Roots: α & β
b a k−1
Sum of roots
k
Product of roots = αβ
1−k k 1−k 3k
−(1)
2nd equation x 2 − 6x + p = 0 i.e. a2 = 1, b2 = −6, c2 = p
−(2)
Roots:
Product of roots c = α(2α) = 2
⇒ 2α
=
a 2k+3 k
2( 2(
)
3k k2 −2k+1
9k2 2k2 −4k+2 9k2 2
)
= = =
k
2k+3
= +
k 2k+3
⇒
1 16
k
α β kβ+kα
αβ k(α+β)
k 2k+3
&
c a
a
=− =
−3
−2 1
1
=3 = −2
k β
=−
b2 a2 −6 1
=6 = −4 ✓
k
or k = −2 ✓
=−
=6
αβ k(3) (−2)
k
2k − 4k + 2 = 18k 2 + 27k 16k 2 + 31k − 2 = 0 (16k − 1)(k + 2) = 0 k=
k α
=
b
Sum of roots
sub (1) into (2): 1−k 2
=α+β =−
Product of roots
rej ∵ k is a ( ) non − zero integer
k
k
c2
α
β
a2 (p)
= ( )( ) = ⇒
k2 αβ
k2 αβ
= (1) =p
k2 (−2)
=p
p
=− =−
k2
∵ k = −4
2 (−4)2 2
= −8 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
13
A math 360 sol (unofficial)
Ex 1.2
17(a) 3x 2 + kx + 96 = 0 i.e. a = 3, b = k, c = 96 Roots: α & 2α
18
5x 2 − 102x + 432 = 0 i.e. a = 5, b = −102, c = 432 Roots: α & β are lengths of the two shorter sides of a ⊿
Sum of roots = α + 2α = −
b
Sum of roots
a k
⇒ 3α
=−
α
=−
−9α k
=k = −9α
Product of roots = αβ
3 k
⇒ 2α
=
a
a
=− =
(−102) (5)
=
102 5
432 5
√α2 + β2
α β
By Pythagoras Theorem, Hypotenuse = √α2 + β2
a 96 3
2
2α = 32 2 α = 16 α = 4 or α = −4 (rej ∵ positive roots) k|α=4 = −9(4) = −36 ✓ 2
=
c
b
9
Product of roots c = α(2α) = 2
=α+β =−
1 432
2
2
5
)= 43.2cm2 ✓
Perimeter = α + β + √α2 + β2 = α + β + √(α + β)2 − 2αβ =(
2
17(b) p + q = 13 pq = 6 Roots: p2 & q2 Sum of roots = p2 + q2 = 13 Product of roots = p2 q2 = (pq)2 = 62
1
Area = (αβ) = (
102 5
) + √(
102 2 5
) − 2(
432 5
)
= 36cm ✓
= 36
x 2 − (SOR)x + (POR) = 0 x 2 − 13x + 36 =0 (x − 4)(x − 9) =0 x=4 or x = 9 p2 = 4 p2 = 9 p = ±2 p = ±3 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
14
A math 360 sol (unofficial)
Ex 1.2
19(a) 2x 2 + px + 24 = 0 i.e. a = 2, b = p, c = 24 Roots: α & β
19(b) 1st equation 3x 2 − x + 2 = 0 i.e. a = 3, b = −1, c = 2 Roots: α & β
α−β =4 α = β + 4 −(1)
Sum of roots
=α+β =−
Product of roots = αβ
Sum of roots =α+β
=−
⇒α+β
=−
(β + 4) + β = −
=
=−
a
c
=
a
(−1)
=
(3)
1 3
2 3
b a p
2nd equation Roots: α2 & β2
2 p 2 p
2β + 4
=−
p
= −4β − 8
Sum of roots = α2 + β2 = (α + β)2 −2(αβ)
2
1 2
2
=( )
=
−2 ( )
3
Product of roots c = αβ = ⇒ αβ
b
=−
a 24
3
11 9
2
(β + 4)β = 12 β2 + 4β = 12 2 β + 4β − 12 = 0 (β + 6)(β − 2) = 0 β = −6 or p|β=−6 = −4(−6) − 8 = 16 (rej ∵ p < 0)
2 2
4
3
9
Product of roots = α2 β2 = (αβ)2 = ( ) = x 2 − (SOR)x + (POR) = 0 x 2 − (−
11 9
)x +
4
=0
9
9x 2 + 11x + 4 β=2 p|β=2 = −4(2) − 8
20(i)
= −16 ✓
=0✓
1st equation 4x 2 − x + 36 = 0 i.e. a = 4, b = −1, c = 36 Roots: α2 & β2 = α2 + β2 = −
Sum of roots
2 2
Product of roots = α β
=
c a
b a
=− =
(−1)
(4) (36) (4)
=
1 4
=9
2nd equation Roots:
1 α2
&
1 β2
Sum of roots
=
1
1
α
1
β2 1
α
β
2 +
=
Product of roots = ( 2 ) ( 2 ) =
α2 +β2 α2 β2 1 α2 β2
= =
1 4
( ) (9) 1
=
1 36
9
x 2 − (SOR)x + (POR) = 0 x2 − 2
1 36
x+
1 9
36x − x + 4
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
=0 =0✓
15
A math 360 sol (unofficial)
Ex 1.2
20(ii) 3rd equation: 2
1
2
Recall α + β = , 4
21(ii) 2nd equation Roots: (α + 2) & (β + 2)
2 2
α β =9
Roots: α & β Sum of roots =α+β
Product of roots = αβ
= ±√(α +
=
±√α2
β2
= ±√9 = ±3
+
+ 2αβ
1
= ±√( ) + 2αβ
=−
±√α2 β2
β)2
=
Sum of roots = (α + 2) + (β + 2) = (α + β) + 4 b
1
= [a(α + 2)(β + 2)] a 1
+4
a
= (4a − 2b + c) a
x 2 − (SOR)x
4
Product of roots = (α + 2)(β + 2)
+ (POR)
b
1
a
a 1
=0
x 2 − (− + 4) x + [ (4a − 2b + c)] = 0
For αβ = 3:
2
1
25
4
4
SOR = ±√ + 2(3) = ±√
=±
b
x + ( − 4) x
5
a
+ (4a − 2b + c) a
ax 2 + (b − 4a)x + (4a − 2b + c)
2
=0 =0✓
For αβ = −3: 1
23
4 5
24
SOR = ±√ + 2(−3) = ±√−
(rej)
∴ SOR = ± , POR = 3 2
x 2 − (SOR)x + (POR) = 0 5
x 2 − (± ) x + 3
=0
2
2
=0✓
2x ± 5x + 6 21(i)
1st equation ax 2 + bx + c = 0 Roots: α & β Sum of roots
=α+β =−
Product of roots = αβ
=
c
b a
a
a(α + 2)(β + 2) = a(αβ + 2α + 2β + 4) = a[αβ + 2(α + β) + 4] c
b
a
a
= a [( ) + 2 (− ) + 4] = c − 2b + 4a = 4a − 2b + c [shown] ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
16
A math 360 sol (unofficial)
Ex 1.2
1st equation 4x 2 + kx =1 4x 2 + kx − 1 = 0 i.e. a = 4, b = k, c = −1
22(ii) 3rd equation k
Recall α + β = − , Roots:
=α+β =−
Product of roots = αβ
=
b a
c
=− =−
a
k 4 1
=
4
Sum of roots
= 5(α + β)
9 9 = 1 αβ + 2(α + β) + 4 (− ) + 2 (− k) + 4 4 4 36 = 15 − 2k
= 5 (− ) 4
5
=− k 4
Product of roots
x2
= (2α + 3β)(3α + 2β) 2
= 6α + 13αβ + 6β
23(i)
+13αβ
1
1
4
4
1
k2 + )
−
2
8
Sum of roots
4
5
x 2 + kx 4
2
8x + 10kx
=α+β =−
Product of roots = αβ
x − (SOR)x +(POR) x − (− k) x
) =0 = 0✓
1st equation 2x 2 + 4x + 5 = 0 i.e. a = 2, b = 4, c = 5 Roots: α & β
4
4
5
15−2k
13
1
2 2
)x +(
+13αβ
4
= k −
15−2k
=0 36
(15 − 2k)x +(3k − 48)x +36
2)
k 2
2
−(
48−3k
2
= 6 [(− ) − 2 (− )] +13 (− )
3
−(SOR)x +(POR)
x2
2
= 6[(α + β)2 − 2αβ]
1
3β + 6 + 3α + 6 3(α + β) + 12 = αβ + 2(α + β) + 4 αβ + 2(α + β) + 4
=
k
16
β+2
3 3 9 )( )= =( (α + 2)(β + 2) α+2 β+2
= 5α + 5β
= 6(
4
3
Product of roots
= (2α + 3β) + (3α + 2β)
= 6(α + β
α+2
&
k 3 (− ) + 12 48 − 3k 4 = = 1 k (− ) + 2 (− ) + 4 15 − 2k 4 4
2nd equation Roots: (2α + 3β) & (3α + 2β)
2
3
1
Sum of roots 3 3 3(β + 2) + 3(α + 2) = + = (α + 2)(β + 2) α+2 β+2
Roots: α & β Sum of roots
αβ = −
4
3 + ( k2 8
=0 1
1
8
4
2
Roots:
4
3
+3k − 2
a
c
=−
4 2
= −2 ✓
5
= ✓
a
2
23(ii) 2nd equation
− )=0
+ k2 −
=
b
1 α
&
1 β
=0 Sum of roots
=0✓
1
1
α
β
= +
=
α+β αβ
1
1
1
α
β
αβ
Product of roots = ( ) ( ) =
= =
−2 5 2
1 5 2
=− =
4 5
2 5
x 2 − (SOR)x + (POR) = 0 4
2
5
5
x 2 − (− ) + 2
5x + 4 + 2
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
=0 =0✓
17
A math 360 sol (unofficial)
Ex 1.2
23(iii) 1st equation ax 2 + bx + c = 0 Roots: α & β Sum of roots
25
=α+β =−
Product of roots = αβ
=
c
b a
Sum of roots
a
=α+β =−
2nd equation Roots:
1
&
α
2x 2 − kx + k =2 2 2x − kx + k − 2 = 0 i.e. a = 2, b = −k, c = (k − 2) Roots: α & β
1
⇒α+β =−
β
Sum of roots
1
1
α
β
= +
=
α+β αβ
1
1
1
α
β
αβ
Product of roots = ( ) ( ) =
= =
b − a c a
1
=− =
c a
b
b a −k 2
k
α+β
=
k
= 2α + 2β
2
a c
Product of roots c = αβ = ⇒ αβ =
x 2 − (SOR)x + (POR) = 0
a k−2 2
x 2 − (− ) x + ( )
=0
sub (1) into (2):
cx 2 − bx
=0✓
αβ =
b
a
c
c
+a
−(1)
c
−(2)
(2α+2β)−2 2
αβ = α + β − 1 24(i)
x(2 − x) =3 2 x − 2x + 3 = 0 α is root ⇒ α2 − 2α + 3 = 0 α2 = 2α − 3
If α < 0, β < 0 ⇒ LHS = αβ > 0 ⇒ RHS = α + β − 1 < 0 ⇒ LHS ≠ RHS ∴ both roots cannot be negative ✓
−(1)
(1) × α: α3 = 2α2 − 3α −(2) (1) (2): sub into α3 = 2(2α − 3) − 3α α3 = (4α − 6) − 3α α3 = α − 6 [shown] ✓ 24(ii) Roots: α & β Sum of roots
=α+β =−
Product of roots = αβ
=
c a
b a
=− =
(−2)
(3) (1)
(1)
=2 =3
Following the same manipulation in (i) ⇒ β3 = β − 6 α3 + β3 = (α − 6) + (β − 6) = (α + β) −12 = (2) −12 = −10 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
18
A math 360 sol (unofficial) 26
Ex 1.2
x 2 + 4(c + 2) = (c + 4)x 2 (c x − + 4)x + 4(c + 2) = 0 i.e. A = 1, B = −(c + 4), C = 4(c + 2) Roots: a & b Sum of roots =a+b
=−
⇒a+b
=−
B A −(c+4) 1
a+b =c+4 2 (a + b) =c+4 2 2 a + 2ab + b = c 2 + 8c + 16
−(1)
Product of roots = ab = ⇒ ab = ab
C A 4(c+2) 1
= 4c + 8
−(2)
sub (2) into (1): a2 + 2(4c + 8) + b2 = c 2 + 8c + 16 a2 + (8c + 16) + b2 = c 2 + 8c + 16 a2 + b2 = c2 ∵ sides are related by pythagoras theorem, it is a right angle triangle & 90° is the largest angle ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
19
A math 360 sol (unofficial)
Ex 1.3 2(c)
Ex 1.3 1(a)
y = 3(x − 1)2 − 1 ⇒ turning pt (1, −1) ⇒ ∪ shape
𝑦 𝑦 = 3(𝑥 − 1)2 − 1 2 𝑂
𝑥 (1, −1)
y|x=0 = 2 ⇒ y − intercept = 2 1(b)
y = −2(x + 1)2 − 3 ⇒ turning pt (−1, −3) ⇒ ∩ shape y|x=0 = −5 ⇒ y − intercept = −5
1(c)
𝑂
1
(−2,1) 𝑂
y = −3(x − 2)2 ⇒ turning pt (2,0) ⇒ ∩ shape
𝑥
3(a) (2,0)
𝑂
𝑥
−12 y = −3(x − 2)2
Quadratic equation px 2 − 6x + p = 0 i.e. a = p, b = −6, c = p Discriminant For equal real roots: b2 − 4ac =0 (−6)2 − 4(p)(p) = 0 36 − 4p2 =0 2 p −9 =0 (p + 3)(p − 3) = 0 p = −3 or p = 3 ✓
✓
Quadratic equation 5x 2 − x − 2 = 0 i.e. a = 5, b = −1, c = −2
3(b)
Quadratic equation 3x 2 + 2x − p = 0 i.e. a = 3, b = 2, c = −p Discriminant For two distinct real roots: b2 − 4ac >0 (2)2 − 4(3)(−p) > 0 4 + 12p >0 12p > −4
Quadratic equation 9x 2 + 6x + 1 = 0 i.e. a = 9, b = 6, c = 1 Discriminant b2 − 4ac = (6)2 − 4(9)(1) =0✓ ⇒ 2 Real Roots ✓
© Daniel & Samuel A-math tuition 📞9133 9982
Quadratic equation (x − 2)2 = −6 2 x − 4x + 4 = −6 x 2 − 4x + 10 = 0 i.e. a = 1, b = −4, c = 10 Discriminant b2 − 4ac = (−4)2 − 4(1)(10) = −24 ✓ <0 ⇒ 0 Real Root ✓
✓
𝑦
Discriminant b2 − 4ac = (−1)2 − 4(5)(−2) = 41 ✓ >0 ⇒ 2 Real roots ✓ 2(b)
2(d)
𝑦 1 𝑦 = (𝑥 + 2)2 + 1 4 2
4
y|x=0 = 2 ⇒ y − intercept = 2
2(a)
𝑥
✓
y = (x + 2)2 + 1
y|x=0 = −12 ⇒ y − intercept = −12
✓
−5 𝑦 = −2(𝑥 + 1)2 − 3
⇒ turning pt (−2,1) ⇒ ∪ shape
1(d)
Discriminant b2 − 4ac = (1)2 − 4(3)(1) = −11 ✓ <0 ⇒ 0 Real Root ✓
𝑦 (−1, −3)
Quadratic equation x 2 + x + 1 = −2x 2 3x 2 + x + 1 = 0 i.e. a = 3, b = 1, c = 1
p
sleightofmath.com
1
>− ✓ 3
20
A math 360 sol (unofficial) 3(c)
Ex 1.3
Quadratic equation 2x 2 + 3x + 2p = 0 i.e. a = 2, b = 3, c = 2p
4(c)
Discriminant For real roots: b2 − 4ac ≥0 2 (3) − 4(2)(2p) ≥ 0 9 − 16p ≥0 16p ≤9 p 3(d)
≤
9 16
Discriminant For no x − intercepts: b2 − 4ac <0 2 (−2) − 4(p)(3) < 0 4 − 12p <0 12p >4 ✓ 5(a)
4(a)
1 16
✓
Quadratic curve y = 4x 2 − 4x − p i.e. a = 4, b = −4, c = −p
k 5(b)
1
> ✓ 2
Quadratic Inequality −3x 2 + 6x + k − 1 is always negative i.e. a = −3, b = 6, c = k − 1 2 conditions (i) a < 0 −3 < 0 (ii) b2 − 4ac (6)2 − 4(−3)(k − 1) 36 + 12(k − 1) 36 + 12k − 12 12k k
Quadratic curve y = 9x 2 − px + 1 i.e. a = 9, b = −p, c = 1 Discriminant For one x − intercept: b2 − 4ac =0 (−p)2 − 4(9)(1) = 0 p2 − 36 =0 (p + 6)(p − 6) = 0 p = −6 or p = 6 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
Quadratic Inequality 2x 2 + 2x + k is always positive i.e. a = 2, b = 2, c = k
(ii) b2 − 4ac <0 (2)2 − 4(2)k < 0 8k >4
Discriminant For two x − intercepts: b2 − 4ac >0 2 (−4) − 4(4)(−p) > 0 16 + 16p >0 p > −1 ✓ 4(b)
3
2 conditions (i) a > 0 2>0
Discriminant For no real roots: b2 − 4ac <0 2 (−1) − 4(p)(−4) < 0 1 + 16p <0 <−
1
> ✓
p
Quadratic equation px 2 − x − 4 = 0 i.e. a = p, b = −1, c = −4
p
Quadratic curve y = px 2 − 2x + 3 i.e. a = p, b = −2, c = 3
sleightofmath.com
<0 <0 <0 <0 < −24 < −2 ✓
21
A math 360 sol (unofficial) 5(c)
Ex 1.3
Quadratic Inequality y = 2x 2 + x − 2k lies entirely above x − axis i.e. a = 2, b = 1, c = −2k
7(b)
2 conditions (i) a > 0 2>0
6
<−
1 16
Discriminant For curve to meet x − axis: B 2 − 4AC ≥0 2 (−2) − 4(3)(c − 1) ≥ 0 4 − 12(c − 1) ≥0 4 − 12c + 12 ≥0 16 ≥ 12c
13 (2,1)
✓ does not cut x − axis ⇒ discriminant < 0 ⇒ negative ✓ 7(c)
2 1
= (x − 4)2 2
⇒ turning pt (4,0) ⇒ ∪ shape f(0) = 8 ⇒ y − intercept = 8 𝑦 𝑦 = 𝑓(𝑥)
+3 +3
= −2[(x − 1)2 − 12 ] +3 = −2(x − 1)2 ⇒ turning pt (1,5) ⇒ ∩ shape
+8
= [(x − 4)2 − 42 ] +8
3
= −2(x 2 − 2x)
+8
2 1 2 1
4
f(x) = −2x 2 + 4x
1
f(x) = x 2 − 4x = [x 2 − 8x]
≤ ✓
c
𝑥
𝑂
≥c
3
7(a)
✓
Quadratic equation y = 3x 2 − 2x + c − 1 i.e. A = 3, B = −2, C = c − 1
4
+13 +13 +13 +1
f(0) = 13 ⇒ y − intercept = 13 𝑦 𝑦 = 𝑓(𝑥)
(ii) b2 − 4ac <0 (1)2 − 4(2)(−2k) < 0 1 + 16k <0 k
f(x) = 3x 2 − 12x = 3(x 2 − 4x) = 3[(x − 2)2 − 22 ] = 3(x − 2)2 ⇒ turning pt (2,1) ⇒ ∪ shape
+5
8 𝑂
(4,0)
𝑥 ✓
cuts x − axis once ⇒ discriminant = 0 ⇒ zero ✓
f(0) = 3 ⇒ y − intercept = 3 𝑦 (1,5) 3 𝑂
𝑦 = 𝑓(𝑥) 𝑥 ✓
cuts x − axis twice ⇒ discriminant > 0 ⇒ positive ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
22
A math 360 sol (unofficial) 7(d)
Ex 1.3
f(x) = −4x 2 − 8x = −4[x 2 + 2x] = −4[(x + 1)2 − 12 ] = −4(x + 1)2 ⇒ turning pt (−1, −1) ⇒ ∩ shape
−5 −5 −5 −1
8(c)
Discriminant For two unequal real roots: b2 − 4ac >0 (1)2 − 4(2)(1 − p) > 0 1 − 8(1 − p) >0 1 − 8 + 8p >0 8p >7
f(0) = −5 ⇒ y − intercept = −5 𝑦 𝑂
𝑥
(−1, −1) −5 𝑦 = 𝑓(𝑥)
p ✓
8(d)
does not cut x − axis ⇒ b2 − 4ac < 0 ⇒ negative ✓ 8(a)
Quadratic equation 3x 2 = 2x + p − 1 2 3x − 2x + 1 − p = 0 i.e. a = 3, b = −2, c = 1 − p Discriminant For distinct real roots: b2 − 4ac >0 2 (−2) − 4(3)(1 − p) > 0 4 − 12(1 − p) >0 4 − 12 + 12p >0 12p >8 p
2
8
Quadratic equation p(x + 1)(x − 3) = x − 4p − 2 2 p(x − 2x − 3) = x − 4p − 2 px 2 − 2px − 3p = x − 4p − 2 2 px − (2p + 1)x + p + 2 = 0 i.e. a = p, b = −(2p + 1), c = p + 2 Discriminant For no real roots: b2 − 4ac [−(2p + 1)]2 − 4(p)(p + 2) (4p2 + 4p + 1) − 4p(p + 2) (4p2 + 4p + 1) − 4p2 − 8p −4p + 1 −4p 4p
<0 <0 <0 <0 <0 < −1 >1
p
> ✓
1 4
3
Quadratic equation x 2 + p2 = 3px − 5 2 2 x − 3px + p + 5= 0 i.e. a = 1, b = −3p, c = p2 + 5
Quadratic equation x 2 − 2kx + k 2 =3+x 2 2 (2k x − + 1)x + k − 3 = 0 i.e. a = 1, b = −(2k + 1), c = −3 Discriminant For real roots: b2 − 4ac ≥0 2 2 [−(2k + 1)] − 4(1)(k − 3) ≥ 0 (4k 2 + 4k + 1) − 4(k 2 − 3) ≥ 0 4k 2 + 4k + 1 − 4k 2 + 12 ≥0 4k + 13 ≥0
Discriminant For equal real roots: b2 − 4ac =0 2 2 (−3p) − 4(1)(p + 5) = 0 9p2 − 4p2 − 20 =0 2 5p − 20 =0 p2 − 4 =0 (p + 2)(p − 2) =0 p = −2 or p = 2 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
7
> ✓
> ✓ 9
8(b)
Quadratic equation (x + 1)(2x − 1) = p − 2 2x 2 + x − 1 =p−2 2 2x + x + 1 − p = 0 i.e. a = 2, b = 1, c = 1 − p
k ⇒ least value of k is −
sleightofmath.com
≥− 13 4
13 4
✓
23
A math 360 sol (unofficial) 10
11
Ex 1.3
Quadratic equation 2x 2 + p = 2(x − 1) 2x 2 + p = 2x − 2 2 2x − 2x + 2 + p = 0 i.e. a = 2, b = −2, c = 2 + p
12(b) Quadratic inequality kx 2 + 1 > 2kx − k for all real values of x kx 2 − 2kx + k + 1> 0 i.e. a = k, b = −2k, c = k + 1 2 conditions (i) a > 0 k>0
Discriminant For no real roots: b2 − 4ac (−2)2 − 4(2)(2 + p) 4 − 8(2 + p) 1 − 2(2 + p) 1 − 4 − 2p −2p
<0 <0 <0 <0 <0 <3
p
> − [shown] ✓
(ii) b2 − 4ac <0 2 (−2k) − 4(k)(k + 1) < 0 4k 2 − 4k(k + 1) <0 2 2 4k − 4k − 4k <0 −4k <0 4k >0 k >0✓
3 2
Quadratic equation px 2 + 3px + p + q = 0 i.e. a = p, b = 3p, c = p + q
13(a) Line & curve y = kx − 5 x 2 = 2y + 1
Discriminant For two equal real roots: b2 − 4ac =0 2 (3p) − 4(p)(p + q) = 0 9p2 − 4p2 − 4pq =0 2 5p − 4pq =0 p(5p − 4q) =0
−(1) −(2)
sub (1) into (2): x2 = 2(kx − 5) + 1 2 x = 2kx − 10 + 1 2 x − 2kx + 9 = 0 i.e. a = 1, b = −2k, c = 9 Discriminant For line to be tangent to curve: b2 − 4ac =0 2 (2k) − 4(1)(9) = 0 4k 2 − 36 =0 2 k −9 =0 (k + 3)(k − 3) =0 k = −3 or k = 3 ✓
4
p = 0 (rej ∵ p ≠ 0) or p = q [shown] ✓ 5
12(a) Quadratic inequality 3x 2 − 3x > x + k for all real values of x 3x 2 − 4x − k > 0 i.e. a = 3, b = −4, c = −k 2 conditions (i) a > 0 3>0 (ii) b2 − 4ac <0 (−4)2 − 4(3)(−k) < 0 16 − 12(−k) <0 12k < −16 k
© Daniel & Samuel A-math tuition 📞9133 9982
4
<− ✓ 3
sleightofmath.com
24
A math 360 sol (unofficial)
Ex 1.3
13(b) Line & curve x + 3y = k − 1 3y =k−1−x y
=
k−1−x
13(d) Line & curve y=x+k−1
−(1)
(y − 1)2 = 4x
−(2)
−(1)
3
y 2 = 2x + 5
sub (1) into (2): (x + k − 1 − 1)2 = 4x 2 (x + k − 2) = 4x 2 [x + (k − 2)] = 4x x 2 + 2(k − 2)x + (k − 2)2 = 4x 2 2 x + (2k − 4)x +(k − 4k + 4) = 4x x 2 +(2k − 8)x +(k 2 − 4k + 4) = 0 i.e. a = 1, b = (2k − 8), c = (k 2 − 4k + 4)
−(2)
sub (1) into (2): (
k−1−x 2
)
3 (k−1−x)2 9
= 2x + 5 = 2x + 5
(k − 1 − x)2 = 18x + 45 (−1)2 (x + 1 − k)2 = 18x + 45 [x + (1 − k)]2 = 18x + 45 2 x + 2(1 − k)x + (1 − k)2 = 18x + 45 2 2 x + (2 − 2k)x + (1 − 2k + k ) = 18x + 45 2 2 x + (−16 − 2k)x +(k − 2k − 44) = 0 i.e. a = 1, b = (−16 − 2k), c = (k 2 − 2k − 44) Discriminant For line to meet curve: b2 − 4ac ≥0 (−16 − 2k)2 − 4(1)(k 2 − 2k − 44) ≥0 2 2 (4k + 64k + 256) − 4k + 8k + 176 ≥ 0 72k + 432 ≥0 k ≥ −6 ✓ 13(c) Line & curve y = kx + 2 y 2 = 8x − x 2
Discriminant For line to not meet curve: b2 − 4ac (2k − 8)2 −4(1)(k 2 − 4k + 4) 22 (k − 4)2 −4(k 2 − 4k + 4) (k 2 − 8k + 16) −k 2 + 4k − 4 −4k + 12 −4k k 14(i)
−(1) −(2)
−(1)
y=x−k
−(2)
sub (1) into (2): kx(x + 2) =x−k 2 kx + 2kx =x−k 2 kx + (2k − 1)x + k = 0 i.e. a = k, b = (2k − 1), c = k
sub (1) into (2): (kx + 2)2 = 8x − x 2 k 2 x 2 +4kx +4 = 8x − x 2 (k 2 + 1)x 2 +(4k − 8)x +4 = 0 i.e. a = (k 2 + 1), b = (4k − 8), c = 4 Discriminant For line to intersect curve at two distinct points: ⇒ b2 − 4ac >0 2 2 (4k − 8) −4(k + 1)(4) > 0 42 (k − 2)2 −42 (k 2 + 1) >0 2 2 (k − 2) −(k + 1) >0 (k 2 − 4k + 4) −k 2 − 1 >0 −4k + 3 >0 4k <3 k
Line & curve y = kx(x + 2)
<0 <0 <0 <0 <0 < −12 >3✓
Discriminant For curve to meet the line: b2 − 4ac ≥0 2 (2k − 1) −4(k)(k) ≥ 0 4k 2 − 4k + 1 −4k 2 ≥ 0 −4k + 1 ≥0 4k ≤1 1
≤ ✓
k
4
14(ii) k = 1 ✓ 4
3
< ✓ 4
14(iii) ∵1 is greater than 1 and it does not satisfy the 4
inequality to have any intersections, 0 intersections✓ © Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
25
A math 360 sol (unofficial) 15(i)
Ex 1.3
Quadratic inequality −5x 2 + 20x + c < 50 for all real values of x −5x 2 + 20x + c − 50 < 0 i. e. A = −5, B = 20, C = c − 50
17(i)
2 conditions (i) A < 0 −5 < 0 (ii) B 2 − 4AC < 0 (20)2 − 4(−5)(c − 50) 400 + 20(c − 50) 400 + 20c − 1000 20c c 15(ii) y = −5x 2 + 20x = −5(x 2 − 4x) = −5[(x − 2)2 − 22 ] = −5(x − 2)2 ⇒ turning pt (2,40) ⇒ ∩ −shape
Discriminant b2 − 4ac = (4)2 − 4(1)(−1) = 20 >0 ⇒ intersects x − axis twice ✓
<0 <0 <0 < 600 < 30 ✓
17(ii) Quadratic curve When p = −2: y = x 2 + (−2)x − (−2) + 3 = x 2 − 2x + 5 i.e. a = 1, b = −2, c = 5
+20 +20 +20 +40
Discriminant b2 − 4ac = (−2)2 − 4(1)(5) = −16 <0 ⇒ y is always positive ✓
y|x=0 = 20 ⇒ y − intercept = 20 𝑦
17(iii) Quadratic curve y = x 2 + px − p + 3 i.e. a = 1, b = p, c = −p + 3
(2,40) 20 𝑂
𝑦 = −5(𝑥 − 2)2 + 40 𝑥 ✓
15(iii) Indeed as c = 20 < 30, the baseball does not reach the height of 50m (at most 40m). ✓ 16(i)
k 2 − 4k + 12 = (k − 2)2 − 22 + 12 = (k − 2)2 +8 [shown] ✓
16(ii) Quadratic equation x 2 + kx =3−k 2 x + kx + k − 3 = 0 i.e. a = 1, b = k, c = k − 3
Discriminant For curve to be tangent to x-axis, b2 − 4ac =0 (p)2 − 4(−p + 3) = 0 p2 + 4p − 12 =0 (p + 6)(p − 2) = 0 p = −6 or p = 2 At p = −6, At p = 2, 2 y = x − 6x + 6 + 3 y = x 2 + 2x − 2 + 3 = x 2 − 6x + 9 = x 2 + 2x + 1 At y = 0, x 2 − 6x + 9 = 0 (x − 3)2 =0 x =3 ⇒ (3,0) ✓
Discriminant b2 − 4ac = k 2 − 4(1)(k − 3) = k 2 − 4k + 12 = (k − 2)2 + 8 >0 ∵ (k − 2)2 ≥ 0 ⇒ real for all real values of k ✓ © Daniel & Samuel A-math tuition 📞9133 9982
Quadratic curve When p = 4: y = x 2 + (4)x − (4) + 3 = x 2 + 4x − 1 i.e. a = 1, b = 4, c = −1
sleightofmath.com
At y = 0, x 2 + 2x + 1 = 0 (x + 1)2 =0 x = −1 ⇒ (−1,0)✓
26
A math 360 sol (unofficial) 18(i)
Ex 1.3
Quadratic equation f(x) = g(x) 2 x + 6x − 5 = 8x + c 2 x − 2x − 5 − c = 0 i.e. A = 1, B = −2, C = −5 − c
19(ii) Quadratic function At C = 80: 1.2n2 − 14.4n + 53.7 = 80 1.2n2 − 14.4n − 26.3 = 0 i.e. a = 1.2, b = −14.4, c = −26.3
Discriminant For y = f(x) to intersect y = g(x): B 2 − 4AC ≥0 (−2)2 − 4(1)(−5 − c) ≥ 0 4 + 4(5 + c) ≥0 1+5+c ≥0 c ≥ −6 ✓
Discriminant b2 − 4ac = (−14.4)2 − 4(1.2)(−26.3) = 333.6 >0 ∴ Possible to reach 80 thousand dollars ✓
18(ii) Quadratic inequality f(x) > g(x) for all real values of x 2 x + 6x − 5 > 8x + c 2 x − 2x − 5 − c > 0 i.e. A = 1, B = −2, C = −5 − c
19(iii) Quadratic inequality C >x 1.2n2 − 14.4n + 53.7 >x 2 1.2n − 14.4n + 53.7 − x > 0 i.e. a = 1.2, b = −14.4, c = 53.7 − x 2 conditions (i) A > 0 1.2 > 0
(i) A > 0 1>0 (ii) B 2 − 4AC (−2)2 − 4(1)(−5 − c) 4 + 4(5 + c) 1 + (5 + c) 6+c c 19(i)
(ii) b2 − 4ac < 0 (−14.4)2 −4(1.2)(53.7 − x) 207.36 −4.8(53.7 − x) 43.2 −53.7 + x −10.5 + x x
<0 <0 <0 <0 <0 < −6 ✓
<0 <0 <0 <0 < 10.5
Combine inequalities: x < 10.5 and x > 0 ⇒ 0 < x < 10.5 ✓
Quadratic function At C = 10: 1.2n2 − 14.4n + 53.7 = 10 1.2n2 − 14.4n + 43.7 = 0 i.e. a = 1.2, b = −14.4, c = 43.7
20(i)
Discriminant b2 − 4ac = (−14.4)2 − 4(1.2)(43.7) = −2.7 <0 ∴ not possible to have a cost of production of 10 thousand dollars ✓
y = −0.5t 2 + 7t + k Height is 26m after 10s, y|t=10 = 26 2 −0.5(10) + 7(10) + k = 26 −50 + 70 + k = 26 k =6✓
20(ii) y = −0.5t 2 + 7t + 6 y|t=0 = 6 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
27
A math 360 sol (unofficial)
Ex 1.3
20(iii) y > 30 2 −0.5t + 7t + 6 > 30 0.5t 2 − 7t + 24 < 0 t 2 − 14t + 48 < 0 (t − 6)(t − 8) < 0 +
− 6
22(ii)
= =
+ 8
22
20(iv) Axis of symmetry = average of t − intercepts
23
6+8 2
=7 Maximum point = y|t=7 = −0.5(7)2 + 7(7) + 6 = 30.5 ✓ 20(v) y = −0.5(t − 7)2 + 30.5 ✓ (a) 𝑦
20(v) (b)
𝑡
𝑦
𝑦 = −0.5𝑥 2 + 7𝑥 + 30.5 (7,30.5)
6
𝑥
𝑂
No. The graphs have different domain. 1st: t ≥ 0 2nd : t ∈ ℝ 21
22(i)
β=
23
2a
=−
2a
+
)
(−b)2 −(b2 −4ac) 4a2 4ac 4a2 c a
[shown] ✓
Yes? Regardless b2 − 4ac is less than 0 or not, LHS is proven to equal RHS A: B: 2 y y = −0.3x + 3 = −0.2x 2 + 1.8 𝑦 𝑦 3
C: y = −0.08x 2 +2.4 𝑦 2.4
1.8
𝑥
3
𝑥
𝑂√30
𝑥
Comparing x-intercepts, C >A >B √30 > √10 > 3 ⇒ C will send water the farthest ✓
y = 10 −0.5x 2 + 2x + k = 10 2 −0.5x + 2x + k − 10 = 0 x 2 − 4x − 2k + 20 =0 (−2k i.e. a = 1, b = −4, c = + 20) For water jet to send water to height of 10 m, b2 − 4ac ≥0 (−4)2 − 4(1)(−2k + 20) ≥ 0 16 − 4(−2k + 20) ≥0 4 − (−2k + 20) ≥0 2 − (−k + 10) ≥0 2 + k − 10 ≥0 k ≥8
2a −b−√b2 −4ac
−b+√b2 −4ac
2a
23(iii) Compare modulus of coefficient of x 2 : A >B >C |−0.3| > |−0.2| > |−0.08| ⇒ A will produce the narrowest path ✓
−b+√b2 −4ac
α+β =
−b−√b2 −4ac
23(ii) Comparing y-intercepts, A> C >B 3 > 2.4 > 1.8 ⇒ A will send water the highest ✓
Incorrect. ✓ He forgets to include m ≠ 0 m = 0 ⇒ Linear equation α=
)(
𝑂 23(i)
✓
2a
𝑂 √10
(7,30.5) 6 𝑂
−b+√b2 −4ac
=( =
∴6< t<8✓
=
αβ
−b−√b2 −4ac 2a
2b 2a b
=− ✓ a
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
28
A math 360 sol (unofficial)
Ex 1.4 1(f)
Ex 1.4 1(a)
x2 − 4 ≤0 (x + 2)(x − 2) ≤ 0
(x − 1)(x + 2) < 0
+
− −2
+ − + −2 1
+ 2
−2 ≤ x ≤ 2
−2 < x < 1 ✓ 2
−2 1
−2 1(b)
✓
2
(x + 3)(x − 4) ≤ 0
✓
2x 2 − 4x − 3 > x 2x 2 − 5x − 3 > 0 (2x + 1)(x − 3) > 0
+ − + −3 4
+
−
−
−3 ≤ x ≤ 4
1
+ 3
2
1
x < − or x > 3 ✓ 2
4
−3 1(c)
✓
3(a)
(2x + 3)(x − 2) > 0 +
−
−
3
x(x − 2) <3 x 2 − 2x − 3 < 0 (x − 3)(x + 1) < 0 + − + −1 3
+ 2
2
−1 < x < 3 ✓
3
x < − or x > 2 2
− 1(d)
3(b)
3
2
2
✓
+ − + −2 6
x(x − 5) ≥ 0 +
x2 > 4x + 12 2 x − 4x − 12 > 0 (x − 6)(x + 2) > 0
− 0
x < −2 or x > 6 ✓
+ 5
3(c)
x ≤ 0 or x ≥ 5
4x(x + 1) ≤3 2 4x + 4x − 3 ≤0 (2x + 3)(2x − 1) ≤ 0 +
0 1(e)
5
x 2 − 4x x(x − 4) +
−
✓
0
3(d)
+
4
0≤x≤4
0
4
+ 1
2
2
3
1
2
2
− ≤x≤ ✓
≤0 ≤0 −
− 3
(1 − x)2 ≥ 17 − 2x 2 x − 2x + 1 ≥ 17 − 2x x 2 − 16 ≥0 (x + 4)(x − 4) ≥ 0 + − + −4 4
✓
© Daniel & Samuel A-math tuition 📞9133 9982
x ≤ −4 or x ≥ 4 ✓
sleightofmath.com
29
A math 360 sol (unofficial) 3(e)
(x + 2)2 x 2 + 4x + 4 2x 2 − 36 x 2 − 18 (x + √18)(x − √18) +
−
Ex 1.4 < x(4 − x) + 40 < 4x − x 2 + 40 <0 <0 <0
6(b)
Discriminant For two real roots: b2 − 4ac ≥0 2 (2p) − 4(9)(1) ≥ 0 4p2 − 36 ≥0 p2 − 9 ≥0 (p + 3)(p − 3) ≥ 0
+
−√18 √18 −√18 < x < √18 ✓ 4
S = 600 + 520T − 20T 2 S > 3800 2 600 + 520T − 20T > 3800 20T 2 − 520T + 3200 < 0 T 2 − 26T + 160 <0 (T − 16)(T − 10) <0 +
− 10
+
6(c)
+
−
< 150 < 150 <0 <0
+
+
4
18
5
6(a)
− −1
5 18
Quadratic equation px 2 − 2x + 2p + 1 = 0 i.e. a = p, b = −2, c = 2p + 1 Discriminant For no real roots: b2 − 4ac (−2)2 − 4(p)(2p + 1) 4 − 4p(2p + 1) 1 − 2p2 − p 2p2 + p − 1 (2p − 1)(p + 1)
C = 5x 2 − 38x + 222
+
+ 3
p ≤ −3 or p ≥ 3 ✓
16
C 5x 2 − 38x + 222 5x 2 − 38x + 72 (5x − 18)(x − 4)
− −3
10 < T < 16 ✓ 5
Quadratic equation 9x 2 + 2px + 1 = 0 i.e. a = 9, b = 2p, c = 1
<0 <0 <0 <0 <0 >0
+ 1 2 1
p < −1 or p > ✓ 2
Quadratic equation x 2 − px + p = 0 i.e. a = 1, b = −p, c = p Discriminant For two distinct real roots: b2 − 4ac >0 (−p)2 − 4(1)p > 0 p2 − 4p >0 p(p − 4) >0 +
− 0
+ 4
p < 0 or p > 4 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
30
A math 360 sol (unofficial) 6(d)
Ex 1.4
Quadratic equation 2x 2 − 2px + p2 + p = 0 i.e. a = 2, b = −2p, c = p2 + p Discriminant For real roots: b2 − 4ac (−2p)2 −4(2)(p2 + p) 4p2 −8(p2 + p) p2 −2(p2 + p) p2 −2p2 − 2p −p2 − 2p p2 + 2p p(p + 2)
8
Quadratic equation 3kx 2 + (k − 5)x = 5x 2 + 2 2 (3k − 5)x + (k − 5)x − 2 = 0 i.e. a = (3k − 5), b = (k − 5), c = −2 Discriminant For no real roots: b2 − 4ac (k − 5)2 −4(3k − 5)(−2) k 2 − 10k + 25 +8(3k − 5) k 2 − 10k + 25 +(24k − 40) k 2 + 14k − 15 (k + 15)(k − 1)
≥0 ≥0 ≥0 ≥0 ≥0 ≥0 ≤0 ≤0
<0 <0 <0 <0 <0 <0
+ − + −15 1
+ − + −2 0
−15 < x < 1 ✓
−2 ≤ p ≤ 0 ✓ 9 7(a)
1st inequality x 2 + ax
Discriminant For real roots: b2 − 4ac [−(2p + 4)]2 −4(p)(10 − p) 4p2 + 16p + 16 −4p(10 − p) p2 + 4p + 4 −p(10 − p) p2 + 4p + 4 −10p + p2 2p2 − 6p + 4 p2 − 3p + 2 (p − 1)(p − 2)
(x + 2)(x − 4) < 0 x 2 − 2x − 8 <0 Compare x: a = −2 ✓ Compare x 0 : b = 8 ✓ 7(b)
Quadratic equation px 2 − p + 10 = 2(p + 2)x 2 px − p + 10 = (2p + 4)x 2 px − (2p + 4)x + 10 − p = 0 i.e. a = p, b = −(2p + 4), c = 10 − p
1st inequality 2x 2 + a > bx 2 2x − bx + a > 0
+
− 1
≥0 ≥0 ≥0 ≥0 ≥0 ≥0 ≥0 ≥0
+ 2
p ≤ 1 or p ≥ 2 2nd inequality x < −2 or x > 3 is the solution: k[x − (−2)](x − 3) > 0 k(x + 2)(x − 3) >0 2 Compare x : k = 2
The opposite is true ⇒ p cannot lie between 1 and 2 ✓
2(x + 2)(x − 3) >0 2 2(x − x − 6) >0 2 2x − 2x − 12 >0 Compare x: a = −12 ✓ Compare x 0 : b = 2 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
31
A math 360 sol (unofficial) 10
Ex 1.4
Quadratic equation (p + 2)x 2 − 12x + 2(p − 1) = 0 i.e. a = p + 2, b = −12, c = 2(p − 1) Discriminant For real and distinct roots: b2 − 4ac (−12)2 −4(p + 2)[2(p − 1)] 144 −8(p + 2)(p − 1) 18 −(p2 + p − 2) −p2 − p + 20 p2 + p − 20 (p + 5)(p − 4)
12
−(1)
2xy + 6 = 0 −(2) sub (1) into (2): 2x(2x + c) + 6 = 0 4x 2 + 2cx + 6 =0 i.e. A = 4, B = 2c, C = 6 Discriminant For line not to intersect curve: B 2 − 4AC <0 2 (2c) − 4(4)(6) <0 2 4c − 4(4)6 <0 2 c − 24 <0 (c + √24)(c − √24) < 0 +
−
x 2 − xy + y 2 = 1
−(2)
Discriminant For two distinct points: B 2 − 4AC (−3k)2 −4(3)(k 2 − 1) 9k 2 −12(k 2 − 1) 3k 2 −4(k 2 − 1) 3k 2 −4k 2 + 4 k2 − 4 (k + 2)(k − 2)
−5 < x < 4 ✓ Line & curve y = 2x + c
−(1)
sub (1) into (2): x 2 − x(2x − k) +(2x − k)2 x 2 − 2x 2 + kx +(4x 2 − 4kx + k 2 ) −x 2 + kx +(4x 2 − 4kx + k 2 ) 3x 2 − 3kx + k 2 3x 2 − 3kx + (k 2 − 1) i.e. A = 3, B = −3k, C = k 2 − 1
>0 >0 >0 >0 >0 <0 <0
+ − + −5 4
11
Line & curve 2x − y = k y = 2x − k
=1 =1 =1 =1 =0
>0 >0 >0 >0 >0 <0 <0
+ − + −2 2 −2 < k < 2 ✓ 13(i)
d ≤ 80 2 0.15v + v ≤ 80 2 3v + 20v − 1600 ≤ 0 [shown] ✓
13(ii) (3v + 80)(v − 20) ≤ 0 +
+
−
−√24 √24 −
−√24 < c < √24 ✓
− 80
+ 20
3
80 ≤ v ≤ 20 3
Max speed = 20ms −1 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
32
A math 360 sol (unofficial)
Ex 1.4
14
Compare x: 𝑟
ℎ=6
Total surface area 2πr 2 + 2πr(6) 2πr 2 + 12πr − 224π r 2 + 6r − 112 (r + 14)(r − 8)
Compare x 0 : 16 = 4k k =4✓
> 224π > 224π >0 >0 >0
+ − + −14 8
≥ 3(x − 5) ≥ 3x − 15 ≥ −8 ≥ −4 ✓
Quadratic equation (k − 6)x 2 − 8x + k = 0 i.e. a = (k − 6), b = −8, c = k Discriminant For two distinct points: b2 − 4ac >0 2 (−8) − 4(k − 6)(k) > 0 64 − 4(k 2 − 6k) >0 16 − k 2 + 6k >0 2 k − 6k − 16 <0 (k − 8)(k + 2) <0
✓
15 x(2x + 1) >6 2 (i)(b) 2x + x − 6 >0 (2x − 3)(x + 2) > 0
+ − −2
−(2)
= −12 ✓ 17
−4
−(1)
sub (2) into (1): p = −(4 + 2(4))
r < −14 (rej ∵ r > 0) or r > 8 ✓ 15 5x − 7 (i)(a) 5x − 7 2x x
p = −(4 + 2k)
+ − + −2 8
+
−2 < k < 8
3 2
For minimum point, (k − 6) > 0 k >6
3
x < −2 or x > ✓ 2
−2
3 2
✓
Combine inequalities, −2 < k < 8 and k > 6 ⇒ 6
15 (ii) 3
−4 −2 −4 ≤ x < −2 16
2
or
3
18(a) x 2 + 2x < 0 x(x + 2) < 0
and x 2 − x >2 2 x −x−2 >0 (x − 2)(x + 1) > 0 + − + −2 0 + − + −1 2 −2 < x < 0 x < −1 or x > 2
x> ✓ 2
1st inequality 2x 2 + px + 16 < 0 2nd inequality 2 < x < k is solution ⇒ A(x − 2)(x − k) Compare x 2 : A = 2 2(x − 2)(x − k) 2(x 2 − 2x − kx + 2k) 2[x 2 − (2 + k)x + 2k] 2x 2 − 4(4 + 2k)x + 4k
© Daniel & Samuel A-math tuition 📞9133 9982
−2 −1
<0
0
2
∴ −2 < x < −1 ✓ <0 <0 <0 <0
sleightofmath.com
33
A math 360 sol (unofficial)
Ex 1.4
18(b) x 2 ≥4 2 x −4 ≥0 (x + 2)(x − 2) ≥ 0
and x 2 − 6 > 5x 2 x − 5x − 6 > 0 (x − 6)(x + 1) > 0
+ − + −2 2
2
+
− 0
+ − + −258.36 258.03 −258.36 ≤ x ≤ 258.03 ✓ 19(iii) 1 + 2n + 3 n(n − 1) ≤ 100 000 2
⇒ −258.36 ≤ n ≤ 258.03 Largest integer satisfying the above inequality ⇒ 258 ✓
+ 4
0≤x≤4 20 4
∴3< x≤ 4✓ 18(d) x ≤ x 2 < 9 x ≤ x2 x2 − x ≥ 0 x(x − 1) ≥ 0 +
− 0
x 2 − 2x − 3 > 0 (x + 1)(x − 3) > 0 𝐱 + 𝟏 > 𝟎 or x − 3 > 0 ⇒ x > −1 x > 3 3rd step is incorrect ✓
and x 2 <9 2 x −9 <0 (x + 3)(x − 3) < 0
+
We cannot indiscriminately distribute the same inequality sign to both factors. ✓
+ − + −3 3
1
x ≤ 0 or x ≥ 1
−3
≤ 100 000
⇒ 3x 2 + x − 199 998 ≤ 0
18(c) 0 < x(x − 3) ≤ x 0 < x(x − 3) and x(x − 3) ≤ x x 2 − 4x ≤ 0 + − + x(x − 4) ≤ 0 3 0
3
2(3)
x = −258.36 or x = 258.03 ✓
∴ x ≤ −2 or x > 6 ✓
0
−1±√12 −4(3)(−199 998)
19(ii) 1 + 2x + 3 (x − 1)x
6
x < 0 or x > 3
2
x=
x < −1 or x > 6
2
3
1 + 2x + (x − 1)x = 100 000 2 + 4x + 3(x − 1)x = 200 000 2 + 4x + 3x 2 − 3x = 200 000 3x 2 + x − 199 998 = 0
+ − + −1 6
x ≤ −2 or x ≥ 2
−2 −1
19(i)
Correct Solution x 2 − 2x − 3 > 0 (x + 1)(x − 3) > 0
−3 < x < 3
0
1
+ − + −1 3
3
∴ −3 < x ≤ 0 or 1 ≤ x < 3 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
x < −1 or x > 3 ✓
sleightofmath.com
34
A math 360 sol (unofficial)
Rev Ex 1 A3(i)
Rev Ex 1 A1
x + 2y = 5 2y = −x + 5 y
1
5
2
2
=− x+
−(1) Sum of roots
2x + y = 2xy sub (1) into (2):
−(2)
2
x+
1
5
1
5
2
2
2
2
2
5 5
2
2
x − x+
2x − 7x + 5 (2x − 5)(x − 1) x=
5 2
or 1 5
5
2 2 5
2
y|x=5 = − ( ) +
a
c a
=− =−
1 2 5 2
5
−2 (− )
2
2
1
=5 ✓ 4
=0 =0
✓
2
1 2
= (− )
=0
2
=
b
a2 + β2 = (α + β)2 −2αβ
= −x 2 + 5x
2 7
=α+β =−
Product of roots = αβ
2x + (− x + ) = 2x (− x + ) 3
1st equation 2x 2 + x − 5 = 0 i.e. a = 2, b = 1, c = −5 Roots: α & β, where α < β
A3(ii) (α − β)2 = α2 − 2αβ + β2 = (α2 + β2 ) −2αβ
x =1✓ 1
5
2
2
y|x=1 = − (1) +
=− ✓
=2✓
4
=5 =
1
5
−2 (− )
4 41
2
4 1
= 10 ✓ 4
A2
Perimeter 2x + 2y = 36 x+y = 18 y = 18 − x
𝑦 𝑥 −(1)
A3(iii) α − β = √41 or α − β = − √41 ✓ 2
2
(rej ∵ α < β) A3(iv) 2nd equation
Square of diagonal length 2
1
Recall α + β = − , 2
αβ = −
5 2
(√x 2 + y 2 ) = 164 x2 + y2
= 164
−(2)
sub (1) into (2): x 2 +(18 − x)2 −164 =0 2 2 x +(x − 36x + 324) −164 = 0 (2x 2 − 36x + 324) − 164 =0 2 2x −36x + 160 =0 2 x − 18x + 80 =0 (x − 8)(x − 10) =0 x=8 or x = 10 y|x=8 = 18 − (8) y|x=10 = 18 − (10) = 10 =8 Dimensions are 8 m by 10 m ✓
Roots: 2α & − 2β Sum of roots = 2α + (−2β) = 2(α − β) = 2 (−
√41 ) 2
= −√41
Product of roots = (2α)(−2β) = −4αβ 5
= −4 (− ) = 10 2
x 2 − (SOR)x + (POR) = 0 x 2 − (−√41)x +10 = 0 x2 + √41x +10
=0✓
35
A math 360 sol (unofficial)
Rev Ex 1
A4(a) Quadratic equation x2 + 3 = 2x + p x 2 − 2x + 3 − p = 0 i.e. a = 1, b = −2, c = 3 − p Discriminant For real roots: b2 − 4ac (−2)2 − 4(1)(3 − p) 4 − 4(3 − p) 1+p−3 p
A5(a) x 2 − 5x + 3 > 5 − 4x x2 − x − 2 >0 (x − 2)(x + 1) > 0 + − + −1 2 x < −1 or x > 2 ✓
≥0 ≥0 ≥0 ≥0 ≥2✓
A4(b) Quadratic equation 2x 2 + 2√3x + p = p(x 2 + 2) 2x 2 + 2√3x + p = px 2 + 2p (2 − p)x 2 + 2√3x − p = 0 i.e. a = 2 − p, b = 2√3, c = −p
−1 2 A5(b) Quadratic inequality 3x 2 − 6x + c > 4 for all real values of x 2 3x − 6x + c − 4 > 0 i.e. A = 3, B = −6, C = c − 4 2 conditions (i) A > 0 3>0
a ≠0 (2 − p) ≠ 0 p ≠2 Discriminant For distinct real roots: b2 − 4ac 2
(2√3) −4(2 − p)(−p) 12 −4(p2 − 2p) 12 −4p2 + 8p p2 − 2p − 3 (p − 3)(p + 1)
(ii) B 2 − 4AC (−6)2 − 4(3)(c − 4) 36 − 12(c − 4) 3 − (c − 4) 3−c+4 7−c −c c
>0 >0 >0 >0 <0 <0
+ − + −1 3 −1 < p < 3 Combine inequalities −1 < p < 3 and p ≠ 2 ⇒ −1 < p < 2 or 2 < p < 3 ✓
A6(i)
<0 <0 <0 <0 <0 <0 < −7 >7✓
Quadratic equation x 2 + px + 8 =p 2 x + px + 8 − p = 0 i.e. a = 1, b = p, c = 8 − p Discriminant b2 − 4ac = (p)2 − 4(1)(8 − p) = p2 − 32 + 4p = p2 + 4p − 32 = (p + 8)(p − 4) For equal roots: b2 − 4ac =0 (p + 8)(p − 4) =0 p = −8 or p = 4 ✓
36
A math 360 sol (unofficial)
Rev Ex 1
A6(ii) For distinct real roots: b2 − 4ac >0 ⇒ (p + 8)(p − 4) > 0
A7(b) Line & curve y = px − 3 −(1) 2 y = 4x + 5 −(2) sub (1) into (2): px − 3 = 4x 2 + 5 2 4x − px + 8 = 0 i.e. a = 4, b = −p, c = 8
+ − + −8 4 p < −8 or p > 4 ✓ A6(iii) For a positive & a negative root: POR < 0 αβ <0 c <0
Discriminant For line to intersect curve: b2 − 4ac ≥0 2 (−p) − 4(4)(8) ≥0 2 p − 128 ≥0 (p + √128)(p − √128) ≥ 0
a
8−p <0 −p < −8 p >8✓
+ 2
A7(a) 2x − 4x + 5 = 2(x 2 − 2x) +5 2 2 = 2[(x − 1) − 1 ] +5 = 2(x − 1)2 +3 ⇒ turning pt (1,3) ⇒ y − intercept = 5 ⇒ ∪ shape 𝑦 𝑦 = 2(𝑥 − 1)2 + 3 5 (1,3) 𝑂
p ≤ −√128 or p ≥ √128 ⇒ largest negative integer is − 12 ✓ A8(i)
Discriminant For line to be tangent to the curve: B 2 − 4AC =0 2 (−6) − 4(2)(5 − c) = 0 36 − 8(5 − c) =0 36 − 40 + 8c =0 8c − 4 =0 2
=α+β =−
Product of roots = αβ ✓
1
1st equation x 2 − 4x + 6 = 0 i.e. a = 1, b = −4, c = 6 Roots: α & β Sum of roots
𝑥
= ✓
+
−√128 √128
Line & curve y = 2x 2 − 4x + 5 −(1) y = 2x + c −(2) sub (1) into (2): 2x 2 − 4x + 5 = 2x + c 2 2x − 6x + 5 − c = 0 i.e. A = 2, B = −6, C = 5 − c
c
−
=
c a
b a
=− =
6 1
−4 1
=4 =6
α2 − αβ + β2 = (α2 + β2 ) −αβ = [(α + β)2 − 2αβ] − αβ = (α + β)2 − 3αβ [shown] ✓ A8(ii) α3 + β3 = (α + β) (α2 − αβ + β2 ) = (α + β) [(α + β)2 − 3αβ] [42 = (4) − 3(6)] = −8 ✓ A8(iii) 2nd equation Roots: α3 & β3 Sum of roots = α3 + β3 = −8 Product of roots = α3 β3 = (αβ)3 = (6)3 = 216 x 2 − (SOR)x +POR = 0 x 2 − (−8)x +(216) = 0 x2 + 8x + 216 =0✓
37
A math 360 sol (unofficial) B1
Rev Ex 1 B2(b) 3 − 2x − x 2 ≥ 0 x 2 + 2x − 3 ≤ 0 (x + 3)(x − 1) ≤ 0
x + 2y = 10 2y = −x + 10 1
y
=− x+5 2
2
2y − 7y + x = 1 sub (1) into (2):
+ − + −3 1
−(2)
−3 ≤ x ≤ 1 ✓
2
1
−(1)
1
2 (− x + 5) − 7 (− x + 5) + x 2
=1
2
1
7
4
2
2 ( x 2 − 5x + 25) + ( x − 35) + x 1
9
2
2
( x 2 − 10x + 50) + ( x − 35) 1 2 x 2 1 2 x 2 2
− −
11 2 11 2
=1
x + 15
=1
x + 14
=0
x − 11x + 28 (x − 4)(x − 7) x=4
=0 =0
y|x=4 = − (4) + 5 =3
=
⇒ A(4,3) ✓
3 2 3
b a −2(p+1)
=−
3α
= 2p + 2 2p+2
−(1)
3
a p2 +p
2 ( ) (p + 1) 3 8 (p2 9 2
−(2) = p2 + p
)
2
+ 2p + 1)
d+c cd
=
√12 1
(1)
A
= √12
=1
= 2√3 [shown] ✓
B3(ii) 2nd equation Roots:
1 c
&
1 d
Sum of roots
1
1
c
d
= +
= 2√3
1
1
1
c
d
cd
Product of roots = ( ) ( ) =
1
= (1) = 1
⇒ 4α
=
α
=
=p +p
= α(3α) =
2
2
2
8p + 16p + 8 = 9p + 9p 2 p − 7p − 8 =0 (p + 1)(p − 8) = 0 p = −1 or p=8 α|p=−1 = 0 a|p=8 = 6 (rej ∵ roots are non − zero)
−2k 6
k 3 k 12
−(1)
Product of roots
2
=p +p
=0✓
B4(a) 6x 2 − 2kx + k = 0 Roots: α & 3α Sum of roots = α + 3α = −
1 2
2p+2 2
1
d
+ =
x2 − 2√3x + 1
2α2 =p +p sub (1) into (2): 3 2 2
(−√12)
x 2 − (SOR)x + (POR) = 0
1
Product of roots c = α(2α) =
2(
C
Product of roots = cd =
c
2
⇒ 3α
=
B
A
Sum of roots = c + d = − = −
1
⇒ B (7, ) ✓
= α + 2α = −
⇒ 2α
x 2 − √12x + 1 = 0 i.e. A = 1, B = −√12, C = 1 Roots: c & d
2
B2(a) x 2 − 2(p + 1)x + p2 + p = 0 Roots: α & 2α Sum of roots
=
1st equation
1
y|x=7 = − (7) + 5
2
α
B3(i)
or x = 7
1
2
=1
⇒ 3α
=
k 6 k 6
−(2)
sub (1) into (2): k 2
3( ) 12
k2 48 2
= =
k 6 k 6
k = 8k k 2 − 8k = 0 k(k − 8) = 0 k = 0 (rej ∵ k is positive) or k = 8
38
A math 360 sol (unofficial)
Rev Ex 1
B4(b) x 2 = 3x + 5 2 x − 3x − 5 = 0 i.e. a = 1, b = −3, c = 5 Roots: α & β Sum of roots
B5(a) Quadratic inequality y = −x 2 + 2(k − 3)x − 25 < 0 for all x i.e. a = −1, b = 2(k − 3), c = −25
=α+β
Product of roots = αβ 1 α2
+
1
=
β2
= =
=− =
b a
c a
α2 +β2 α2 β2 (α+β)2 −2αβ (αβ)2 32 −2(−5) (−5)2
=
19 25
✓
−(1)
=− =−
−3 1 5 1
=3
2 conditions (i) a < 0 −1 < 0
= −5 (ii) b2 − 4ac <0 [2(k − 3)]2 −4(−1)(−25) < 0 4(k 2 − 6k + 9) −4(25) <0 2 (k − 6k + 9) −25 <0 2 k − 6k − 16 <0 (k − 8)(k + 1) <0 + − + −1 8
Show 𝛂𝟒 = 𝟓𝟕𝛂 + 𝟕𝟎 αβ = −5 β =−
5
−(2)
α
sub (2) into (1): 1 α2 1 α2
+ +
1 5 2 (− ) α α2
25 4
25 + α α4 α4 α4 α4
= =
19 25 19 25
= 19α2 = 19α2 − 25 = 19(3α + 5) − 25 = 57α + 95 − 25 = 57α + 70 ✓
−1 < k < 8 ✓ B5(b) y = (x − 3)(x + 1) (i) = x 2 − 2x − 3 = (x − 1)2 − 12 − 3 = (x − 1)2 − 4 ⇒ turning pt (1,4) ⇒ ∪ shape ⇒ y − intercept = −3 𝑦 𝑦 = (𝑥 − 1)2 − 4 −1
Method 2 ∵ α is a root ⇒ α2 = 3α + 5
−(1)
(1) × α2 : α4 = 3α3 + 5α2
−(2)
𝑂 −3
3
𝑥
(1, −4) ✓
sub (1) into (2): α4 = 3α(3α + 5) + 5(3α + 5) α4 = 9a2 + 15α + 15α + 25 α4 = 9α2 + 30α + 25 −(3) sub (1) into (3) α4 = 9(3α + 5) + 30α + 25 α4 = 27α + 45 + 30α + 25 α4 = 57α + 70 ✓
39
A math 360 sol (unofficial) B5(b) Quadratic equation (x − 3)(x + 1) = p (ii) x 2 − 2x − 3 =p 2 x − 2x − 3 − p = 0 i.e. a = 1, b = −2, c = −3 − p Discriminant For equal real roots: b2 − 4ac =0 (−2)2 −4(1)(−3 − p) = 0 4 +12 + 4p = 0 4p = −16 p = −4 ✓ Quadratic equation with 𝐩 = −𝟒 x 2 − 2x − 3 − (−4) = 0 x 2 − 2x + 1 =0 (x − 1)2 =0 x =1✓ B6(a) Quadratic equation (x + 1)2 = h(x + 2) 2 x + 2x + 1 = hx + 2h 2 (2 x + − h)x + 1 − 2h = 0 i.e. a = 1, b = (2 − h), c = 1 − 2h Discriminant For real root x: b2 − 4ac ≥0 2 (2 − h) − 4(1)(1 − 2h) ≥ 0 (h2 − 4h + 4) − 4(1 − 2h) ≥ 0 (h2 − 4h + 4) − 4 + 8h ≥0 2 h + 4h ≥0 h(h + 4) ≥0 + − + −4 0 h ≤ −4 or h ≥ 0 The opposite is true ∴ h cannot lie between − 4 and 0 if x is real ✓
Rev Ex 1 B6(b) Line & curve y = 3x + k −(1) y2 = 1 − x2
−(2)
sub (1) into (2): (3x + k)2 = 1 − x2 9x 2 + 6kx + k 2 = 1 − x2 10x 2 + 6kx + k 2 − 1 = 0 i.e. a = 10, b = 6, c = k 2 − 1 Discriminant For 2 distinct points: b2 − 4ac (6k)2 − 4(10)(k 2 − 1) 36k 2 − 40(k 2 − 1) 9k 2 − 10(k 2 − 1) 9k 2 − 10k 2 + 10 −k 2 + 10 k 2 − 10 (k + √10)(k − √10) +
−
>0 >0 >0 >0 >0 >0 <0 <0
+
−√10 √10 −√10 < k < √10 ✓ Tangent ⇒ k = ±√10 ✓ B7(a) (1 + x)(6 − x) (x + 1)(x − 6) x 2 − 5x − 6 x 2 − 5x − 14 (x − 7)(x + 2)
≤ −8 ≥8 ≥8 ≥0 ≥0
+ − + −2 7 x ≤ −2 or x ≥ 7 ✓
−2
7
✓
40
A math 360 sol (unofficial)
Rev Ex 1
B7(b) 2x(x + 2) < (x + 1)(x + 3) 2 2x + 4x < x 2 + 4x + 3 2 x −3 <0 (x + √3)(x − √3) < 0
+
−
B8(ii) Discriminant b2 − 4ac = (4)2 − 4(1)(−28) = 128 ≥0 ⇒ real roots ✓
+
−√3 √3
B8(iii) product of roots = αβ = −28 < 0 ⇒ one root is positive and the other is negative. ⇒ time can only be positive and the negative root is rejected hence the rate is 40 mg/s only at one particular time ✓
−√3 < x < √3 ✓ −√3 √3 B8(i)
✓
Quadratic equation At r = 40: (t − 10)2 − 2(t − 4)2 (t 2 − 20t + 100) − 2(t 2 − 8t + 16) (t 2 − 20t + 100) − 2t 2 + 16t − 32 −t 2 − 4t + 68 t 2 + 4t − 28 ✓
= 40 = 40 = 40 = 40 = 0 [shown]
B8(iv) r = −t 2 − 4t +68 2 = −[t + 4t] +68 2 2 = −[(t + 2) − 2 ] +68 = −(t + 2)2 +72 ⇒ turning pt (−2,72) ⇒ ∩ shape ⇒ y − intercept = 68 𝑟 (−2,72) 68 𝑂
𝑡 𝑟 = −(𝑡 + 2)2 + 72
✓
41
A math 360 sol (unofficial)
Ex 2.1 4
Ex 2.1
(7 + 3√2) 1(a)
√18 = √9 × 3 = 3√2 ✓
2
−(5 − 2√5)
= (7)2 + 2(7)(3√2) +(3√2)
2
2 2
−[(52 ) −2(5)(2√5) +(2√5) ] 1(b)
1(c)
1(d)
2(a) 2(b)
√300 = √100 × 3 = 10√3 ✓
= 49 +42√2 +9(2) −[25 −20√5 +4(5)]
√80 = √16 × 5 = 4√5 ✓
−(45 −20√5)
= 67 +42√2
−45 +20√5
= 22 + 42√2 − 20√5 ✓
√48 = √16 × 3 = 4√3 ✓
5(a)
6 √3
4√2
−√8
= =
2√3 + 5√3 − 3√3 = 4√3 ✓
6
×
√3 6√3
+√50
5(b)
√2 2√3
=
√2 2√3
=
√6 2(3)
=
√6 6
2
(2 + √5)(2 − √5)= (2)2 − (√5) =4 −5 = −1 ✓
5(c)
12 2√5−4
2
(1 − 2√7)
=
(1)2
−2(1)(2√7) +(2√7)
=1 −4√7 = 29 − 4√7 ✓ 3(d)
2
(5 + √18)
√3
✓
=
= =
2
√3
×
(1 + √3)(2 − √3) = 1(2 − √3) +√3(2 − √3) = 2 − √3 +2√3 − 3 = −1 + √3 ✓
3(c)
√3
3
= 3(b)
√3
= 2√3 ✓
= 4√2 −√4 × 2 +√25 × 2 = 4√2 −2√2 +5√2 = 7√2 ✓ 3(a)
= 67 +42√2
12 2√5−4
×
2√5+4 2√5+4
24√5+48 2
(2√5) −(4)2 24√5+48 20−16 24√5+48 4
= 6√5 + 12 ✓
+4(7) 6(a)
3√2−4 4+3√2
2
=
= (5)2 +2(5)√18 +(√18)
=
= 25 +10√18 +18 = 43 +10√9 × 2 = 43 +10(3√2)
= =
= 43 +30√2 ✓
3√2−4 4+3√2
×
4−3√2 4−3√2
3√2(4−3√2)
−4(4−3√2)
2 (4)2 −(3√2)
12√2 −9(2)
−16+12√2
16−9(2) −34+24√2 −2
= 17 − 12√2 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
42
A math 360 sol (unofficial) 6(b)
√3+2√2 √3−2√2
= = = = =
6(c)
8 (√6+2)
2
√3+2√2 √3−2√2 (√3)
2
×
Ex 2.1
√3+2√2
+2√3(2√2) 2
(√3) −(2√2) 3
6(d)
√3+2√2
+(2√2)
√50 − √48
2
2
+4√6
√18 − √12
=
+4(2)
3−4(2)
=
11+4√6
√18 − √12 √50 − √48
×
5
= = = = =
=
(√6)
✓
= =
+(2)2
+2√6(2)
8 6
− √12(√50 + √48) 2
(√50) − (√48)
8 2
√50 + √48
√18(√50 + √48)
−5 −11−4√6
√50 + √48
+ 4√6
=
+4
8 10 + 4√6 8 10 + 4√6
×
80 − 32√6 (10)2 − (4√6) 80 − 32√6 100 − 16(6)
80 − 32√6 = 4
30 + √25 × 33
− 10√6 − 24 2
6 + √25 × 33
− 10√6 2
6 + (22.5 )(31.5 ) 2
− 10√6
=
6 + (22 √2)(3√3) 2
− 10√6
6 + 12√6
− 10√6
=
2
− √600 − √576 50 − 48
= 10 − 4√6 10 − 4√6
√900 + √864
2
=
2 6 + 2√6 2
= 3 + √6 ✓ 7(a)
= 20 − 8√6 ✓
x√3 − x = 2 x(√3 − 1) = 2 x
= = = = =
2 √3−1 2
×
√3+1
√3−1 √3+1 2√3+2 2
(√3) −(1)2 2√3+2 3−1 2√3+2 2
= √3 + 1 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
7(b)
√2x − 3 = 5 2x − 3 = 25 𝑥 = 14 ✓
7(c)
2√1 − x = √3 4(1 − x) = 3
sleightofmath.com
3
1−x
=
x
= ✓
4 1 4
43
A math 360 sol (unofficial) 7(d)
8(a)
√8 − x = √x − 2 8−x =x−2 2x = 10 x =5✓
Ex 2.1 9(ii)
= √1800 = √100 × 18 = 10√18 = 10√9 × 2
a + b√3 = 2 − √3
= 10(3√2) = 30√2 ✓
Equate rational terms: a=2✓ Equate irrational terms: b = −1 ✓ 8(b)
8(c)
a + b√7 = 4√7 − 12 − √7 = −12 + 3√7 Equate rational terms: a = −12 ✓ Equate irrational terms: b=3✓
Change in velocity = 30√2 − 20√2 = 10√2 ✓ 10(i) √80 − 3 3 + 2√5 Total Length = 2(square perimeter) +4(height)
a + b√2 = 3(1 − √2) + 4√2 = (3 − 3√2) + 4√2 = 3 + √2 Equate rational terms: a=3✓ Equate irrational terms: b=1✓
9(i)
v|s=90 = √20(90)
v = √20s
= 2(4)(3 + 2√5)
+4(√80 − 3)
= 8(3 + 2√5)
+4√16 × 5 − 12
= 24 + 16√5
+4(4√5) − 12
= 24 + 16√5
+16√5 − 12
= 12 + 32√5 ✓
10(ii) Volume = (square base)
(height)
2
= (3 + 2√5)
v|s=40 = √20(40)
(√80 − 3) 2
= √800
= [(3)2 + 2(3)(2√5) + (2√5) ] (√16 × 5 − 3)
= √100 × 8
= (9
= 10√8
+ 12√5
+ 20)
(4√5 − 3)
= 10√4 × 2
= (12√5 + 29)
(4√5 − 3)
= 10(2√2)
= 12√5(4√5 − 3)
+29(4√5 − 3)
= 48(5) − 36√5
+116√5 − 87
= 20√2 ✓
= 153 + 80√5 ✓ 11(a) 4√12
2
− √3 3 2
= 4√4 × 3 − √3 3 = 4(2√3) = 8√3
2
− √3 3 2
− √3 3
− − −
18 √3 18 √3
×
√3 √3
18√3 3
−6√3
4
= √3 ✓ 3 © Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
44
A math 360 sol (unofficial) 11(b)
4 √2
= = =
4 √2
×
√2 √2
4√2
−
√128 3
+
−
√64×2 3
+
−
2 4√2
−
2
Ex 2.1
8√2
+
3 8√2
+
3 8
= 2√2
− √2 3
= 2√2
− √2 3
+
8
1
12(b)
2
(2√7−3)
√8 2
=
√4×2 2
=
2√2 1
=
√2 1 √2
×
√2
=
√2
1
+ √2 2
=
1
= − √2 ✓ 6 11(c)
2
(
√6
= =
2 √6
×
√6
(
√6
2√6
(
6 1
= √6 3
(
1
= √6 3
(
1
4 √27 4 √9×3 4
4 3√3
×
( √3 9
1
37
= = =
37 37 37
= = = =
√81×3 2
−
9√3
−
2 9
+ √3 2 +
−
9√3
−
2 9
)
5 √4×3 5 2√3
= )
=
)
5 2√3 5√3 2(3)
×
√3 √3
1 4(7)
−12√7
−
+9
1
−
37−12√7 1 37−12√7
×
37+12√7
−
37+12√7
37+12√7
−
2 (37)2 −(12√7)
37+12√7
−
1369−144(7) 37+12√7
−
361 24√7 361
1 2
(2√7) +2(2√7)(3)+(3)2 1 4(7)
37+12√7 1 37+12√7
4√3−2
4√3+2 4√3+2
4√3+2 2
(4√3) −(2)2 4√3+2
37−12√7 (37)2 −(12√7) 37−12√7
37−12√7 361
38
= 4√4 × 3 +3√9 × 2
−
= 4(2√3) +2(3√2)
−
= 8√3
+9√2
−
= 8√3
+9√2
−(5√2 + 2√3)
= 8√3
+9√2
−5√2 − 2√3
)
4√3+2
− −
−
44
2
1369−144(7)
−
13(a) (3 − √3)2
−
16(3)−4
37−12√7
5√2−2√3 38 5√2−2√3
×
5√2+2√3 5√2+2√3
38(5√2+2√3) 2
(5√2) −(2√3)
2
38(5√2+2√3) 25(2)−4(3) 38(5√2+2√3) 38
= 4√2 + 6√3 ✓
− ×
37−12√7
×
= 4√12 +3√18
)
+9
1
−
− √3) 6
√2 ✓
1
+12√7
✓
5
+ √3 2
2
12(c) √6(4√2 + 3√3)
(3√2)
27
1
=
+
5 √12
(2√7)
−
−2(2√7)(3) +(3)2
√3)
4√3−2
=
−
√9 × 2
27
9
9
√243 2
1 2
1 (2√7+3)
√18
27
37
√3
3(3)
= √6 3
=
√3
4√3
(
+
+
3√3
4
= √6 3
12(a)
=
−
2
−
2 4√3+2 2 4√3+2
×
8√3−4 2
(4√3) −(2)2
5
−
= 12 − 6√3
−
= 12 − 6√3
−10 − 5√3
2−√3
×
2+√3
= 9 − 6√3 + 3 4√3−2 4√3−2
5 2−√3
2+√3
10+5√3 4−3
= 2 − 11√3 ✓
8√3−4 16(3)−4 8√3−4 44
6−4√3 44 3 22
−
1 11
√3 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
45
A math 360 sol (unofficial) 13(b)
s2 +1 s+2
= = = = = = =
(1−√5)
2
Ex 2.1 15(b) √6 − 5x − x = −2x = −x √6 − 5x 6 − 5x = x2 x 2 + 5x − 6 = 0 (x + 6)(x − 1) = 0 x = −6 or x = 1 (rej) ✓
+1
(1−√5)+2 (1−2√5+5) +1 3−√5 7−2√5 3−√5
×
3+√5 3+√5
7(3+√5)
−2√5(3+√5)
(3)2 −(√5) 21+7√5
2
15(c) √x + 5 + x =1 =1−x √x + 5 x+5 = x 2 − 2x + 1 x 2 − 3x − 4 = 0 (x − 4)(x + 1) = 0 x = −1 or x = 4 (rej) ✓
−6√5+2(5) 9−5
11+√5 4 11 4
14(i)
1
+ √5 ✓ 4 4+
6
16
√3
(4 +
= (5 − √4 × 3) (4 + = (5 − 2√3) = (5 − 2√3)
(4 +
6 √3 6 √3
×
6√3 3
𝑥
) √3 √3
= =
)
)
=
(4 + 2√3)
= 8 + 2√3 ✓ 14(ii) By Pythagoras Theorem, Square of the length of diagonal 2
+ (4 +
√10 √40 − √5
×
√40 + √5 √40 + √5
√400 + √50 2
=
20 + √25 × 2 40 − 5
=
20 + 5√2 35
=
4 + √2 7
=
𝑎 + √𝑏 [given] 7
−8√3 − 4(3)
= (5 − √12)
√10 √40−√5
2
(√40) − (√5)
= 5(4 + 2√3) −2√3(4 + 2√3) = 20 + 10√3
= x√5 + √10
𝑥(√40 − √5) = √10
5 − √12 Area = (5 − √12)
x√40
6 √3
2
= (5)2 − 2(5)√12 + (√12) + (16 +
)
2
48
+
√3 48
36 3
= 25 − 10√12 + 12
+ (28 +
= 37 − 10√4 × 3
+ (28 +
= 37 − 10(2√3)
+ (28 +
= 37 − 20√3
+(28 + 16√3)
√3
)
)
48 √3
×
48√3 3
√3 √3
)
Equate rational terms: a=4✓ Equate irrational terms: b=2✓
)
= 65 − 4√3 ✓ 15(a) √2 + x − x =0 =x √2 + x 2+x = x2 x2 − x − 2 =0 (x − 2)(x + 1) = 0 x = −1 (rej) or x = 2 ✓ © Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
46
A math 360 sol (unofficial)
Ex 2.1
17(a) 3 + a√5 = b(3 − √5) −2(3 + √5) = 3b − b√5
18
−6 − 2√5
a + b√7
= 3b − 6 −(b + 2)√5 Equate rational terms: 3 = 3b − 6 3b = 9 b =3✓ −(1) Equate irrational terms: a = −(b + 2) −(2) sub (1) into (2): a = −((3) + 2)
= = =
17(b) a − b√7 = (2 + √7)(2 − √7) +√7 = (2)2 − (√7)
2
=4−7 = −3 + √7 Equate rational terms: a = −3 ✓ Equate irrational terms: −b = 1 𝑏 = −1 ✓
=
+√7 +√7
2
2
324 2
(4)2 − 2(4)√7 + (√7) 324 16
− 8√7 324
+7
23 − 8√7 324 23 − 8√7
×
23 + 8√7 23 + 8√7
324(23 + 8√7) 2
(23)2 − (8√7)
=
324(23 + 8√7) 529 − 64(7)
=
324(23 + 8√7) 81
Equate rational terms: a = 92 ✓ Equate irrational terms: b = 32 ✓
+b√8 2
13
)
= 92 + 32√7
= (3)2 − 2(3)(2√2) + (2√2)
+b√4 × 2
=9
+b(2√2)
= 17 − 12√2 = 17 +(2b − 12)√2 Equate rational terms: a = 17 ✓ Equate irrational terms: 1 = 2b − 12
18 4−√7
= 4(23 + 8√7)
17(c) a + √2 = (3 − 2√2)2 − 12√2
18 4−√7
=( =
= −5 ✓
b=
√a + b√7 =
+ 4(2)
+2b√2 19(a) (a + 3√2)(3 − 4√2)
= −18 + b√2
a(3 − √2) +3√2(3 − 4√2) = −18 + b√2 3a − a√2 +9√2 − 12(2) 3a − 24 +(9 − 4a)√2
✓
= −18 + b√2 = −18 + b√2
Equate rational terms: 3a − 24 = −18 3a =6 a =2 ✓ −(1) Equate irrational terms: 9 − 4a = b −(2) sub (1) into (2): 9 − 4(2) = b b =1✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
47
A math 360 sol (unofficial) 19(b) (3 − 2√3)(4 + a√3) 3(4 + a√3)
Ex 2.1 = b − 23√3
19(d)
−2√3(4 + a√3) = b − 23√3
12 + 3a√3 −8√3 − 2a(3) 12 − 6a +(3a − 8)√3 Equate rational terms: 12 − 6a = b −(1)
2+4√7
= 4 − √7
a+b√7
2 + 4√7 = (4 − √7)(a + b√7)
= b − 23√3 = b − 23√3
= 4(a + b√7) = 4a + 4b√7 = 4a − 7b Equate rational terms: 2 = 4a − 7b 4a = 7b + 2
Equate irrational terms: 3a − 8 = −23 3a = −15 a = −5 ✓ −(2) sub (2) into (1): 12 − 6(−5) = b b = 42 ✓
a
=
7b+2
Equate irrational terms: 4 = 4b − a −(2) sub (1) into (2): 4 = 4b − (
7b+2 4
)
= 6 − 4√3
a(5 − 3√3)
+b√3(5 − 3√3)
= 6 − 4√3
16 = 16b − 7b − 2 9b = 18 b = 2✓
5a − 3a√3 +5b√3 − 3b(3) 5a − 9b +(5b − 3a)√3 Equate rational terms: 5a − 9b = 6
= 6 − 4√3 = 6 − 4√3
Put b = 2 into (1):
=
9b+6 5
a|b=2 =
20(i)
9b+6 5
)
= −4
2
2
(2 − √3) = (2)2 − 2(2)√3 + (√3) +3
20(ii) 28 − 16√3= 4(7 − 4√3) 2
25b − 27b − 18 = −20 −2b = −2 b =1✓
= 4(2 − √3)
The two square roots are ±2(2 − √3) i.e. 4 − 2√3 or −4 + 2√3 ✓
Put b = 1 into (1): a|b=1 =
4
=4 − 4√3 = 7 − 4√3 ✓
sub (1) into (2): 5b − 3 (
7(2)+2
=4✓
−(1)
Equate irrational terms: 5b − 3a = −4 −(2)
−a√7 − b(7) +(4b − a)√7
−(1)
4
19(c) (a + b√3)(5 − 3√3)
a
−√7(a + b√7)
9(1)+6 5
=3✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
48
A math 360 sol (unofficial)
Ex 2.1
20(iii) √34 − 24√2 = c + d√2
21(ii) 2
1
=
R
34 − 24√2 = (c + d√2)
1 2
= (c)2 +2(c)(d√2) +(d√2) = c 2 +2cd√2 = c 2 + 2d2 Equate rational terms: 34 = c 2 + 2d2 −(1) Equate irrational terms: −24 = 2cd c
12
=−
10
+d2 (2) +2cd√2
6√2+7√3
= (−
34
=
34d2
144 d2
=
2
60√2−70√3 36(2)−49(3) 60√2−70√3 −75 4
) + 2d2
+ 2d2
= 144 + 2(d2 )2
14
+ 1
+
√3+3√2 1 √3+3√2
×
√3−3√2 √3−3√2
√3−3√2 2
(√3) −(3√2)
2
+
=
√3−3√2 −15
+
− √2 + √3 5 15
=−
√3 − √2
=
R2
=
1
1
15
√3 + 5 √2
1
=
R2
= √3 + √2 ✓
c|d=−3 = −
−3
= −4 =4
=
V = IR = 5√6 [
1 10
(6√2 + 7√3)]
1
= √6(6√2 + 7√3) 2 = 3√12 = 3√4 × 3
7
+ √18 2
1 R2 1 R2
√3−√2
×
√3+√2
√3+√2 3−2
= √a + 1 − √a =
∴ −4 + 3√2 or 4 − 3√2 ✓
1 R2
√3+√2
R2
3 12
1 R2
1
=0
12
1 R2
√3−√2
(d2 )2 − 17d2 + 72
c|d=3 = −
1 R2
1
=
1
+
1 R2
R2
R2
√a+√a+1
+
√3−3√2 3−9(2)
=0
22(i)
+
=
2(d2 )2 − 34d2 + 144
(d2 − 9)(d2 − 8) =0 2 2 d =9 d =8 d = ±3 d = ±2√2 (rej ∵ non-surds)
21(i)
=
6√2−7√3
2
12 2 d
6√2−7√3
60√2−70√3
sub (2) into (1): 34
×
(6√2) −(7√3)
−(2)
d
=
1 (6√2+7√3) 10
1 R1
1 √a + √a + 1 1 √a + √a + 1
=
√a − √a + 1 a − (a + 1)
=
√a − √a + 1 −1
×
√a − √a + 1 √a − √a + 1
= √a + 1 − √a [shown] ✓
7
+ √9 × 2 2
22(ii)
1
+
1
7
√1+√2
2
= (√2 − √1)
= 3(2√3)
+ (3√2)
= 6√3
+
21 2
√2 ✓
√2+√3
+
1 √3+√4
+ ⋯+
1 √8+√9
Method of Difference [ ] Telescopic Sum Concept
+(√3 − √2) +(√4 − √3) +⋯ +(√9 − √8) = √9 − √1 =3−1 =2✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
49
A math 360 sol (unofficial) 23
Ex 2.1
√x 2 − x − 2 + 3√x 2 + x − 6 = 0 √x 2 − x − 2
= −3√x 2 + x − 6
x2 − x − 2
= 9(x 2 + x − 6)
x2 − x − 2
= 9x 2 + 9x − 54
8x 2 + 10x − 52
=0
4x 2 + 5x − 26
=0
(4x + 13)(x − 2) = 0 x=−
13 4
(rej) or x = 2 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
50
A math 360 sol (unofficial)
Ex 2.2 2(b)
Ex 2.2
when y = 16: 3
2x 2 = 16 1(a) 1(b)
(23 × 32 )0 = 1 ✓ 4
4
(2√3)
3
x2 = 8 2
4
x
= (8)3
4
x x
= (23 )3 = 4✓
= 2 (√3) 1 2
= 24 (3 )
2
= 16(3)2 = 144 ✓ 1(c)
1
1
1
93 ×33 6
3(a)
16x = (24 )x = (2x )4 = u4 ✓
3(b)
22x+3 = (22x ) (23 ) = (2x )2 (23 ) = 8u2 ✓
3(c)
4x−1 = (22 )x−1 = 22x−2 = 22x × 2−2
1
(32 )3 ×33
=
6 1
(27)3
=
6 1
(33 )3
=
6 3
=
6 1
= ✓ 2
1(d)
1
1
254
= (2x )2 ×
1
× 53 × 56
= (52 )
1 4
1 3
1 6
1 3
1 6
=5
4
×5 ×5
3(d)
1 1 1 52+3+6
= = 51 =5✓ 1(e)
1
1
1
33 ×30 ×93 2 273
=
1
×30
33
1
1
42−x = (22 )2−x = 21−2x = (21 ) (2)−2x (2x )−2 =2 (u)−2 =2
×(32 )3
=
2 (33 )3 1
=
2
33
×1
4
1
= u2 ✓
×5 ×5
1 2
1
×33
4(a)
32
2 u2
✓
× 2x ÷ √2y
8
y
= 23 × 2x ÷ 22
1 2 33+3−2
= = 3−1
y
= 23+x−2 ✓
1
= ✓ 3
2(a)
y=
4(b)
2x
× 42x+1 x
3 2x 2 3
y|x=9 = 2(9)2 3
2
× 2−1 (24x )
=2
×
= 2x
× 24x+2
× 2−1+4x
= 2x
+4x+2
−1+4x
= 29x+1 ✓
= 2(32 )2 = 2(33 ) = 54 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
(22 )2x+1
1
× (16x )
sleightofmath.com
51
A math 360 sol (unofficial) 4(c)
1
×√
4 x−1
Ex 2.2 6(b)
8y
6
2( √a)+( √a)
32
1
=
1 22x−2
=
9
1
25
=
3 5 y− 2 2
=
1
2x+1
7(a)
=
(23 )
x+2
1
3
15 2
−17 (2 )
7(b)
17 √2
×
4
1
1
1
2
1
1
2
2
1
1
2
+a3 b 3 − a3 b 3 + b
3
3
3
= √a3 =a✓
17√2 2
√2 ✓ 7(c)
3
3
3
3
3
3
3
3
3
3
3
3
− √8
= √33
3
− √23
=3
−2
3
3
3
3
− √2( √9 + √6 + √4) 3
= √27 + √18 + √12
3
3
− √18 − √12 − √8
3
= √27
3
=1✓
+ (4)(5)(52x ) 5x+2 + 4(52x+1 )
3
( √3 − √2)( √9 + √6 + √4) = √3( √9 + √6 + √4)
7(d)
1
1
1
1
1
(a2 + √2a4 b 4 + b 2 ) 1
1
1
1
1
(a2 − √2a4 b 4 + b 2 ) 1
1
1
1
1
1
= [(a2 + b 2 ) + √2a4 b 4 ] [(a2 + b 2 ) − √2a4 b 4 ] 1
1
2
1
1
= (a2 + b 2 )
1
1
2
− (√2a4 b 4 )
= (a + 2a2 b 2 + b)
1
1
−2a2 b 2
=a+b✓
= 5−x ✓ (√a)
2
3
5
5x+2 52x+2
1
= √(a3 + b 2 ) − b 2
√2
x+2
=
2
( √√a3 + b 2 + b) ( √√a3 + b 2 − b)
√2
× 52−2x + 20(52x )
5x+2 5(52x+1 )
1
3
53x 52x+1
=
1
= √(√a3 + b 2 + b)(√a3 + b 2 − b)
52x+1
52x+1
2
17 √2
× (52 )1−x + 3(52x ) + 17(52x )
52x+1
1
=a+b✓
1 − 2
53x × 251−x 52x+1 + 3(25x ) + 17(52x ) 53x
1
= a − a3 b 3 + a3 b 3
23x+2
= 16√2 −
2
2
2
− 17(23x+1 )
= 16√2 −
1
= a3 (a3 − a3 b 3 + b 3 ) +b 3 (a3 − a3 b 3 + b 3 )
23x+6
= 16√2 −
=
1
(a3 + b 3 ) (a3 − a3 b 3 + b 3 )
−17(2)(23x ) 3 2x+1 (22 )
=2
6(a)
2
= 3a9 ✓
1 4 2
=
3a3 a9
=
=
2
1
(√8)
=
+ a3 a9
3 5 22−2x+2y−2
8x+2 −34(23x )
=
1
2a3 1
3
5(b)
1
(a2 )9
(23 )y
= 22y−2x−2 ✓ 5(a)
+(a6 )
× √23y−5
= 22−2x × 2 =
2(a3 )
2
√a2
= (22 )x−1 × √
1 2
1 3
12
4
× ( √a ) 4
1
12
÷ a4
= (a2 ) × (a4 )
÷ a4
= a2 =a✓
÷ a4
× a3
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
52
A math 360 sol (unofficial) 8
7
(√3) +(√3) 33.5
5
Ex 2.2
+(√3)
+32.5
3
12
+42(√3) = 3k
+31.5
+42√3
= 3k
33 √3 +32 √3 +3√3
+42√3
= 3k
√3(33 +32
+42)
= 3k
+3
2n−1
P = (2 + √5)
2n 2n
=
k
√3(81)
=3
=
1 2
(2 + √5)
2 + √5 (4 + 4√5 + 5) 2 + √5
(3 ) (34 ) = 3k 342
= 3k
∴k
= ✓
=
9
4
n
× √2 ×
33
1
3
4
11 6
17 6
5
5
1
6
2
5 2 5
2 )2
(23
÷
= 2x 3y pz
×3×p
−2 )2
x y z
=2 3 p
14(i) (a)
(2−1 ⋅ x −1 )r
u = 2x v = yx 2x+1 +y 2 (y x−2 ) = 11 2x ⋅ 2 +y x = 11 2u +v = 11 ✓
= 2x 3y pz 1
−(1)
,y = 3 ,z = 8✓
(2n )21
2
−3(2n )
+4(2n+2 )
n)
n )22
−3(2
+4(2
= 2n [21
−3
+4(22 )]
= 2n (2
−3
+16)
14(i) (b)
(22 )
1 x+1 2
2x ⋅ 22 4u
10(ii) 2n+1 − 3(2n ) + 4(2n+2 ) = 15(2n ) ∵ 15 is a factor, it is divisible by 15 ✓ 4n +5(4n+1 ) = 4n +5(4n )(4) = 4n +20(4n ) = 4n +20(4n ) = 19(4)n
1
42x+1
2x+2
= 15(2n ) ✓
11
x
3
÷ (22 × 32 × p−3 ) = 2x 3y pz
7
2n+1 =
=
(23 2 )8−r
= 224−4r x16−3r [shown] ✓
3 2
2 2 32 p8 2
1 r
(8x 2 )8−r ( )
= 224−3r ⋅ x16−2r (2−r ⋅ x −r )
3
9
[shown] ✓
2x
✓
÷ (24p−2 )
(210 × 35 × p5 )
11
13
=2 3 p
6
×3 ×p
= 2x 3y pz x y z
5
2
=2 3 p
13 2
∴ x = 1 ,y = 2 ,z = 6 (144p2 )
×
= (√5 − 2)(9 + √80)
x y z
p5
× 22 × 32 × p 2
2 ×3 ×p
∴x=
(9 + 4√5) (2 − √5) 4−5
= (√5 − 2)(9 + √16√5)
= 2x 3y pz
× √54p5
2 3 × 3 3 × p4
10(i)
2 − √5
n
2
11
2 − √5
n
2
(36p6 )3
(24
×
= (√5 − 2)(9 + 4√5)
2
(22 × 32 × p6 )3
9(b)
n
n
1
9(a)
−1
= (2 + √5) (2 + √5)
+5−1 y x = 4 1
+ yx 5 1 + yx 5 1 + yx 5 1
+ v 5
=4 =4 =4 =4✓
−(2)
14(ii) 2(1) − (2): 1
2v − v = 22 − 4 5
9 5
v
−22n+1 −(22n )(2) −(22 )n (2) −4n (2)
v
= 18 = 10 ✓
−(3)
sub (3) into (1): 2u + 10 = 11 u
1
= ✓ 2
∵ 19 is a factor, it is divisible by 19 ✓ © Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
53
A math 360 sol (unofficial) 15(ii) ax = b y = (a)w
14(iii) (4y)x = 4x y x = (2x )2 y x = (u)2 v 1 2
Ex 2.2
b
ax = b y
(10)
=( ) 2
y
a = bx
5
−(1)
= ✓ 2
15(i)
a w
by = ( )
sub (1) into (2):
y
a
= bx
−(1)
y
−(2) by
sub (1) into (2):
b
y
= [b
]
yz ( +z) x
by = b yz ⇒y = +z
y
= z(
xy y+x
z
x
w
y
= w ( − 1)
y
= w(
y−x
y
x y+x
y
= (b x−1 )
y xy
x
= z ( + 1)
b
x
z
y
=( )
wy
= [(b ) b] y +1 x
bx
b y = b x −w wy ⇒y = −w
z
y x
w
y
b b y = (ab)z
by
−(2)
b
ax = b y
w
x y−x x
)
=w =
xy y−x
[shown] ✓
)
=z =
xy y+x
[shown] ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
54
A math 360 sol (unofficial) 2(d)
Ex 2.3 1(a)
Ex 2.3
32x = 27 32x = 33 ⇒ 2x = 3 3 x = ✓ 2
1(b)
4x = 32 22x = 25 ⇒ 2x = 5
1(c)
2
3x
3 x 2
3(i) 1 −3
= −2 ✓ 1 x+2
( )
=3 3 = 31 ⇒ −2x − 4 = 1 −2x−4
22x 2x−1
2x+1
= 10 = 10 = 101 =1 1 =
2(c)
3(2x−1 ) = 2x + 4 x )(2−1 ) 3(2 = 2x + 4 3(2x ) ( )
= 2x + 4
3
(2x )
= 2x + 4
(2x )
=4
2
1
sub u = 3x : u
= (23 )2−x = 26−3x
= ✓
5(a)
4
2
4x −6 − 16x+1 = 0 2 4x −6 = 16x+1 2 4x −6 = (42 )x+1 2 4x −6 = 42x+2 ⇒ x2 − 6 = 2x + 2 x 2 − 2x − 8 = 0 (x − 4)(x + 2) = 0 x = 4 or x = −2 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
3
1
= 4 −3 ( ) u
u2 = 4u −3 2 u − 4u + 3 =0 (u − 3)(u − 1) = 0 u=3 or u = 1 x sub u = 3 : sub u = 3x : x 3 =3 3x = 1 3x = 31 3x = 30 ⇒ x =1✓ ⇒x =0✓
= 82−x
=5
x
3x = 4 −3 ( x )
2
5
x
=0
3x = 4 −3(3−x )
⇒ x + 1 = 6 − 3x 4x
x2 + x − 2
4
2
2x−1
=2−x
33x
2x = 8 2x = 23 ⇒ x =3✓
5
4x
⇒ x2
32x+2
=
3(ii)
=− ✓
x
2(b)
= 32−x
27x
2 =8 sub u = 2x : u=8✓
(3−2 )x+2
4x (52x ) 22x (52x ) 102x ⇒ 2x x
2
2
=3
9
2(a)
3x
2 1
2
1(d)
2
1
8
2 =2 3 ⇒ x = −3 x
3x
=
x = −2 or x = 1 ✓
= ✓
(√2) =
2
(x + 2)(x − 1) = 0
5
x
9x+1
3x
sleightofmath.com
52x −6(5x ) +5 = 0 (5x )2 −6(5x ) +5 = 0 sub u = 5x : u2 − 6u + 5 =0 (u − 1)(u − 5) = 0 u=1 or u=5 x sub u = 5 : sub u = 5x : x 5 =1 5x = 5 5x = 51 5x = 50 ⇒ x =1✓ ⇒ x =0✓
55
A math 360 sol (unofficial) 5(b)
6
7(a)
22x −10(2x ) +16 (2x )2 −10(2x ) +16 sub a = 2x : a2 −10a +16 (a − 2)(a − 8) a=2 or sub a = 2x : 2x = 2 ⇒ x =1✓
2x+1
Ex 2.3 =0 =0
7(b)
3x 9y
=0 =0 a=8 sub a = 2x : 2x = 8 2x = 23 ⇒ x =3✓
3x 32y
3x−2y
x
=
35x (32y ) = 5x+2y
= 33 = 33
= 2y + 3
−(1)
2nd eqn 1 42x (26y ) =
2 = 3(2 + 2 22x ⋅ 2 = 3(2x ) + 2 (2x )2 ⋅ 2 = 3(2x ) + 2 x sub u = 2 : 2u2 = 3u + 2 2u2 − 3u − 2 = 0 (2u + 1)(u − 2) = 0 1 u=2 u=− or 2 sub u = 2x : sub u = 2x : 2x = 2 1 2x = − 2 2x = 21 x (rej ∵ 2 > 0) ⇒ x = 1[shown] ✓ 5x (252y ) =1 x ((52 )2y ) 5 = 50 x (54y ) 5 = 50 5x+4y = 50 ⇒ x + 4y =0 x = −4y
= 27
⇒ x − 2y = 3
x)
35x (9y )
1st eqn
4
24x+6y = 2−2 ⇒ 4x + 6y = −2 sub (1) into (2): 4(2y + 3) + 6y 8y + 12 + 6y 14y y
−(2)
= −2 = −2 = −14 = −1 ✓
Put y = −1 into (1): x|y=−1 = 2(−1) + 3 =1✓ 8(i)
1
n
√2 × 4m = (2 × 4m )n 1
= (2 × 22m )n 1
= (22m+1 )n
−(1)
=2
1
2m+1 n
[shown] ✓
9 1 32 −2
3 =3 ⇒ 5x + 2y = −2
−(2)
sub (1) into (2): 5(−4y) + 2y = −2 −18y = −2 1 y = ✓ 9
Put y =
1 9
into (1): 1
x|y=1 = −4 ( ) 9
9
4
=− ✓ 9
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
56
A math 360 sol (unofficial) 8(ii)
Ex 2.3
1st eqn n √2 × 4m = 8 2m+1 n
9(c)
3
2 =2 2m+1 ⇒ =3 n
n
2m+1
=
−(1)
3
27m
= 10(3x )
(32 )x+1
+1
= 10(3x )
32x+2
+1
= 10(3x )
(32x )(32 ) +1
= 10(3x )
9(3x )2
= 10(3x )
+1
= 81
9u2
= 34
9u2 − 10u + 1 = 0
3 = 34 ⇒ 3m − 2n − 2 = 4 3m − 2n =6
(9u − 1)(u − 1) = 0
9n+1 33m 32n+2 3m−2n−2
u= −(2)
3m − 2 ( 3m − (
2m+1
3 4m+2
)
)
3
9m − 4m − 2 5m m
=6
u=1
x
sub u = 3x : 3x = 1 3x = 30 ⇒ x =0✓
=6 9(d)
= 18 = 20 = 4✓
2(4)+1 3
x
sub u = 4 : 1 4x = 2
22x = 2−1 ⇒ 2x = −1 1 x =− ✓
9(e)
2(3x )
= 34 − 3x
3(3x )
= 34
3x
= 33
⇒x
=3
(√9)
2x
− 3x+2
32x − 3x+2
= 3x − 9
(3𝑥 )2 − (3𝑥 )(32 )
= 3𝑥 − 9
(3𝑥 )2 − 9(3𝑥 )
= 3𝑥 − 9
u2 − 10u + 9
=0
(u − 9)(u − 1) = 0 𝑢= 9 or x sub u = 3 : 3x = 9 3x = 32 ⇒ x =2✓
2
10(a) √8x (4y )
5(7x )
=5
7x
=1
2 2 22y
7x
= 70
2 2 +2y
⇒x
=0✓
3x
3x
⇒
3x 2
sleightofmath.com
𝑢= 1 sub u = 3x : 3x = 1 3x = 30 ⇒ x =0✓
= 32√2 1
= 25 (22 ) 1
= 252
+ 2y = 5
3x + 4y © Daniel & Samuel A-math tuition 📞9133 9982
= 3x − 9
sub u = 3x : x
= 2(7x ) + 3
7(7x ) −2 = 2(7x ) + 3
= 34 − 3x
(3𝑥 )2 − 10(3𝑥 ) + 9 = 0
sub u = 4 : 4x = 2 22x = 21 ⇒ 2x = 1 1 x = ✓
2
6(3x−1 )
6(3x )(3−1 ) = 34 − 3x
2(16x ) = 5(4x ) − 2 2(4x ) = 5(4x ) − 2 x )2 2(4 = 5(4x ) − 2 sub u = 4x : 2u2 = 5u − 2 2 2u − 5u + 2 = 0 (2u − 1)(u − 2) = 0 1 u=2 u= or
7x+1 −2
or
9
9
=3✓
2
1
= 10u
3x = 3−2 ⇒ x = −2 ✓
Put m = 4 into (1): n|m=4 =
+1
sub u = 3 : 1 3x =
sub (1) into (2):
9(b)
+1
sub u = 3x :
2nd eqn
9(a)
9x+1
1 2
= 11 [shown] ✓
−(1) 57
A math 360 sol (unofficial) 10(b)
3y
Ex 2.3
1
12
= (3x )
2
9x 3y
3
−1 (3x )
=3
2
32x y−2x2
3 = 3−1+x 2 ⇒ y − 2x = −1 + x y = 2x 2 + x − 1 [shown] ✓ 10(c) sub (2) into (1): 3x + 4(2x 2 + x − 1) 3x + (8x 2 + 4x − 4) 8x 2 + 7x − 4 8x 2 + 7x − 15 (8x + 15)(x − 1) x=−
15 8
✓
y|x=−15 = 4 8
11
r2 4 r2 4 r2 4
32
2
(
3r ⋅ x r
( x −2 )
3 ⋅x
9x2
)
2
9 2 6−r
r
( )
2 6−r
r 2 (3r ) ( ) 9
2 6−r
r 2 (3r ) ( ) 9
9
=
6−r
k
u2
x3
27 2
9 4(3x ) 9
x 3r−12
= kx −3
=k
2 6−(3)
−(1)
13
(27) ( )
=k
9
3
9
−1
3
3
=k
4u
x 2 − 8x −2 = 7 8
x2 −
−(2)
(3)2 (3(3) ) ( )
9 2 3
=
−1
u = 12u − 27 2 u − 12u + 27 = 0 (u − 3)(u − 9) = 0 u=3 u=9 sub u = 3x : sub u = 3x : 3x = 3 or 3x = 9 x 1 3 =3 3x = 32 ⇒x=1✓ ⇒x=2✓ y|x=1 = 2(1) − 3 y|x=2 = 2(2) − 3 = −1 ✓ =1✓
= kx −3
x 2r−12 = kx −3
Compare power of x: 3r − 12 = −3 3r =9 r =3✓ sub (2) into (1):
k
=
27
Compare coefficient:
9
3x
sub u = 3x : 6−r
−(1)
= 4 ( ) −1
27 (3x )2
y|x=1 = 2 ✓
(3x)r
r
32x
x=1 ✓
✓
= 16x = 24x = 24x = 4x = 4x − 6 = 2x − 3
2nd eqn 3y = 4(3x−2 ) − 1 −(2) sub (1) into (2): 32x−3 = 4(3x−2 ) −1 2x −3 3 ⋅3 = 4(3x ⋅ 3−2 ) −1
= 11 = 11 = 11 =0 =0
or 5
−(2)
1st eqn 64(4y ) 26 (22y ) 26+2y ⇒ 6 + 2y 2y y
=7
3
x2
3
sub u = x 2 : 8 u− =7 u
u2 − 7u − 8 = 0 (u − 8)(u + 1) = 0 u=8 or u=1
2
= ✓ 3
3
sub u = x 2 : 3
x2 = 8 3
x 2 = 23 x = 22 x = 4✓ 14
3
sub u = x 2 : 3
x2 = 1 x =1✓
No. Counter example when a = 1 & b = 1, (1)x (1)y = (1)2 (1)5 LHS = RHS when x, y ∈ ℝ
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
58
A math 360 sol (unofficial) 15
Ex 2.3
Method 1 (Substitution) x − 3√x − 4 =0 sub u = √x: u2 − 3u − 4 =0 (u − 4)(u + 1) = 0 u=4 or u=1 sub u = √x: sub u = √x: √x = 4 √x = 1 x = 16 ✓ x = 1 (rej) ✓ Method 2 (Square both sides) x − 3√x − 4 =0 x−4 = 3√x ⇒ x − 4 > 0, x > 0 2 (x − 4) = 9x x 2 − 8x + 16 = 9x x 2 − 17x + 16 = 0 (x − 1)(x − 16) = 0 x = 1 (rej) or x = 16 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
59
A math 360 sol (unofficial)
Ex 2.4 2(c)
Ex 2.4 1(a)
1 x
y = 4x ∵ base 4 > 1, graph slopes up
= 2( ) 3
1(b)
𝑦 = 4𝑥 𝑥 ✓
1 x y=( ) 3 1 ∵ 0 < base < 1, graph slopes down
2(d)
3
3 𝑂
1 𝑥
1(c)
𝑦=( ) 3
𝑥
✓
𝑦
1(d)
3(i)
y = ex ∵ base e > 1, graph slopes up 𝑦 = 𝑒𝑥
1 𝑂
y = 3(5.1)x ∵ base 5.1 > 1, graph slopes up 𝑦
𝑦 1 𝑂
𝑦 = 3(5.1)𝑥 𝑥 ✓
y = 50 000(1.04)x y|x=0 = 50 000(1.04)0 = $50 000 ✓
3(ii)
y|x=5 = 50 000(1.04 )5 = $60 833 ✓
4(i)
y = 40(1.4)x
𝑥 ✓
1
∵ 0 < base < 1, graph slopes down 3 𝑦 𝑦 = 2(3−𝑥 ) 2 𝑥 𝑂 ✓
𝑦 1 𝑂
y = 2(3−x ) = 2(3−1 )x
y = πx ∵ base π > 1, graph slopes up
y|x=0 = 40(1.4)0 = 40 ✓
𝑦 𝑦 = 𝜋𝑥
1 𝑂 2(a)
y|x=6 = 40(1.4)6 = 301 ✓
4(iii)
y|x=24 = 40(1.4)24 = 128 568 ✓
5(i)
T = 90(0.98)x
𝑥 ✓
y = 6ex ∵ base e > 1, graph slopes up 𝑦 𝑦 = 6𝑒 𝑥
6 𝑂 2(b)
4(ii)
T|x=0 = 90(0.98)0 = 90° ✓
𝑥 ✓
5(ii)
T|x=10 = 90(0.98)10 = 73.5° ✓
5(iii)
T|x=60 = 90(0.98)60 = 26.8° ✓
−x
y = 2e = 2(e−1 )x 1 x
= 2( ) e
1
∵ 0 < base < 1, graph slopes down e 𝑦 𝑦 = 2𝑒 −𝑥 2 𝑥 𝑂 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
60
A math 360 sol (unofficial) 6
Ex 2.4
y = 3(5x ) ∵ base 5 > 1, graph slopes up
9(ii)
y = 3(0.2)x ∵ 0 < base 0.2 < 1, graph slopes down 𝑦 𝑦 = 3(5𝑥 ) 3
O
𝑦 = 3(0.2) 𝑥
y|x=10 = 45 000(1.02)10 = 54 855 ✓
y = 3(2x ) ∵ base 2 > 1, graph slopes up 𝑦 𝑦 = 3(2𝑥 ) 6 3 𝑥
O
𝑦 =6−𝑥 ✓
7(iii)
One intersection ⇒ One solution ✓
8(i)
P = 600(2 + e−0.2t )
y = 45 000(1.02)x ∵ base 1.02 > 1, graph slopes up 𝑦 𝑦 = 45 000(1.02)𝑥
𝑥
✓ f(x) = 3(5x ) f(−x) = 3(5−x ) = 3(5−1 )x = 3(0.2)x y = f(x) and y = f(−x) are reflection of each other in the y-axis ✓ 7(i) 7(ii)
45 000
P|t=12 = 600(2 + e−0.2(12) ) = 1254 ✓
8(iii)
t → ∞, e−0.2t → 0, P ⇒ 600(2 + 0) = 1200 ✓
9(i)
y = 45 000(1.02)
𝑥
𝑂 10(i)
✓
C = 4.86e−0.047t C|t=0 = 4.86e0 = 4.86μg/ml ✓
10(ii) C|t=10 = 4.86e−0.047(10) = 3.04μg/ml ✓ 10(iii) C|t=24 = 4.86e−0.047(24) = 1.57μg/ml ✓ 10(iv) t ⇒ ∞, e−(0.047t) ⇒ 0, C⇒ 0✓ 10(v) C = 4.86e−0.047t = 4.86(e−0.047 )t = 4.86 (
P|t=0 = 600(2 + e0 ) = 1800 ✓ 8(ii)
end of 2021: x = 2021 − 2011 = 10
1 e0.047
∵ 0 < base
)
t
1
e0.047
< 1, graph slopes down
𝐶 4.86 𝑂
𝐶 = 4.86𝑒 −0.047𝑡 𝑡 ✓
x
end of 2015: x = 2015 − 2011 =4 y|x=4 = 45 000(1.02)4 = 48 709 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
61
A math 360 sol (unofficial) 11
Ex 2.4 1 x
12(iv) m
y = 2−x = (2−1 )x = ( ) 1
405 ( ) = 80
∵ 0 < base < 1, graph slopes down 2
2 t
3 2
𝑦 = 8(2𝑥 )
8
13(i)
𝑦 = 2−𝑥
1
𝑥
𝑂
3
✓
16
( )
=
( ) 3 ⇒t
=( ) 3 =4
3 2 t
y = 8(2x ) ∵ base 2 > 1, graph slopes up 𝑦 (− , 2√2)
= 80 2 t
2
81 2 4
V = Ae−kt Initial value of the car is $60 000: V|t=0 = 60 000 −k(0) Ae = 60 000 A = 60 000
−x
y=2 −(1) y = 8(2x ) −(2) sub (1) into (2): 2−x = 8(2x ) 2−2x = 8 2−2x = 23 ⇒ −2x = 3 3 x =− −(3)
Value of the car is $39 366 after 4 years: V|t=4 = 39366 Ae−k(4) = 39366 −4k 60 000e = 39366 ∵ A = 60 000 39 366 −4k e = (e
2
60 000 9 4
−k 4
=( )
)
−k
⇒e
=
sub (3) into (1): 3 −(− )
V = 60 000 ( ) 10
= 60 000(0.9)t [shown] ✓
2
13(ii) V = 60 000(0.9)t ∵ 0 < base 0.9 < 1, graph slopes down
2 t
m = 405 ( ) 3
2 0
𝑉
m|t=0 = 405 ( ) 3
= 405g ✓ 12(ii)
10
9 t
y = 2 2 = 21.5 = 2√2 3 ⇒ (− , 2√2) 12(i)
10 9
60 000 𝑂
2 3
m|t=3 = 405 ( ) 3
𝑉 = 60 000(0.9)𝑡 𝑡 ✓
= 120g ✓ 12(iii) Amount decayed in 3 years = m|t=0 −m|t=3 = 405 −120 = 285g ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
62
A math 360 sol (unofficial)
Rev Ex 2 A2(b)
Rev Ex 2 A1(i)
1
(√5 − 2)x = √5 + 2 x
=
√5+2
=
√5+2
=
×
√5−2
√5+2 √5+2
(√5) +2(√5)(2) +(2)2 (√5) 5
2
−(2)2
+4√5
+4
5−4
= 9 + 4√5 ✓ A1(ii) x
+
= 9 + 4√5
+
1 x 1 9+4√5 1
= 9 + 4√5
+
= 9 + 4√5
+
= 9 + 4√5
+
= 9 + 4√5
+9 − 4√5
9+4√5
×
9−4√5 9−4√5
9−4√5 (9)2 −(4√5)
2
= 4√2
9−4√5
−√50
−
−√25 × 2
−
3
+
√2 3 √2
×
3
−5√2
− √2 2
= 4√2
−5√2
− √2 2
= 4√2
−5√2
− √2 2
= 4√2
−5√2
− √2 2
23 12
√96 3
−
√2 2
×(
√16×6 3
−
√2 2
×(
√2 2
× ( √6 − √6 3 3
√2 2
× ( √6 − √6 3 3
√2 2
× ( √6 − √6 3 3
√2 2
× ( √6 − √6 3 3
√2 2
× (10√6)
√2 √2
4√6 3
2 √6
√6
×
√6
2√6
+
6 1
− √6 3
4 4
+
1
+
1
4
1
4
1
+
+
3√216 2
)
= k√3
3√23 ×33 2 3√23 √33 2
)
= k√3
)
= k√3
3(21.5 )(31.5 ) 2
)
3(2√2)(3√3) 2 18√6
)
= k√3 = k√3
)
= k√3
+9√6)
= k√3
+9√6)
= k√3
2
= k√3
5√12
= k√3
5(√4 × 3)
= k√3
5(2√3)
= k√3
10√3
= k√3
⇒ k = 10 ✓
= 4√2
=−
×(
×
+
√6
81−16(5)
= 18 ✓ A2(a) 4√2
−
1
2
=
√12√8 3
√2
√5−2
2
×(
√2
3 3 3
√2 √2
+ + + + +
A3(a) √x 2 − 7 =3 2 x −7 =9 2 x − 16 =0 (x + 4)(x − 4) = 0 x = −4 or x = 4 ✓
7 √72 7 √36×2 7 6√2 7 6√2 7 6(2) 7 12
×
√2 √2
√2
√2
A3(b) 2x + √3 − 4x √3 − 4x 3 − 4x 4x 2 + 4x − 3 (2x + 3)(2x − 1)
√2 ✓
3
1
2
2
x = − or x = A3(c)
x √1−8x
=0 = −2x = 4x 2 =0 =0 (rej) ✓
=
1 3
3x = √1 − 8x 2 9x = 1 − 8x 2 9x + 8x − 1 = 0 (9x − 1)(x + 1) = 0 x=
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
1 9
or x = −1 (rej) ✓
63
A math 360 sol (unofficial) A3(d)
4x
A5(b) 4x−1 + 16x = 66 (4x )(4−1 ) + (42 )x = 66
= √2(2x−1 )
8 22x
1
= 22 (2x−1 )
23
1 4
1 x− 2
2x−3
2
= 66
4
2
4u2 + u − 264 =0 (4u + 33)(u − 8) = 0
5 2
u=−
1st eqn 8 × 4y 23 × 22y 23+2y ⇒ 3 + 2y 2x x
= 66
sub u = 4 : u + u2
1
= ✓
x
(4x ) + (4x )2 x
=2
⇒ 2x − 3 = x −
A4
Rev Ex 2
2x−1
=2 = 22x−1 = 22x−1 = 2x − 1 = 4 + 2y =y+2
33
or
4
sub u = 4x : 4x = −
u=8 sub u = 4x :
33
4x = 8
4 x
4x = 23 22x = 23 ⇒ 2x = 3
(rej ∵ 4 > 0) −(1)
3
= ✓
x 2nd eqn 3y √3x
A6(i)
= 81 x
x
= 34 =4
2
−(2)
sub (1) into (2): y+2
y+
y
=4
2
2
2
y
A6(ii) m|t=2 = 300e−0.85(2) = 54.8mg ✓ A6(iii) y = 300e−0.85t = 300(e−1 )0.85t
y + + 1= 4 3
1 0.85t
=3
y
m = 300e−0.85t m|t=0 = 300e0 = 300mg ✓
(3y ) (32 ) = 34 3y+2 x ⇒y+
2
= 300 ( ) e
=2
1
∵ 0 < base < 1, graph slopes down e
Put y = 2 into (1): x|y=2 = (2) + 2
𝑚
=4✓ x)
A5(a) 2(4
x)
2(4
x+2
+4 +
(4x )(42 )
2(4x ) + 16(4x ) x)
18(4
=
= 9(4 = 9(
2
sub u = 4x : 18u
=
u
=
1 4 0.5 1 √4
B1(a) √x − 8 × √x √(x − 8)x
9
4 1
4x ⇒x
= 4−1 = −1 ✓
4
© Daniel & Samuel A-math tuition 📞9133 9982
=3 =3
√x 2 − 8x =3 x 2 − 8x =9 2 x − 8x − 9 = 0 (x − 9)(x + 1) = 0 x = 9 or x = −1 (rej) ✓
sub u = 4x : =
✓
A6(iv) p = 300 − 300e−0.85t = 300(1 − e−0.85t ) ✓
2 1
4x
𝑡
)
= 9( )
9
300 𝑂
−0.5 )
𝑚 = 300𝑒 −0.85𝑡
sleightofmath.com
64
A math 360 sol (unofficial)
Rev Ex 2
B1(b) √18 − √x − 1 = 4 18 − √x − 1 = 16 =2 √x − 1 x−1 =4 x =5✓ B1(c)
√11+√4 x 2
=
B3(i)
1 2 1 2
x
33 (32 )
=
(BC)h
√11−√4
= =
3
x 2
3x 3
√9 3x
=3
⇒3+
2
x
x B2
=x− =
2
=
ℎ B C (8√3 − 2√2)
92 8√3−2√2
92 8√3 − 2√2
×
8√3 + 2√2 8√3 + 2√2
92(8√3 + 2√2) 2
2
=
92(8√3 + 2√2) 64(3) − 4(2)
=
92(8√3 + 2√2) 184
=
8√3 + 2√2 2
1
x−
x
= 46
(8√3) − (2√2)
(32 )3 3+
A
(8√3 − 2√2)h = 46
h=
x
x = −√7 or x = √7 ✓ =
= 46
(8√3 − 2√2)h = 92
x = 11 − 4 2 x −7 =0 (x + √7)(x − √7) = 0
B1(d) 27(√3)x
Area
2 3
2 3
11 3 22 3
= 4√3 + √2 ✓
✓
(a − 6√5)(2 + b√5)
B3(ii) By Pythagoras’ Theorem,
= −82
1
AC = √( BC)
a(2 + b√5) −6√5(2 + b√5) = −82
2
+ h2
2
2a + ab√5 −12√5 − 6b(5) = −82 2a − 30b +(ab − 12)√5 Equate rational terms: 2a − 30b = −82 a − 15b = −41 a = 15b − 41
1
= √[ (8√3 − 2√2)]
= −82
2
2
2
= √(4√3 + √2)
2
+ (4√3 − √2) + (4√3 − √2)
2
−(1)
2
2
[(4√3) + 2(4√3)(√2) + (√2) ]
=√
2
2
+ [(4√3) − 2(4√3)(√2) + (√2) ] Equate irrational terms: ab − 12 = 0 −(2) sub (1) into (2): (15b − 41)b − 1 = 0 15b2 − 41b − 12 = 0 (15b + 4)(b − 3) = 0 b=−
4
or
15
a|b=− 4 = 15 (− 15
4
) − 41
15
= −45 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
= √16(3) + 8√6 + 2
+ (16(3) − 8√6 + 2)
= √100 = 10 b=3✓ a|b=3 = 15(3) − 41 =4✓
sleightofmath.com
Perimeter = AB +AC +BC = 10 +10 +8√3 − 2√2 = 20 +8√3 −2√2 ✓
65
A math 360 sol (unofficial) B4
At (3,4):
Rev Ex 2 = a(3)n − 23 = a(3)n = a(3)n =a = 33−n
4 27 33 33−n a
At (9,220): 220 243 243 a(32n )
−(1)
= a(9)n − 23 = a(9)n = a(32n ) = 243 −(2)
At (−1, k): k = a(−1)n − 23
B5(b) 9x + 10(3x ) (32 )x + 10(3x ) (3x )2 + 10(3x ) sub u = 3x : u2 + 10u u2 + u − 12 (u + 4)(u − 3) u = −4 or sub u = 3x : 3x = −4 (rej ∵ 3x > 0)
−(3)
= 3x+2 + 12 = (3x )(32 ) + 12 = 9(3x ) + 12 = 9u + 12 =0 =0 u=3 sub u = 3x : 3x = 3 3x = 31 ⇒x=1✓ t
sub (1) into (2): (33−n )32n = 243 33+n = 35 ⇒3+n =5 n =2✓
B6(i)
Put n = 2 into (1): a|n=2 = 33−2 = 3 ✓
B6(ii) θ| = 20 + 100(0.8)86 t=8 ≈ 94.3 ✓
θ = 20 + 100(0.8)6 θ|t=0 =X 0
20 + 100(0.8)6 20 + 100(1) X
Put a = 3, n = 2 into (3): k = 3(−1)2 − 23 = −20 ✓
B6(iii) θ
= 84
20 + 100(0.8) x
x−1 )
B5(a) 5 + 5 = 30(5 5x + 5 = 30(5x )(5−1 )
100(0.8)
1
5x + 5 = 30(5x ) ( ) 5
5x + 5 = 6(5x ) sub u = 5x : u + 5= 6u 5 = 5u u =1 sub u = 5x : 5x = 50 ⇒ x =0✓
© Daniel & Samuel A-math tuition 📞9133 9982
=X =X = 120°C ✓
t 6
= 84
t 6
= 64
(0.8)
t 6
= 0.64
(0.8)
t 6
= (0.8)2
⇒
t
=2
6
= 12s ✓
t B6(iv)
sleightofmath.com
t
t → ∞, 100(0.8)6 → 0 θ → 20°C ✓
66
A math 360 sol (unofficial)
Ex 3.1 3(b)
Ex 3.1 1(a)
Yes ✓ Are exponents Non-negative? Integers?
= 15x 4 +5x 3 −10x 2 +6x 3 +2x 2 −4x 2 −12x −4x +8 = 15x 4 + 11x 3 − 20x 2 − 8x + 8 ✓
True True 4(a)
∵ both conditions are met, 2 x − 1 is a polynomial 3
1(b)
(2x 2 − x + 1)(3x − 2) Coefficient of x 2 = (2)(−2) + (−1)(3) = −7 ✓
Yes ✓ Are exponents Non-negative? True Integers? True
4(b)
∵ both conditions are met, 4x 2 − 2x is a polynomial . 1(c)
(5x 2 + 2x − 4)(3x 2 + x − 2)
(x 2 + 3x + 2)(8x 2 − 5x − 4) Coefficient of x 2 = (1)(−4) + (3)(−5) +(2)(8) = −4 −15 +16 = −3 ✓
No ✓ Are exponents Non-negative? True Integers? False
4(c)
(2x 2 − 2x + 5)(−x 2 − 3x + 1)
1
√x has non-integer power of 2.
Coefficient of x 2 = (2)(1) + (−2)(−3) +(5)(−1) =2 +6 −5 =3✓
∵ both conditions are not met, 4x 3 + √x + 3 is not a polynomial. 1(d)
No ✓
4(d)
Are exponents Non-negative? False Integers? True 3 x2
Coefficient of x 2 = (−1)(6) + (−2)(3) = −6 − 6 = −12 ✓
has a negative power of −2.
∵ both conditions are not met, 3 1 + 2 is not a polynomial.
5(a)
x
2(i)
Q(x) − P(x) = (2x 2 − 3x + 2) −(x 2 + x + 1) = x 2 − 4x + 1 ✓
2(ii)
P(x) + 2Q(x) = (x 2 + x + 1) +2(2x 2 − 3x + 2) = (x 2 + x + 1) +(4x 2 − 6x + 4) = 5x 2 − 5x + 5 ✓
3(a)
(4x 3 − x 2 + 7x − 2)(2x 3 + 3x 2 + 6)
a(x − 2) + b = 5 − 3x sub x = 2: a(2 − 2) + b = 5 − 3(2) b = −1 ✓ sub x = 0: a(0 − 2) + b = 5 − 3(0) −2a + b =5 −2a + (−1) = 5 a = −3 ✓
∵ b = −1
(7x − 3)(2x 2 + 4x − 1) = 14x 3 +28x 2 −7x −6x 2 −12x +3 3 = 14x + 22x 2 − 19x + 3 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
67
A math 360 sol (unofficial) 5(b)
Ex 3.1
a(x − 1) + b(x + 3) = 3x + 1
6(i) (3x 2 + 2)
sub x = 1: a(1 − 1) + b(1 + 3)= 3(1) + 1 4b =4 b =1✓
(5x + 10) 1
A(x) = (5x + 10)(3x 2 + 2) 2 1
= [5x(3x 2 + 2) +10(3x 2 + 2)] 2 1
sub x = −3: a(−3 − 1) + b(−3 + 3) = 3(−3) + 1 −4a = −8 a =2✓ 5(c)
= (15x 3 + 10x +30x 2 + 20) 2 1
= (15x 3 + 30x 2 + 10x + 20) =
2 15 3 x 2
+ 15x 2 + 5x + 10
a(x − 2) + b(x − 4) = x + 2 Yes. Exponents are non-negative integers ✓ sub x = 2: a(2 − 2) + b(2 − 4)= 2 + 2 −2b =4 b = −2 ✓
6(ii)
= √(3x 2 + 2)2
sub x = 4: a(4 − 2) + b(4 − 4)= 4 + 2 2a =6 a =3✓ 5(d)
5(e)
= √3x 4 + 37x 2 + 100x + 104 P(x) = (5x + 1) + (3x 2 + 2) +√3x 4 + 37x 2 + 100x + 104
a =4✓ b =0✓ c = −1 ✓ 3 = −c + d 3 = −(−1) + d d=2✓
= 3x 2 + 5x + 3 +√3x 4 + 37x 2 + 100x + 104 No because √3x 4 + 37x 2 + 100x + 104 will have non-integer exponent ✓
x 3 − 6x 2 + 14x − 8 = (x − 2)3 + ax
7(i) (a)
sub x = 2: (2)3 − 6(2)2 + 14(2) − 8 = (2 − 2)3 + 2a 4 = 2a a =2✓ 5(f)
7(i) (b)
= a(2 − 2)2 + b(2 + 1)3 +
© Daniel & Samuel A-math tuition 📞9133 9982
2P(x) − [Q(x)]2 = 2(x + 1) − (x 2 − x + 1)2 = 2(x + 1) − (x 2 − x + 1)(x 2 − x + 1) Coefficient of x 2 = −[(1)(1) +(−1)(−1) +(1)(1)] = −3 ✓
= 27b + 8 = 27b = −1 ✓
sub x = −1: −2(−1)2 − 7(−1) + 3 1)3 + (−1)3 8 9 a
M(x) = P(x)Q(x) = (x + 1)(x 2 − x + 1) Coefficient of x 2 = (1)(−1) +(1)(1) =0✓
−2x 2 − 7x + 3 = a(x − 2)2 + b(x + 1)3 + x 3 sub x = 2: −2(2)2 − 7(2) + 3 (2)3 −19 −27 b
+ (5x + 10)2
= √(3x 4 + 12x 2 + 4) + (25x 2 + 100x + 100)
ax 3 − x + 3 = 4x 3 + bx 2 + c(x − 1) + d Compare x 3 : Compare x 2 : Compare x: Compare x 0 :
By Pythagoras Theorem Hypotenuse
= a(−1 − 2)2 + b(−1 +
7(i) (c)
= 9a − 1 = 9a =1✓
Q(x)[3x 2 + P(x)] = (x 2 − x + 1)(3x 2 + x + 1) Coefficient of x 2 = (1)(1) +(−1)(1) +(1)(3) =1 −1 +3 =3✓
sleightofmath.com
68
A math 360 sol (unofficial) 7(ii)
Ex 3.1 9(c)
Deg (M(x)) = 3 ✓ Deg [2P(x) − [Q(x)]2 ] = 4 ✓ Deg [Q(x)[3x 2 + P(x)]] = 4 ✓
sub x = 2: 3(2)2 − 5(2) + 4 = a(2 − 2)2 + b(2 − 2) + c 6 =c c =6✓
8(i)
V(x) = (2x + 3)(3x − 1) (2x + 5) = (6x 2 + 7x − 3) (2x + 5)
sub x = 0: 3(0)2 − 5(0) + 4 4 4
= 12x 3 +14x 2 −6x +30x 2 +35x −15 3 = 12x + 44x 2 + 29x − 15 ✓ 8(ii)
9(a)
A(x) = 2[(2x + 3)(3x − 1) +(2x + 3)(2x + 5) +(3x − 1)(2x + 5)] = 2[(6x 2 + 7x − 3) +(4x 2 + 16x + 15) +(6x 2 + 13x − 5)] = 2(16x 2 + 36x + 7) = 32x 2 + 72x + 14 ✓
4 2b b 9(d)
x 3 − 6x 2 − x + c = (x − 3)(ax 2 − 3x + b) 3
Compare x : a = 1 ✓ sub x = 3: (3)3 − 6(3)2 − 3 + c = (3 − 3)(a(3)2 − 3(3) + b) −30 + c =0 c = 30 ✓ sub x = 0: (0)3 − 6(0)2 − (0) + c b) c 30 b 9(b)
= (0 − 3)(a(0)2 − 3(0) + = −3b = −3b ∵ c = 30 = −10 ✓
x 3 + cx 2 + x + 6 = (x + 1)(x − 2)(ax + b) Compare x 3 : a = 1 ✓ sub x = 0: (0)3 + c(0)2 + (0) + 6 = (0 + 1)(0 − 2)(a(0) + b) 6 = −2b b = −3 ✓ sub x = 2: (2)3 + c(2)2 + 2 + 6 4c + 16 c+4 c
© Daniel & Samuel A-math tuition 📞9133 9982
3x 2 − 5x + 4 = a(x − 2)2 + b(x − 2) + c Compare x 2 : a = 3 ✓
= a(0 − 2)2 + b(0 − 2) + c = 4a − 2b + c = 4(3) − 2b + 6 ∵ a = 3, c = 6 = 18 − 2b = 14 =7✓
x 3 + 3x 2 − 2x + 16 − c(x + 2) = ax 2 (x − 1) + b(x − 2)2 (x − 1) sub x = 1: (1)3 + 3(1)2 − 2(1) + 16 − c(1 + 2) = a(1)2 (1 − 1) + b(1 − 2)2 (1 − 1) 18 − 3c =0 −3c = −18 c =6✓ sub x = 0: (0)3 + 3(0)2 − 2(0) + 16 − c(0 + 2) = a(0)2 (0 − 1) + b(0 − 2)2 (0 − 1) 16 − 2c = −4b 16 − 2(6) = −4b ∵ c = 6 4 = −4b b = −1 ✓ sub x = 2: (2)3 + 3(2)2 − 2(2) + 16 − c(2 + 2) = a(2)2 (2 − 1) + b(2 − 2)2 (2 − 1) 32 − 4c = 4a 32 − 4(6) = 4a ∵ c = 6 8 = 2a a =2✓
= (2 + 1)(2 − 2)(a(2) + b) =0 =0 = −4 ✓
sleightofmath.com
69
A math 360 sol (unofficial) 10(i)
𝐱 𝟑 yz 2
Ex 3.1
+(𝐱 − z)2 y
2
+(2𝐱 − √y)
+y 2 z 4
= 𝐱 𝟑 yz 2 +(x 2 − 2𝐱z + z 2 )y +4𝐱 𝟐 − 4𝐱√y + y +y 2 z 4 = 𝐱 𝟑 yz 2 +𝐱 𝟐 y − 2𝐱zy + z 2 y +4𝐱 𝟐 − 4𝐱√y + y +y 2 z 4 = yz 2 𝐱 𝟑 +y𝐱 𝟐 − 2yz𝐱 + yz 2 +4𝐱 𝟐 − 4√y𝐱 + y +y 2 z 4 = yz 2 𝐱 𝟑 +y𝐱 𝟐 −2yz𝐱 +yz 2 +4𝐱 𝟐 −4√y𝐱 +y +y 2 z 4 = yz 2 𝐱 𝟑 +(y + 4)𝐱 𝟐 −(2yz + 4√y)𝐱 +yz 2 + y + y 2 z 4 Yes, all exponents of x are non-negative integers ✓ Degree is 3 ✓ 10(ii) x 3 𝐲z 2
+(x − z)2 𝐲 +(2x − √𝐲)
2
+𝐲 𝟐 z 4
= x 3 z 2 𝐲 +(x − z)2 𝐲 +4x 2 − 4x√𝐲 + 𝐲 +z 2 𝐲 𝟐 = x3z2 𝐲 +(x − z)2 𝐲 +𝐲
+4x 2 −4x√𝐲 +z 2 𝐲 𝟐
= [x 3 z 2 + (x − z)2 + 1]𝐲 +4x 2 −4x√𝐲 +z 2 𝐲 𝟐 = z 2 𝐲 𝟐 +[x 3 z 2 + (x − z)2 + 1]𝐲
−4x√𝐲 +4x 2
No, exponents of y include fractions. √y has non − integer exponent ✓ 10(iii) x 3 y𝐳 𝟐
+(x − 𝐳)2 y
2
+(2x − √y)
+y 2 𝐳 𝟒 2
+y 2 𝐳 𝟒
2
+y 2 𝐳 𝟒
2
+y 2 𝐳 𝟒
= x 3 y𝐳 𝟐 +(x 2 − 2x𝐳 + 𝐳 𝟐 )y +(2x − √y) = x 3 y𝐳 𝟐 +x 2 y − 2xy𝐳 + 𝐳 𝟐 y +(2x − √y) = x 3 y𝐳 𝟐 +x 2 y − 2xy𝐳 + y𝐳 𝟐 +(2x − √y) = x 2 y𝐳 𝟐 +x 2 y +y𝐳
𝟐
−2xy𝐳 2
+(2x − √y)
+y 2 𝐳 𝟒 2
= [x 2 y + y]𝐳 𝟐 +x 2 y + (2x − √y) −2xy𝐳 = y 2 𝐳 𝟒 +[x 2 y + y]𝐳 𝟐
−2xy𝐳
+y 2 𝐳 𝟒
+x 2 y + (2x − √y)
2
Yes, all exponents of z are non-negative integers ✓ Degree is 4 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
70
A math 360 sol (unofficial) 11(i)
Ex 3.1
A(t) = −t 3 + at 2 + p B(t) = bt(t − 2)2 + 2t 2 + ct + q
12(ii) (x − a)(x − b)(x − c) (b) = (x 2 − (a + b)x + ab)(x − c)
Yes. Exponents of t are non-negative integers ✓
= x 3 −(a + b)x 2 +abx −cx 2 +c(a + b)x −abc 3 2 (a = x − + b + c)x + [ab + c(a + b)]x − abc = x 3 − (a + b + c)x 2 + (ab + ac + bc)x − abc ✓
11(ii) A(0) = 300 p = 300 ✓ B(0) = 0 q=0✓ 11(iii) A(t) would decrease until it becomes empty at zero. A(t) cannot be negative ✓ 11(iv) 300 − A(t) 300 − (−t 3 + at 2 + p) t 3 − at 2 − p + 300 Sub p = 300, q = 0: t 3 − at 2 − 300 + 300 t 3 − at 2
12(ii) (x − a)(x − b) … (x − z) = (x − a)(x − b) … (x − x) … (x − z) = (x − a)(x − b) … (0) … (x − z) =0✓ 13
= B(t) = bt(t − 2)2 + 2t 2 + ct + q = bt(t − 2)2 + 2t 2 + ct + q = bt(t − 2)2 + 2t 2 + ct + 0 = bt(t − 2)2 + 2t 2 + ct
A = 3, B = −2, C = 5 and D = −2 3(x − 1) − 2(x − 1)(x + 1) + 5x(x 2 − 1) − 2 𝑦 𝑦 = 3(𝑥 − 1) − 2(𝑥 − 1)(𝑥 + 1) +5𝑥(𝑥 2 − 1) − 2
𝑦 = 3𝑥 3 − 2𝑥 2 + 𝑥 − 4
Compare t 3 : b = 1 ✓ t 3 − at 2 = t(t − 2)2
The graphs are not aligned therefore James’ answers are wrong.
+2t 2 + ct
t 3 − at 2 = t(t 2 − 4t + 4) +2t 2 + ct
3x 3 − 2x 2 + x − 4 = A(x − 1) + B(x − 1)(x + 1) + Cx(x 2 − 1) + D
t 3 − at 2 = t 3 − 4t 2 + 4t +2t 2 + ct t 3 − at 2 = t 3 − 2t 2 + (4 + c)t −at 2
Compare x 3 : C = 3 ✓
= −2t 2 + (4 + c)t
Compare t 2 : −a = −2 a =2✓
sub x = 1:
D = −2 ✓
sub x = −1:
−10 −10 2A A
Compare t: 4 + c = 0 c = −4 ✓ 12(i) (a)
𝑥
𝑂
(x − a)(x − b) = x 2 − (a + b)x + ab ✓
sub x = 0:
= −2A + D = −2A + (−2) =8 =4✓
∵ D = −2
−4 = −A − B + D B =4−A+D = 4 − (4) + (−2) ∵ A = 4, D = −2 = −2 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
71
A math 360 sol (unofficial)
Ex 3.2 2(b)
Ex 3.2 1(a)
1(b)
3x +4 2 3x −2 9x +6x +2 −(9x 2 −6x) 12x +2 −(12x −8) 10 Quotient = 3x + 4 ✓ Remainder = 10 ✓ +3x 2x 2 3 2x +1 4x +8x 2 −(4x 3 +2x 2 ) 6x 2 −(6x 2
1(c)
+2 +7x −5
+8x 5x 4 x −2x −3 5x −2x 3 −(5x 4 −10x 3 8x 3 −(8x 3 2
4x 2
+37 +6x 2 −15x 2 ) +21x 2 −16x 2 37x 2 −(37x 2
−4x
−4
−x 2 −3x 2 ) +8x 2x 2 2 +2x) −(2x 6x −4 −(6x +6) −10
+
2x 2 +2x −1 8x 4 +0x 3 −(8x 4 +8x 3 −8x 3 −(−8x 3
11 2
−x 2 −4x 2 ) +3x 2 −8x 2 11x 2 −(11x 2
+0x
+5
+0x +4x) −4x +5 +11x − 11) 2
−15x + 21 2
+4x
−3
8x 4 − x 2 + 5 = (2x 2 + 2x − 1) (4x 2 − 4x +
+4x −24x) +28x −3 −74x −111) 102x +108
+1 2x 2 3 2 x −2 2x −4x +x −2 −(2x 3 −4x 2 ) +x −2 −(x −2) 0 2x 3 − 4x 2 + x − 2 = (x − 2)(2x 2 + 1) ✓
© Daniel & Samuel A-math tuition 📞9133 9982
+6 +8x
2(c)
Quotient = 5x 2 + 8x + 37 ✓ Remainder = 102x + 108 ✓ 2(a)
+2x −x 2
3x 4 − x 2 + 8x − 4 = (x + 1)(3x 3 − 3x 2 + 2x + 6) − 10 ✓
+7x +3x) 4x −5 −(4x +2) −7 2 Quotient = 2x + 3x + 2 ✓ Remainder = −7 ✓ 2
3x 3 −3x 2 x +1 3x 4 +0x 3 4 −(3x +3x 3 ) −3x 3 −(−3x 3
11
21
2
2
) − 15x +
✓
3(i) Deg(Dividend) = Deg(Divisor) +Deg(Q(x)) 4 3 2 Deg (x + 2x − 2x ) = Deg(x + 2) +Deg(Q(x)) −2x + 4 (4) = (1) +Deg(Q(x)) Deg (Q(x))
=3✓
Deg(R(x)) < Deg(Divisor) < Deg(x + 2) <1 =0✓ −2x x3 4 3 x +2 x +2x −2x 2 −(x 4 +2x 3 ) −2x 2 −(−2x 2
sleightofmath.com
+2 −2x +4 −2x −4x) 2x +4 −(2x +4) 0
72
A math 360 sol (unofficial)
Ex 3.2
3(ii) Deg(Dividend) = Deg(Divisor) +Deg(Q(x)) 4 3 2 Deg (x + 2x − 2x ) = Deg(x + 2) +Deg(Q(x)) −2x + 4 (4) = (2) +Deg(Q(x)) Deg (Q(x))
=2
Deg(R(x)) < Deg(Divisor) < Deg(x 2 + x + 3) <2✓ +x x2 2 +x +3 x 4 x +2x 3 −(x 4 +x 3 x3 −(x 3
−6 −2x 2 +3x 2 ) −5x 2 +x 2 −6x 2 −(−6x 2
3(iv) Deg(Dividend)
(4)
= (3)
Deg (Q(x))
=1
+Deg(Q(x))
Deg(R(x)) < Deg(Divisor) < Deg(x 3 − x 2 + x − 1) <3✓ −2x +4 x −2x +3x) −5x +4 −6x −18 ) x +22
3
−x
4(a)
−2x 2 +x 2 −3x 2 −3x 2
−2x +4 −x) −x +3x +4) −4x +4
= (2x 2 − 1)(3x + 2) = 6x 3 + 4x 2 − 3x − 2
Dividend
=x−2 +16x 6x 3 x −2 6x +4x 2 −(6x 3 −12x 2 ) 16x 2 −(16x 2
+29 −3x
−2
−3x −32x) 29x −2 −(29x −58) 56
(2x 2 − 1)(3x + 2) = (x − 2)(6x 2 + 16x + 29) + 56 ✓
−2x +4 −2x −2x) +0x +4 +0x +1) 3
x +3 4 +x −1 x +2x 3 −(x 4 −x 3 3x 3 −(3x 3
2
Deg(R(x)) < Deg(Divisor) < Deg(x 2 − 1) <2✓ −1 −2x 2 −x 2 ) −x 2 +0x −x 2 −(−x 2
2
Divisor
=2
+2x x2 2 +0x −1 x 4 x +2x 3 −(x 4 +0x 3 2x 3 −(2x 3
+Deg(Q(x))
4 3 2 3 2 Deg (x + 2x − 2x ) = Deg (x − x ) +Deg(Q(x)) −2x + 4 +x − 1
3(iii) Deg(Dividend) = Deg(Divisor) +Deg(Q(x)) 4 3 2 Deg (x + 2x − 2x ) = Deg(x 2 − 1) +Deg(Q(x)) −2x + 4 (4) = (2) +Deg(Q(x)) Deg (Q(x))
= Deg(Divisor)
4(b)
Dividend Divisor
x
2
= 3x 3 − x 2 + 2x + 3 = (x + 1)(x − 1) = x 2 − 1
3x −1 3 +0x −1 3x −x 2 −(3x 3 +0x −x 2 −(−x 2
+2x −3x) +5x +0x 5x
+3 +3 +1 ) +2
3x 3 − x 2 + 2x + 2 = (x + 1)(x − 1)(3x − 1) + 5x + 2 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
73
A math 360 sol (unofficial) 4(c) Dividend Divisor
4
3
Ex 3.2 5(c) Dividend = 6x 4 − 3x 3 − 28x 2 − x − 10 Divisor = 3 − 2x = −2x + 3
2
= 10x − 7x − 4x + 8x + 7 = (x + 1)(2x − 3) = 2x 2 − x − 3 −x +5 5x 2 2 −x −3 10x 4 3 2x −7x −4x 2 +8x +7 −(10x 4 −5x 3 −15x 2 ) 3 −2x +11x 2 +8x +3x) −(−2x 3 +x 2 2 +5x +7 10x 2 −5x −15) −(10x 10x +22 4
3
−3x 3 −3x 2 + 19 x
+
2
2
−
−11x 4x 3 2x +1 8x −18x 2 −(8x 3 +4x 2 ) −22x 2 −(−22x 2
+6 +x
2 59 2
x
−(−
59 2
−10
−10 x + −
Dividend = 8x 3 − 18x 2 + x + 6 Divisor = 2x + 1 2
4
−2x +3 6x 4 −x −3x 3 −28x 2 4 3 −(6x −9x ) 6x 3 −28x 2 3 −(6x −9x 2 ) −x −19x 2 2 −(−19x + 57 x)
10x − 7x − 4x + 8x + 7 = (2x 2 − x − 3)(5x 2 − x + 5) + 10x + 22 ✓ 5(a)
59
No, there is a remainder − 6
+6
+x −11x) 12x +6 −(12x +6) 0
217 4
177
)
4 217 4
✓
2x 5 − x 3 + x 2 − 4 = (x 2 − x − 2)Q(x) + ax + b 2x 5 − x 3 + x 2 − 4 = (x − 2)(x + 1)Q(x) + ax + b sub x = 2: 64 − 8 + 4 − 4 = 2a + b 56 = 2a + b b = 56 − 2a
−(1)
2
Yes, it is 4x − 11x + 6 ✓ sub x = −1: −2 + 1 + 1 − 4 = −a + b −4 = −a + b −(2) (1) (2): sub into −4 = −a + (56 − 2a) 3a = 60 a = 20 ✓
5(b) Dividend = 6x 4 − 25x 3 + 5x 2 + 60x − 36 Divisor = (x − 2)(3x − 2) = 3x 2 − 8x + 4 −3x −9 2x 2 2 −8x +4 6x 4 +60x −36 3x −25x 3 +5x 2 4 3 2 −(6x −16x +8x ) 3 +60x −9x −3x 2 3 2 −12x) −(−9x +24x 2 +72x −36 −27x −(−27x 2 +72x −36) 0
Put a = 20 into (1): b|a=20 = 56 − 2(20) = 16 ✓ 7(i)
Deg(Q(x)) = 1 ✓
Yes, it is 2x 2 − 3x − 9 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
74
A math 360 sol (unofficial) 7(ii)
Ex 3.2
x 4 − 2x 3 + ax 2 − 2 = x(x − 1)(x + 1)Q(x) + 4x 2 + bx + c sub x = 0:
c = −2 ✓
sub x = 1:
1−2+a−2 =4+b+c a−3 =4+b−2 a =b+5
sub x = −1:
9 (i)(a)
−(2)
Remainder = 4x 2 + bx + c = 4x 2 + (−2)x − 2 = 4x 2 − 2x − 2 ✓
8(ii)
32 − 24 + 1 = 2a − 3 9 = 2a − 3 a =6✓
4x 3 − 6x 2 + 1 = (x − 2)Q(x) + 6x − 3 3 2 4x − 6x − 6x + 4 = (x − 2)Q(x) Q(x)
=
+16x +0x 2
+26 −6x
−5
9 Remainder when P(x) + Q(x) is divided by x − 2 (i)(b) = 3 + 47 = 50 ✓
4x 3 − 6x 2 + 1 = (x − 2)Q(x) + ax − 3 sub x = 2:
2x 3 +8x 2 x −2 2x 4 +4x 3 −(2x 4 −4x 3 ) 8x 3 −(8x 3
−9
+0x 2 −16x 2 ) −6x 16x 2 2 −32x) −(16x 26x −5 −(26x −52) 47 Remainder when Q(x) is divided by x − 2 = 47 ✓
Put b = −2 into (1): a|b=−2 = (−2) + 5 =3✓
8(i)
+6 +4x
+4x −2x) 6x −9 −(6x −12) 3 Remainder when P(x) is divided by x − 2 =3✓
−(1)
1+2+a−2 =4−b+c a+1 =4−b−2 a =1−b sub (1) into (2): b + 5= 1 − b 2b = −4 b = −2 ✓
+x 3x 2 3 x −2 3x −5x 2 3 −(3x −6x 2 ) x2 −(x 2
Remainder of 2P(x) − Q(x) is divided by x − 2 = 2(3) − 47 = −41 ✓
4x3 −6x2 −6x+4
+2x 4x 2 3 x −2 4x −6x 2 −(4x 3 −8x 2 ) 2x 2 −(2x 2
x−2
−2 −6x
+4
−6x −4x) −2x +4 (−2x +4) 0
Q(x) = 4x 2 + 2x − 2 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
75
A math 360 sol (unofficial)
Ex 3.2
9(ii)(a) 2
10(ii) For x = 7: Dispenser capacity
3x −2 3 −x −2 3x −5x 2 −(3x 3 −3x 2 −2x 2 −(−2x 2
+4x −9 −6x) +10x −9 +2x +4) 8x −13 2 Remainder when P(x) is divided by x − x − 2 = 8x − 13 ✓ x
+6x 2x 2 2 −x −2 2x 4 x +4x 3 4 −(2x −2x 3 6x 3 −(6x 3
+10 +0x 2 −4x 2 ) +4x 2 −6x 2 10x 2 −(10x 2
Number of Bottles
−5 11
−6x −12x) +6x −5 −10x −20) 16x +15 2 Remainder when Q(x) is divided by x − x − 2 = 16x + 15 ✓
2x+y
12
Remainder when 3P(x) + Q(x) is divided by x 2 − x − 2 = 3(8x − 13) +(16x + 15) = 24x − 39 +16x + 15 = 40x − 24 ✓ Dispenser capacity = (3x 4 + x 3 + 6x + 2) Number of bottles = (x 2 + 1) +x −3 3x 2 2 +0x +1 3x 4 +6x +2 x +x 3 +0x 2 4 3 2 −(3x +0x +3x ) +6x x3 −3x 2 3 2 +x) −(x +0x 2 +5x +2 −3x 2 +0x −3) −(−3x 5x +5
= 5(7) + 5 = 40 cm3 ✓
3x −4y 2 2x +y 6x −5xy −4y 2 2 +3xy) −(6x −8yx −4y 2 −(−8yx −4y 2 ) 0 6x2 −5xy−4y2
9(ii)(b) Remainder when Q(x) − P(x) is divided by x 2 − x − 2 = (16x + 15) − (8x − 13) = 8x + 28
10(i)
= (7)2 + 1 = 50 ✓
Capacity of each bottle = 3(7)2 + 7 − 3 = 151 cm3 ✓ Amount of drink left
−6x
= 3(7)4 + (7)3 + 6(7) + 2 = 7590 cm3 ✓
= 3x − 4y ✓
−5yx 3x 2 3 x +2y 3x +yx 2 −(3x 3 +6yx 2 ) −5yx 2 −(−5yx 2
+7y 2 −3y 2 x
−y 3
−3y 2 x −10y 2 x) 7y 2 x −y 3 −(7y 2 x +14y 3 ) −15y 3 Quotient = 3x 2 − 5yx + 7y 2 ✓ Remainder = −15y 3 ✓
Capacity of each bottle = 3x 2 + x − 3 ✓ Amount of drink left = 5x + 5 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
76
A math 360 sol (unofficial) 13
Ex 3.2
3x 3 − ax 2 − bx + 72 = (x 2 + 5x + c)(dx + e) Compare x 3 : d = 3 3x 3 − ax 2 − bx + 72 = (x 2 + 5x + c)(3x + e) = 3x 3 +15x 2 +3cx +ex 2 +5ex +ce 3 2 = 3x + (15 + e)x +(3c + 5e)x +ce Compare x 2 : −a = 15 + e
−(1)
Compare x:
−(2)
−b = 3c + 5e
Compare x 0 : 72 = ce ⇒ let c = 1, e = 72 ✓ Put e = 72 into (1): −a = 15 + 72 a = −87 ✓ Put c = 1, e = 72 into (2): −b = 3(1) + 5(72) b = −363 ✓ 3x +72 3 x +5x +1 3x +87x 2 −(3x 3 +15x 2 72x 2 −(72x 2 2
© Daniel & Samuel A-math tuition 📞9133 9982
+363x +72 +3x) +360x +72 +360x +72) 0
sleightofmath.com
77
A math 360 sol (unofficial) 4(ii)
Ex 3.3 1(a)
Ex 3.3
Let f(x) = x 4 − 4x 3 + 3x 2 + x + 3 By Remainder Theorem, Remainder = g(2)
By Remainder Theorem, Remainder = f(−1) =1+4+3−1+3 = 10 ✓ 1(b)
g(x) = 2x 3 − bx 2 + 2ax − 4 = 2x 3 −(3a − 5)x 2 +2ax −4
Let f(x) = [x(x − 1)(1 − 2x)2 + x 2 − 3]
= 2(2)3 −(3a − 5)(2)2 +2a(2)
−4
= 16 −(3a − 5)(4) +4a
−4
= 16 −12a + 20 +4a
−4
= 32 −8a ✓ By Remainder Theorem, Remainder = f(2) = 2(1)(9) + 4 − 3 = 19 ✓ 1(c)
5
Let f(x) = [3(x + 4)2 − (1 − x)3 ] By Remainder Theorem, Remainder = f(0) = 3(4)2 − 1 = 47 ✓
2
3
Let f(x) = 8x 3 + ax 2 + bx − 9 f(x) has remainder of −95 when divided by x + 2 By Remainder Theorem, f(−2) = −95 −64 + 4a − 2b − 9 = −95 4a − 2b = −22 4a = 2b − 22 a
=
Let f(x) = x + 3x − kx + 4
3
−(1)
=3
2
By Remainder Theorem, f(2) =k 8 + 12 − 2k + 4 = k 3k = 24 k =8✓
9
3
4 3
2
27 + a + b − 9 9
Let f(x) = x 4 + x 3 + 2ax 2 − 14a4
=3
a+ b
= −15
9a + 6b 3a + 2b
= −60 = −20
4
2
−(2)
sub (1) into (2): 3(
By Remainder Theorem, f(−2a) = 32 4 3 3 4 16a − 8a + 8a − 14a = 32 2a4 = 32 4 a = 16 a = 2 or a = −2 ✓
b−11 2
) + 2b
(3b − 33) + 4b 7b b
= −20 = −40 = −7 = −1✓
put b = −1 into (1): a|b=−1 =
4(i)
2
f(x) has remainder of 3 when divided by 2x − 3 By Remainder Theorem,
2
f( )
3
b−11
f(x) = ax 2 + bx − 6
(−1)−11 2
= −6 ✓
By Remainder Theorem, f(−3) =9 9a − 3b − 6 = 9 3b = 9a − 15 b = 3a − 5 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
78
A math 360 sol (unofficial) 6(i)
Ex 3.3
f(x) = x 3 + ax 2 + bx − 3 f(x) has remainder of 27 when divided by x − 2, By Remainder Theorem, f(2) = 27 8 + 4a + 2b − 3 = 27 4a = 22 − 2b a
=
11−b 2
7(i)
−(1)
f(x) has remainder of 3 when divided by x + 1, By Remainder Theorem, f(−1) =3 −1 + a − b − 3 = 3 a−b =7 −(2)
f(x) has a remainder of p + 5 when divided by x−2 By Remainder Theorem, f(2) =p+5 8 + 4a + 7 =p+5 4a = p − 10 −(2)
sub (1) into (2):
sub (1) into (2): 8p − 24 = p − 10 7p = 14 p =2✓
11−b 2
−b
=7
11 − b − 2b = 14 3b = −3 b = −1 ✓
Put p = 2 into (1): a|p=2 = 2(2) − 6
Put b = −1 into (1): a|b=−1 =
= −2 ✓
11−(−1) 2
=6✓ 6(ii)
f(x) = x 3 + ax 2 + 7 f(x) has remainder of 2p when divided by x + 1 By Remainder Theorem, f(−1) = 2p 3 2 (−1) + a(−1) + 7 = 2p −1 + a + 7 = 2p a = 2p − 6 −(1)
7(ii)
f(x) = x 3 + 6x 2 − 1x − 3
f(x) = x 3 − 2x 2 + 7 By Remainder Theorem, Remainder = f(−p) = f(−2) = (−2)3 − 2(−2)2 + 7 = −8 − 8 + 7 = −9 ✓
By Remainder Theorem, Remainder = f(1) = (1)3 + 6(1)2 − 1(1) − 3 = 3✓ 8
Let f(x) = ax 3 + bx 2 + 2x + c By Remainder Theorem, f(1) = 2f(−1) a + b + 2 + c = 2(−a + b − 2 + c) a + b + 2 + c = −2a + 2b − 4 + 2c c = 3a − b + 6 [shown] ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
79
A math 360 sol (unofficial) 9
Ex 3.3
Let f(x) = 2x 2 + 6x + 3
11(iii) P(x) ÷ (3x 2 − x − 2) ⇒ Remainder = ax + b ⇒ P(x) = (3x 2 − x − 2)Q(x) +ax + b = (x − 1)(3x + 2)Q(x) +ax + b
By Remainder Theorem, f(−p) = f(2q) 2(−p)2 + 6(−p) + 3 = 2(2q)2 + 6(2q) + 3 2p2 − 6p + 3
10
p2 − 3p
= 4q2 + 6q
3p + 6q
= p2 − 4q2
3(p + 2q)
= (p + 2q)(p − 2q)
p − 2q
=3✓
−1 + a
= 20 = 20 = 20 = 20 =0 =0
12
3
3
=1
f(x) ÷ (x 2 + x − 2) ⇒ Remainder = ax + b ⇒ f(x) = (x 2 + x − 2)Q(x) +ax + b = (x − 1)(x + 2)Q(x) +ax + b
when f(x) is divided by x + 2, remainder is −2 By Remainder Theorem, f(−2) = −2 −2a + b = −2 −(2) sub (1) into (2): −2(4 − b) + b = −2 −8 + 2b + b = −2 3b =6 b =2 a|b=2 = 4 − (2) =2
11(ii) P (− 2) = − 2 a + b −
5
= a
When f(x) is divided by x − 1, remainder is 4 By Remainder Theorem, f(1) = 4 a + b= 4 a =4−b −(1)
P(1) =a+b 9−3−5−2 =a+b −1 = a + b [shown] ✓ −(1)
3
3
Remainder = ax +b = (1)x +(−2) =x−2✓
P(x) = 9x 3 − 3x 2 − 5x − 2 = (x − 1)(3x + 2)Q(x) + ax + b
8
8
Put a = 1 into (1): −1 = 1 + b b = −2
f(x) = x 2 − 2x + p g(x) = px 2 + x + 3 By Remainder Theorem, f(−1)g(−1) [(−1)2 − 2(−1) + p][p(−1)2 + (−1) + 3] (p + 3)(p + 2) p2 + 5p + 6 p2 + 5p − 14 (p + 7)(p − 2) p = −7 or p = 2 ✓
11(i)
(1) − (2):
= 8q2 + 12q + 3
3 2
= − a + b [shown] ✓ −(2) 3
Remainder = 2x + 2 ✓ 13
f(x) = 4x 3 (x − 2)5 − x 2 + x√x − 7 f(x) is not a polynomial because not all exponents are non-negative integers 3
x√x has exponent of ✓ 2
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
80
A math 360 sol (unofficial)
Ex 3.4 3(ii)
Ex 3.4 1(a)
3
2
P(x) = 2x − 4x + x − 2 P(2) = 16 − 16 + 2 − 2 =0
+5x 2x 2 3 x −2 2x +x 2 −(2x 3 −4x 2 ) 5x 2 −(5x 2
By Factor Theorem, Yes ✓ 1(b)
3
+2 −8x
−4
−8x −10x) 2x −4 (2x −4) 0
g(x) = 2x 3 + x 2 − 8x − 4 = (x − 2)(2x 2 + 5x + 2) = (x − 2)(2x + 1)(x + 2) ✓
2
P(x) = 16x + 8x − 6x − 9 1
P (− ) = −2 + 2 + 3 − 9 2
= −6 ≠0 By Factor Theorem, No ✓
4(a)
x 3 − 64 = x 3 − 43 = (x − 4)[x 2 + x(4) + 42 ] = (x − 4)(x 2 + 4x + 16) ✓
4(b)
27a3 + 125x 3 = (3a)3 + (5x)3
1(c)
P(x) = x 4 − 2x(x 2 − 8) − 12x 2 + 11 P(−3) = 81 − 2(−3)(9 − 8) − 12(9) + 11 = −10 ≠0
= (3a + 5x)[(3a)2 − 3a(5x) + (5x)2 ] = (3a + 5x)(9a2 − 15ax + 25x 2 ) ✓ 4(c)
8 + 27x 3 = 23 + (3x)3 = (2 + 3x)[22 − 2(3x) + (3x)2 ]
By Factor Theorem, No ✓ 2
2
= (2 + 3x)(4 − 6x + 9x 2 ) ✓
P(x) = 3x − 4ax − 4a
x + 2 is a factor of P(x) By Factor Theorem, P(−2) 3(−2)2 − 4a(−2) − 4a2 12 + 8a − 4a2 a2 − 2a − 3 (a − 3)(a + 1) a = 3 or a = −1 ✓ 3(i)
4(d)
2
432x 3 − 2y 3 = 2(216x 3 − y 3 ) = 2[(6x)3 − y 3 ] = 2(6x − y)[(6x)2 + 6x(y) + y 2 ]
=0 =0 =0 =0 =0
= 2(6x − y)(36x 2 + 6xy + y 2 ) ✓
g(x) = 2x 3 + x 2 + px − 4 x − 2 is a factor of g(x) By Factor Theorem, g(2) 2(2)3 + (2)2 + p(2) − 4 16 + 4 + 2p − 4 2p p
© Daniel & Samuel A-math tuition 📞9133 9982
=0 =0 =0 = −16 = −8 ✓
sleightofmath.com
81
A math 360 sol (unofficial) 5(i)
Ex 3.4
f(x) = ax 3 + bx 2 − 5x + 2a Quadratic factor: x 2 − 3x − 4 = (x − 4)(x + 1) x − 4 is a factor of f(x) By Factor Theorem, f(4) =0 64a + 16b − 20 + 2a = 0 66a + 16b = 20 33a + 8b = 10 x + 1 is a factor of f(x) By Factor Theorem, f(−1) =0 −a + b + 5 + 2a= 0 a+b+5 =0 a = −5 − b
6(ii)
6(iii)
p = −2 ✓
7
f(x) = 2x 2 + 3px − 2q g(x) = x 2 + q
−(2)
Put b = −7 into (2): a|b=−7 = −5 − (−7) =2✓
2x −1 3 −3x −4 2x −7x 2 −(2x 3 −6x 2 −x 2 −(x 2
−(1)
x − a is a factor of g(x) By Factor Theorem, g(a) =0 a2 + q = 0 a2 = −q
−(2)
a = 0 (rej ∵ a ≠ 0) or a = − −5x +4 −8x) +3x +4 +3x +4) 0
3p 4
−(3)
Method 1 sub (3) into (1): 2 (−
∴ The third factor is (2x − 1) ✓ 6(i)
x − a is a factor of f(x) By Factor Theorem, f(a) =0 2 2a + 3pa − 2q = 0
sub (2) into (1) 2a2 + 3pa + 2a2 = 0 4a2 + 3pa = 0 a(4a + 3p) =0
f(x) = 2x 3 − 7x 2 − 5x + 4
x2
=0 =0 =0 =0 =0 =0
−(1)
sub (2) into (1): 33(−5 − b) + 8b = 10 −165 − 33b + 8b = 10 −25b = 175 b = −7 ✓
5(ii)
By Factor Theorem, f(−2) (2p + 1)4 − 2p + 2p2 8p + 4 − 2p + 2p2 2p2 + 6p + 4 p2 + 3p + 2 (p + 1)(p + 2) p = −1 or p = −2 ✓
2( 8
−
By Factor Theorem, f(1) =0 2 (2p + 1) + p + 2p = 0 2p2 + 3p + 1 =0 (2p + 1)(p + 1) =0
4
9p2
9p2
f(x) = (2p + 1)x 2 + px + 2p2
3p 2
16
−
9p2 8 2
) + 3p (−
)− 9p2 4
9p2 4
− 2q
− 2q
− 2q
3p 4
) − 2q = 0 =0 =0 =0
9p + 16q
= 0 [shown]✓
Method 2 sub (3) into (2):
1
p = − or p = −1 ✓
(−
2
3p 2
9p2 16
4
)
= −q = −q
2
9p + 16q = 0 [shown] ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
82
A math 360 sol (unofficial) 8
Ex 3.4 10(a) 2x 4 + 54x = 2x(x 3 + 27) = 2x(x 3 + 33 ) = 2x(x + 3)[x 2 − x(3) + 32 ] = 2x(x + 3)(x 2 − 3x + 9) ✓
Part I f(x) = 3x 3 − 5ax 2 + ka2 x + 4a3 , a ≠ 0 By Remainder Theorem, f(−2a) 3(−8a3 ) − 5a(4a2 ) + ka2 (−2a) + 4a3 −24a3 − 20a3 − 2ka3 + 4a3 −40a3 − 2ka3 2ka3 + 8a3 ka3 + 4a3 a3 (k + 4) a = 0 (rej ∵ a ≠ 0) or k = −4 ✓
= −32a3 = −32a3 = −32a3 = −32a3 =0 =0 =0
10(b) (1 + x)3 + 64 = (1 + x)3 + 43 = [(1 + x) + 4][(1 + x)2 (1 + 2x + x 2 = (x + 5) = (x + 5)(x 2 − 2x + 13) ✓
− (1 + x)(4) + (4)2 ] − 4 − 4x + 16)
⇒ f(x) = 3x 3 − 5ax 2 − 4a2 x + 4a3 Part II Quadratic factor: x 2 − ax − 2a2 = (x − 2a)(x + a)
f(2a) = 3(2a)3 − 5a(2a)2 − 4a2 (2a) + 4a3 = 24a3 − 20a3 − 8a3 + 4a3 =0 By Factor Theorem, (x − 2a) is a factor of f(x) f(−a) = 3(−a)3 − 5a(−a)2 − 4a2 (−a) + 4a3 = −3a3 − 5a3 + 4a3 + 4a3 =0 By Factor Theorem, (x + a) is a factor of f(x) ∴ x 2 − ax − 2a2 is a factor of f(x) ✓ 9
f(a) = a3 − ba2 − 4b2 a + 4b3 f(2b) = (2b)3 − b(2b)2 − 4b2 (2b) + 4b3 = 8b3 − 4b3 − 8b3 + 4b3 =0 By Factor Theorem, (a − 2b) is a factor of f(a) ✓ when f(a) is divided by a + b, By Remainder Theorem, Remainder = f(−b) = (−b)3 − b(−b)2 − 4b2 (−b) + 4b3 = −b3 − b3 + 4b3 + 4b3 = 6b3 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
83
A math 360 sol (unofficial)
Ex 3.4
10(c) (x + y)3 − (x − y)3 = [(x + y) − (x − y)] [(x + y)2 + (x + y)(x − y) + (x − y)2 ] 2 2 = 2y [x + 2xy + y +x 2 − y +(x 2 − 2xy + y 2 )] = 2y [2x 2 + 2xy + (x 2 − 2xy + y 2 )] = 2y(3x 2 + y 2 ) ✓ 10(d) 1000x 3 − y 6 = (10x)3 − (y 2 )3 = (10x − y 2 )[(10x)2 + 10x(y 2 ) + (y 2 )2 ] = (10x − y 2 )(100x 2 + 10xy 2 + y 4 ) ✓ 11(i)
x 6 − 64 = (𝑥 3 )2 − 82 = (x 3 + 8)(x 3 − 8) = (x 3 + 23 )(x 3 − 23 ) = (x + 2)[x 2 − x(2) + 22 ] (x − 2)[x 2 + x(2) + 22 ] = (x + 2)(x 2 − 2x + 4) (x − 2)(x 2 + 2x + 4) ✓
11(ii) x 6 − 64
= (x 2 + 4)2 − 4x 2
(x + 2)(x 2 − 2x + 4)(x − 2)(x 2 + 2x + 4)
= (x 2 + 4)2 − (2x)2
(x 2 + 2x + 4)(x 2 − 2x + 4)(x + 2)(x − 2)
= [(x 2 + 4) + 2x][(x 2 + 4) − 2x]
(x 2 + 2x + 4)(x 2 − 2x + 4)(x + 2)(x − 2)
= (x 2 + 2x + 4)(x 2 − 2x + 4)
(x 2 + 2x + 4)(x 2 − 2x + 4)(x 2 − 4 − 1)
=0
(x 2 + 2x + 4)(x 2 − 2x + 4)(x 2 − 5)
=0
(x 2 + 2x + 4)(x 2 − 2x + 4)(x − √5)(x + √5) = 0 x = −√5 or x = √5 ✓ 12(i)
2
1
x 3 − 2x 3 + 3 = 0 has roots α & β 1
sub y = x 3 : 1
1
y 2 − 2y + 3 = 0 has roots α3 & β3 1
Sum of roots
1
= α3 + β3 = − 1 3
Product of roots = α β
1 3
=
1
1
c a
b a
=−
(−2)
(3)
= (1)
(1)
=2✓ =3✓
12(ii) α + β 1
3
3
1
= (α3 ) + (β3 ) 1
1
1
2
1
2
= (α3 + β3 ) [(α3 ) − (α3 ) (β3 ) + (β3 ) ] ∵ sum of cubes factorization 1
1
2
1
1
2
= (α3 + β3 ) (α3 − α3 β3 + β3 ) 2
2
1
= 2 (α3 − 3 + β3 ) 1
1
2
1
1
1
∵ α3 + β3 = 2, α3 β3 = 3 1
1
= 2 [(α3 + β3 ) − 2α3 β3 − 3]
∵ a2 + b2 = (a + b)2 − 2ab
= 2[(2)2 − 2(3) − 3] = 2(4 − 6 − 3) = −10 ✓
∵ α3 + β3 = 2, α3 β3 = 3
© Daniel & Samuel A-math tuition 📞9133 9982
1
1
1
1
sleightofmath.com
84
A math 360 sol (unofficial) 13
Ex 3.4
(2n + 1)3 − (2n − 1)3 = [(2n + 1) − (2n − 1)][(2n + 1)2 + (2n + 1)(2n − 1) + (2n − 1)2 ] 2 (4n + 4n + 1 + 4n2 − 1 =2 + 4n2 − 4n + 1) = 2(12n2 + 1) ✓ difference between the cube of two consecutive positive odd numbers 4 =
(2n + 1)3 − (2n − 1)3 4
=
2(12n2 + 1) 4
=
12n2 + 1 2
12n2 has to be an even number 12n2 + 1 has to be an odd number ⇒ (12n2 + 1) cannot be divisible by 2 ∴ difference between the cube of two consecutive positive odd numbers can never be divisible by 4.✓ 14
Difference in cubes = (large cube) − (small cube) = a3 − b3 red cuboid = (a)(a − b)(a) = (a − b)a2
𝑎 𝑎−𝑏
𝑎 green cuboid = a(b)(a − b) = (a − b)ab blue cuboid = (a − b)(b)(b) = (a − b)b2
𝑎
𝑎−𝑏
𝑎−𝑏 𝑏
𝑏 𝑏
sum of cuboids = (a − b)a2 + (a − b)ab + (a − b)b2 = (a − b)(a2 + ab + b2 ) ✓ Resultant Volume = sum of cuboids a3 − b3 = (a − b)(a2 + ab + b2 ) [shown] ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
85
A math 360 sol (unofficial)
Ex 3.5 3(b)
Ex 3.5 1(a)
1(b)
2(i)
x 3 − 2x 2 − 4x + 8 ) … (x − 2)( ) … (x − 2)(x 2 2 = (x − 2)(x −4) = (x − 2)(x + 2)(x − 2) = (x + 2)(x − 2)2 ✓ 3
(x − 3)(4x − 3)(x + 2) = 0 x = 3 or x =
2
3x − 10x + 9x − 2 … (x − 1)( ⬚) 2 ) … (x − 1)(3x 2 (x … − 1)(3x +2) = (x − 1)(3x 2 −7x +2) = (x − 2)(3x − 1)(x − 2) ✓
f(x) x 3 − 3x 2 − 4x x 3 − 3x 2 − 4x + 12 (x − 2)( ⬚) 2 (x − 2)(x ⬚) (x − 2)(x 2 −6) 2 (x − 2)(x −x −6)
x 3 − 4x 2 + x + 6 (x − 2)( (x − 2)(x 2 (x − 2)(x 2 (x − 2)(x 2 − 2x
or x = −2 ✓
3(d)
x(x + 3)(x − 1) x(x 2 + 2x − 3) x 3 + 2x 2 − 3x x 3 + 2x 2 − 4x − 8 (x − 2)( ⬚) 2 (x − 2)(x +4) (x − 2)(x 2 +4x +4) (x − 2)(x + 2)2 x = 2 or x = −2 ✓
4
(x − 2)(x − 3)(x + 2) = 0 x = 2 or x = 3 or x = −2 ✓ 3(a)
4
x3 + 4 = x(x + 4) 3 x +4 = x 2 + 4x 3 2 x − x − 4x + 4 =0 (x − 1)( ⬚) 2 (x − 1)(x ⬚) (x − 1)(x 2 − 4) = 0 (x − 1)(x + 2)(x − 2) =0 x = 1 or x = −2 or x = 2 ✓
= −12 = −12 =0
=0
3
3(c)
f(x) = x 3 − 3x 2 − 4x f(x) =0 2 x(x − 3x − 4) = 0 x(x − 4)(x + 1) = 0 x = 0 or x = 4 or x = −1 ✓
2 (ii)
4x 3 + 18 = 7x 2 + 21x 4x 3 − 7x 2 − 21x + 18 = 0 (x − 3)( ⬚) 2 (x − 3)(4x ⬚) 2 (x − 3)(4x − 6) (x − 3)(4x 2 + 5x − 6) = 0
=0 ⬚) ⬚) − 3) − 3) = 0
=x+8 =x+8 =x+8 =0
=0 =0
P(x) = k[x − (−4)] [x − (−1)] [x − (3)] = k(x + 4)(x + 1)(x − 3) = 5(x + 4)(x + 1)(x − 3) ∵ coefficient of x 3 is 5 = 5(x 2 + 5x + 4)(x − 3) = 5(x 3 +5x 2 +4x −3x 2 −15x −12) = 5(x 3 +2x 2 −11x −12) = 5x 3 +10x 2 −55x −60 ✓
(x − 2)(x − 3)(x + 1) = 0 x = 2 or x = 3 or x = −1 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
86
A math 360 sol (unofficial) 5(a)
x 3 − 9x 2 + 25x − 21 =0 (x − 3)( ⬚) (x − 3)(x 2 ⬚) 2 (x − 3)(x + 7) 2 (x − 3)(x −6x + 7) = 0 x = 3 or x = =
5(b)
2(1) 6±√8
=
2
6±2√2 2
=
2
= 3 ± √2 ✓
8
1 3 x 6 3
=
1±√13 6
✓
=
4
7±√17 4
9(i)
1
1
3
2
8
4
2
1
+ x
= 35
3
= 210 =0
−4±√(4)2 −4(1)(30) 2(1) −4±√16−120 2
=
−4±√−104 2
(not real) ✓
f(x) = 2x 3 + 9x 2 + 7x + 3 f(k) =9 3 2 2k + 9k + 7k + 3 = 9 2k 3 + 9k 2 + 7k − 6 = 0 [shown] ✓
✓
Let f(x) = 2x 3 − x 2 + 3x + 2 1
−
= 35 1 2 x 2 2
=
2(2)
=
3
x = 7 or x =
−(−7)±√(−7)2 −4(2)(4) 7±√49−32
1
2
(x − 7)( ⬚) (x − 7)(x 2 ⬚) (x − 7)(x 2 + 30) (x − 7)(x 2 +4x + 30) = 0
2x 3 + 6x − 6 = (13x − 6)(x − 1) 3 2x + 6x − 6 = 13x 2 − 19x + 6 3 2 2x − 13x + 25x − 12 = 0 (x − 3)( ⬚) 2 (x − 3)(2x ⬚) (x − 3)(2x 2 + 4) (x − 3)(2x 2 −7x + 4) (x − 3)(2x 2 − 7x + 4) = 0 x = 3 or x =
1
6
x − 3x + 2x x 3 − 3x 2 + 2x − 210
2(3) 6
1
N(x) = x 3 − x 2 + x N(x)
−(−1)±√(−1)2 −4(3)(−1) 1±√1+12
y = P(x) cuts the x-axis at −2,1 & 2: P(x) = k[x − (−2)][x − (1)] [x − (2)] = k(x + 2)(x − 1)(x − 2) P(x) passes through (0,12): 12 = P(0) = k[(0) + 2][(0) − 1][(0) − 2] = k(2)(−1)(−2) = 4k ⇒k=3 ∴ P(x) = 3(x + 2)(x − 1)(x − 2) ✓
6±√36−28
3x 3 + 5x 2 = 3x + 2 3 2 3x + 5x − 3x − 2 = 0 (x + 2)( ⬚) (x + 2)(3x 2 ⬚) (x + 2)(3x 2 − 1) (x + 2)(3x 2 −x − 1) = 0
=
6(i)
7
−(−6)±√(−6)2 −4(1)(7)
x = −2 or x =
5(c)
Ex 3.5
9(ii)
2k 3 + 9k 2 + 7k − 6 = 0
f (− ) = 2 (− ) − − + 2 (k + 2)( (k + 2)(2k 2 (k + 2)(2k 2 (k + 2)(2k 2
=0 By Factor Thm, (2x + 1) is factor ✓ 6(ii)
2x 3 + 4 2x 3 + 4 2x 3 − x 2 + 3x + 2
= (x − 1)(x − 2) = x 2 − 3x + 2 =0
(k + 2)(2k − 1)(k + 3) = 0 k = −2 or k =
(2x + 1)( (2x + 1)(x 2 (2x + 1)(x 2 (2x + 1)(x 2 −x 1
x = − or x =
⬚) ⬚) + 2) + 2) = 0
1 2
or k = −3 ✓
−(−1)±√(−1)2 −4(1)(2)
2
=
⬚) ⬚) − 3) +5k − 3) = 0
2(1) 1±√1−8 2
© Daniel & Samuel A-math tuition 📞9133 9982
=
1±√−7 2
(not real) ✓ sleightofmath.com
87
A math 360 sol (unofficial) 10
Ex 3.5
y = 2x 3 −(1) (2 y = − x)(5x + 6) −(2) sub (1) into (2): 2x 3 = (2 − x)(5x + 6) 3 2x + (x − 2)(5x + 6) = 0 2x 3 + 5x 2 − 4x − 12 =0 (x + 2)( ⬚) (x + 2)(2x 2 − 6) 2 (x + 2)(2x +x − 6) = 0 (x + 2)(2x − 3)(x + 2) x = −2
or
y|x=−2 = 2(−2)3
11(i)
+5x x2 2 −x −2 x 4 x +4x 3 −(x 4 −x 3 5x 3 −(5x 3
=0 x=
3 2 3 3
y|x=3 = 2 ( ) =
=0 =0
+6 −x 2 −2x 2 ) +x 2 −5x 2 6x 2 −(6x 2
⇒( ,
4
−16x −12 −16x −10x) −6x −12 −6x −12) 0
27 4
(x − 2)(x + 1)(x 2 + 5x + 6) = 0 (x − 2)(x + 1)(x + 2)(x + 3) = 0 x = 2 or x = −1 or x = −2 or x = −3 ✓
3 27 2
=0 =0
2
2
= −16 ⇒ (−2, −16) ✓
11(ii) P(x) x 4 + 4x 3 − x 2 − 16x − 12 ∵ a = 4, b = −16 (x − 2)(x + 1)Q(x) (x 2 − x − 2)Q(x)
)✓
P(x) = x 4 + ax 3 − x 2 + bx − 12 P(x) is divisible by (x − 2) By Factor Theorem, P(2) =0 16 + 8a − 4 + 2b − 12 = 0 8a + 2b =0 b = −4a P(x) is divisible by (x + 1) By Factor Theorem, P(−1) =0 1 − a − 1 − b − 12 = 0 a + b + 12 =0 a + (−4a) + 12 =0 ∵ b = −4a a = 4✓
12(i)
f(x) = 2x 3 + ax 2 − 7a2 x − 6a3 f(−a) = 2(−a)3 + a(−a)2 − 7a2 (−a) − 6a3 = −2a3 + a3 + 7a3 − 6a3 =0 By Factor Theorem, (x + a) is a factor of f(x) ✓
12(ii) f(x) =0 3 2 2 3 2x + ax − 7a x − 6a =0 (x + a)( ⬚) (x + a)(2x 2 ⬚) (x + a)(2x 2 − 6a2 ) (x + a)(2x 2 −ax − 6a2 ) = 0 (x + a)(2x + 3a)(x − 2a) = 0 3
x = −a or x = − a or x = 2a ✓ 2
b|a=4 = −4(4) = −16 ✓ 13(i)
x 2 (9 − 2x) 9x 2 − 2x 3 2x 3 − 9x 2 + 2 (2x − 1)( (2x − 1)(x 2 (2x − 1)(x 2 (2x − 1)(x 2 −4x 1
x = or x =
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
⬚) ⬚) − 2) − 2) = 0
−(−4)±√(−4)2 −4(1)(−2)
2
=
=2 =2 =0
2(1) 4±√16+8 2
=
4±√24 2
=
4±2√6 2
= 2 ± √6 ✓
88
A math 360 sol (unofficial)
Ex 3.5
13(ii) x 2 (3 + √2x)(3 − √2x) = 2 x 2 (9 − 2x) =2 1
x = or x = 2 + √6 or x = 2 − √6 2
( 14
rej ∵ √2x ) ✓ would not exist
15(iii) P(x) = 0 has only 1 real root ⇒ 0 real roots in quadratic factor b2 − 4ac <0 2 a − 4(2)(a)< 0 a2 − 8a <0 a(a − 8) <0
Intersects x = −1 or x = 3 only ⇒ P(x) = k(x + 1)(x − 3)2
+ 0
+ 8
0
P(x) passes through (1,16): 16 = P(1) = k(1 + 1)(1 − 3)2 = k(2)(4) 2 =k
16
∴ P(x) = 2(x + 1)(x − 3)2 P(−3) = −144 ✓ ⇒ P(x) = k(x + 1)2 (x − 3)
5 − 32x 2 5 − 32x 2 12x 3 + 32x 2 + 3x − 5 (2x + 1)( ⬚) (2x + 1)(6x 2 ⬚) (2x + 1)(6x 2 − 5) 2 (2x + 1)(6x +13x − 5)
= 3x(4x 2 + 1) = 12x 3 + 3x =0
=0
(2x + 1)(2x + 5)(3x − 1) = 0
y = P(x) passes through (1,16): 16 = P(1) = k(1 + 1)2 (1 − 3) = k(4)(−2) −2 = k ∴ P(x) = −2(x + 1)2 (x − 3) P(−3) = 48 ✓ 15(i)
−
1
5 1
2
2 3
x = − ,− , ✓ 17(i)
29.7
√𝑥2 + 𝑦2 21 𝑦
P(x) = 4x 3 + 2ax 2 − 2x 2 + ax − a
𝑥 Compare area,
1
1 3
1 2
1 2
1
2
2
2
2
2
1
A(x) = xy
P ( ) = 4 ( ) + 2a ( ) − 2 ( ) + a ( ) − a =
1 2
1
+ a 2
−
1 2
1
+ a−a 2
Compare width,
=0
√x 2 + y 2 + y = 21
By Factor Theorem, (2x − 1) is a factor of P(x) ✓ 15(ii) P(x) … (2x − 1)( … (2x − 1)(2x 2 … (2x − 1)(2x 2 = (2x − 1)(2x 2
−(1)
2
) ) +a) +ax +a) ✓
√x 2 + y 2 x2 + y2 42y
= 21 − y = 441 − 42y + y 2 = 441 − x 2
y
=
441−x2 42
−(2)
sub (2) into (1): 1
A(x) = x ( =
441−x2
2 42 x(441−x2 ) 84
)
✓
17(ii) 21 is the width of rectangle and this results in no leftover area for A(x)✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
89
A math 360 sol (unofficial) 17(iii)
x(441−x2 )
= 15
84
Ex 3.5 3 7
2)
x(441 − x = 1296 x 2 − 441x + 1296= 0 x
= =
−(−441)±√(−441)2 −4(1)(1296) 2(1) 441±√189297 2
x = 2.96 or x = 438 (rej ∵ x < 21) ✓ 𝑦 (12.4,42.4) 𝑂
𝑥 𝑦 = 𝐴(𝑥)
✓
17(iv) A(x) = 42.4 cm2 is max area ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
90
A math 360 sol (unofficial)
Ex 3.6 2(a)
Ex 3.6 1(a)
3x+1 (x−2)(x+5)
A
≡
+
x−2
B
x+2 (x+1)2
≡
Cover-up rule:
x = −5:
B
+ (x+1)2
Cover-up rule:
x+5
x = −1: x = 2:
A x+1
7 =A ( )(7) −14 =B (−7)( )
1 ( )2
⇒A=1
Substitution:
⇒B=2
x = 0:
2
=B
⇒B=1
A
B
1
1
= +
1
A =1 3x+1
1
∴ (x−2)(x+5) = 1(b)
x−2
+
2
✓
x+5
x+2
∴ (x+1)2 =
x−2 A B ≡ + (x + 2)(x + 1) x + 2 x + 1
2(b)
Cover-up rule: −4 =A ( )(−1) −3 =B (1)( )
x = −2: x = −1: ∴ 1(c)
x−2 (x+2)(x+1)
x+5 x2 +x
=
=
x+5
4 x+2
≡
x(x+1)
A x
−
3 x+1
x = −1: ∴ 1(d)
x+5 x2 +x
x+10 x2 −4
=
5
4
x
x+1
∴
x+10 x2 −4
2 x+2
+
C
+ (x−2)2
=A
⇒A=4
x = 2:
32 (4)( )2
=C
⇒C=8
x = 0:
x+1
44 (2)(4)
⇒ B = −4
2(c)
14+7x−3x2 x2 (x+2)
≡
A
B
2
−2
= +
∴ (x+2)(x−2)2 =
⇒A=5
A x
4 x+2
+
−
B x2
3
C
⇒ B = −3
4 8
x−2
+
+
+ (x−2)2 ✓
C x+2
Cover-up rule: A x+2
+
8 =A ( )(−4) 12 =B (4)( )
=−
B x−2
Substitution:
✓ ≡
+
64 ( )(16)
B
x = 0:
14 ( )2 (2)
x = −2:
−12 (4)( )
3 x−2
© Daniel & Samuel A-math tuition 📞9133 9982
=7
⇒B=7
x−2
Cover-up rule:
x = 2:
A x+2
x2 −8x+44
x+10 (x+2)(x−2)
x = −2:
≡
x = −2:
✓
5 =A ( )(1) 4 =B (−1)( )
= −
x2 −8x+44 (x+2)(x−2)2
⇒ B = −3
Cover-up rule: x = 0:
1
+ (x+1)2 ✓
Cover-up rule:
⇒A=4
B
+
1 x+1
⇒ A = −2
Substitution:
⇒B=3
x = 1:
✓
∴
sleightofmath.com
18
⇒ C = −3
A
B
C
1
1
3
3
✓
= + +
3
14+7x−3x2 x2 (x+2)
=C
=
7 x2
−
x+2
⇒A=0
91
A math 360 sol (unofficial) 2(d)
4x2 −9x+7 x(x−1)2
A
≡
B
+
x
Ex 3.6 3(c)
C
x−1
+ (x−1)2
Cover-up rule:
7x2 −9x+29 (x−3)(x2 +4)
A
≡
+
x−3
Bx+C x2 +4
Cover-up rule:
x = 0:
7 ( )(1)
x = 1:
2 (1)( )2
=A =C
65 ( )(13)
⇒A=7
x = 3:
⇒C=2
Substitution:
=A
29 (−3)(4)
x = 0:
=
⇒A=5
A −3
+
C 4
⇒ C = −3
Substitution: 5 (2)(1)2
x = 2:
∴ 3(a)
4x2 −9x+7 x(x−1)2
7
3
x
x−1
= −
8x2 −11x+5 (2x−3)(x2 +1)
A
≡
A
B
C
2
1
1
= + +
2x−3
⇒ B = −3
∴ (x−3)(x2
Bx+C
3(d)
x2 +1
Cover-up rule: 13 2 13 )( ) 4
3
x= : 2
(
x = 1:
∴ 3(b)
=A
=
2
=
(−1)(2)
8x2 −11x+5 (2x−3)(x2 +1)
x(x2 +3)
A
≡
x
⇒
A
+
−3 A
+
−1
C
=
+
2 2x−3
⇒ C = −1
1 B+C
2x−3
⇒B=2
✓
x2 +4
Bx+C x2 +5
⇒A=2
2
⇒B=3
+
3x−1 x2 +1
∴ (x−1)(x2
✓ 4(a)
x2 +3
=A
4(b) Bx+C
x
x2 +3 2
= +
x(x2 +3) 2
Compare coefficients: x 2 : 1 = 5 + B ⇒ B = −4 x: C=2 5
−4x+2
x
x2 +3
= +
=
2
+
C 5
A
2B+C
1
9
= +
x−1
+
4−x x2 +5
⇒C=4 ⇒ B = −1
✓
Deg(numerator) = 1 Deg(denominator) = 2
Deg(numerator) = 1 Deg(denominator) = 2 ∵ Deg(numerator) < Deg(denominator), the fraction is proper ✓
4(c)
Deg(numerator) = 2 Deg(denominator) = 2 ∵ Deg(numerator) = Deg(denominator), the fraction is improper ✓
✓ 4x2 +3 x2 −2
© Daniel & Samuel A-math tuition 📞9133 9982
+5)
A −1
∵ Deg(numerator) < Deg(denominator), the fraction is proper ✓
⇒A=5 5
=
20 (1)(9)
x = 2:
Bx+C
x2 +2x+15
x(x2 +3)
5
A
(−1)(5)
x2 +5x+6
15 ( )(3)
x2 +2x+15
+
+
x−1
6
x = 0:
x + 2x + 15 = 5(x + 3) +(Bx + C)x 2 = 5x + 15 +Bx 2 + Cx = (5 + B)x 2 + Cx + 15
∴
A
≡
12 = ( )(6)
x = 1:
⇒A=2
Cover-up rule: x = 0:
5 x−3
B+C
Substitution:
5 (−3)(1)
x2 +2x+15
x2 +5x+6 (x−1)(x2 +5)
=
+
−2
Cover-up rule:
Substitution: x = 0:
+4)
A
=
(−2)(5)
7x2 −9x+29
2
+ (x−1)2 ✓
+
27
x = 1:
sleightofmath.com
=
4(x2 −2)+11 x2 −2
=4+
11 x2 −2
✓
92
A math 360 sol (unofficial) 4(d)
Ex 3.6
Deg(numerator) = 4 Deg(denominator) = 3
5(b)
x+3 (x−2)(x2 −4)
x2 (2x−3)
x+3
1 2 3
2
2x −3x x
x
+
∴ 5(a)
x2 (2x−3)
x+3 (x−2)(x−4)
≡
+0x 2
1
5
2
4
= x+ + A
+
x−2
−2x −2
+0x 2
x = 2: x = 4:
7 (2)( )
x+3
∴ (x−2)(x−4) = =
1 ( )(16)
=A
⇒A=
x = 2:
5 (4)( )2
=C
⇒C=
x = 0: −2x −2
15 2 x −2x−2 4 x2 (2x−3)
3 (−2)(−4)
= − +
⇒B
=−
✓
x−4
=
⇒A=−
=B
x−2 7
+
2(x−4)
⇒B=
5
5(c)
2
≡
1 16(x+2) A
Cover-up rule:
2
x = 2:
5 ( )(8)
+
x+2
x−2
7
7 2
1 16 5 4
+
A
B
C
2
2 1
4
−
16
1 16
x−2
−
5 4 + (x−2) 2
1 16(x−2)
+
5 4(x−2)2
✓
Bx+C x2 +4
=A
⇒A=
5 8
Substitution:
x−4
−
x+3 (x−2)(x2 +4)
5 2(x−2)
✓
x = 0:
3 (−2)(4)
x = 1:
4 (−1)(5)
x+3
∴ (x−2)(x2
+4)
= =
© Daniel & Samuel A-math tuition 📞9133 9982
1 16
x+3
B
5 2
C
+ (x−2)2
x = −2:
∴ (x+2)(x−2)2 =
=A
−
B x−2
Substitution:
15 2 x ) 4 15 2 x 4
−
Cover-up rule: 5 ( )(−2)
+
4
+x 3
3 −(x 4 − 2 x 3 ) 5 3 x 2 5 −( x 3 2
(x+1)(x3 −2)
x+2
Cover-up rule:
2x3 −3x2 5
4
A
≡
x4 +x3 −2x−2
=
(x−2)(x+2)(x−2)
= (x+2)(x−2)2
∵ Deg(numerator) > Deg(denominator), the fraction is improper (x+1)(x3 −2)
x+3
=
sleightofmath.com
=
A
+
−2
= 5
8(x−2) 5 8(x−2)
+ −
C
⇒C=
4
A −1
+
B+C 5
1 4
⇒B=−
5 8
5 1 8 4 x2 +4
− x−
5x+2 8(x2 +4)
✓
93
A math 360 sol (unofficial) 6(a)
2x3 +15x2 +39x+33
=
(x+2)(x+3)
Ex 3.6
2x3 +15x2 +39x+33
2x +5 3 x +5x +6 2x +15x 2 −(2x 3 +10x 2 5x 2 −(5x 2 2
2x3 +15x2 +39x+33
6(c)
x2 +5x+6
+39x +12x) +27x +25x 2x
6x3 −5x2 −19x+28 (2x+3)(x−1)2
=
+33
=
+33 +30) +3
2x
3
−x
2x+3
= 2x + 5 + (x+2)(x+3)
(x+2)(x+3)
≡ 2x + 5 +
A x+2
B
+
2
6x3 −5x2 −19x+28 (2x+3)(x−1)2
x+3
6(b)
−1 ( )(1)
x = −3:
−3 (−1)( )
=A
2x3 +15x2 +39x+33 (x+2)(x+3)
4x3 −4x2 −16x+7 (x+1)(x−2)
x2
=
(x+1)(x−2)
6x3 −5x2 −19x+28 2x3 −x2 −4x+3
−2x2 −7x+19
= 3 + (2x+3)(x−1)2 A 2x+3
+
B x−1
C
+ (x−1)2
⇒ A = −1 Cover-up rule:
=B
⇒B=3
= 2x + 5 −
1 x+2
+
3
25
2
25 4
x=− : 3 x+3
x = 1:
✓
4x3 −4x2 −16x+7
=A
10 (5)( )2
⇒A=4
=C ⇒C=2
Substitution:
x2 −x−2
x = 0:
4x −x −2 4x 3 −4x 2 −16x +7 −(4x 3 −4x 2 −8x) −8x +7
4x3 −4x2 −16x+7
6x3 −5x2 −19x+28 2x3 −4x2 +2x+3x2 −6x+3
≡3+
x = −2:
−2x+1)
3 −4x +3 6x 3 −5x 2 −19x +28 −(6x 3 −3x 2 −12x +9) −2x 2 −7x +19
Cover-up rule:
∴
6x3 −5x2 −19x+28
= (2x+3)(x2
∴
19 (3)(1)
6x3 −5x2 −19x+28 = (2x+3)(x−1)2
=
A 3
3+
+
B −1
4 2x+3
+
−
C 1 3
x−1
⇒ B = −3 2
+ (x−1)2 ✓
7−8x
= 4x + (x+1)(x−2) ≡ 4x +
A
+
x+1
B x−2
Cover-up rule: x = −1:
15 ( )(−3)
x = 2:
−9 3( )
∴
4x3 −4x2 −16x+7 (x+1)(x−2)
=A
=B
= 4x −
© Daniel & Samuel A-math tuition 📞9133 9982
⇒ A = −5 ⇒ B = −3 5 x+1
−
3 x−2
✓
sleightofmath.com
94
A math 360 sol (unofficial)
Ex 3.6
6(d)
8
4x5 +2x4 +3x3 −x2 −x+1 x(x2 +1)
=
4x5 +2x4 +3x3 −x2 −x+1 x3 +x
+2x 4x 2 3 2 +x 5 +2x 4 x +0x 4x 5 +0x 4 −(4x 2x 4 −(2x 4
4x5 +2x4 +3x3 −x2 −x+1 x(x2 +1)
−1 +3x 3 +4x 3 ) −x 3 +0x 3 −x 3 −(−x 3
−x 2
−x +1
−x 2 +2x 2 ) −3x 2 −x +0x 2 −x) −3x 2 +0x +1
= 4x 2 + 2x − 1 +
4x3 +12x2 −x−4
=x+3+ ≡x+3+
Bx+C
x
x2 +1
1
x= : =A
2
⇒A=1
1
x=− : 2
⇒
−3x2 +1
=
x(x2 +1)
1
+
x
Bx+C
9(i)
x2 +1
−3x 2 + 1 = (x 2 + 1) +(Bx + C)x = x2 + 1
+Bx 2 + Cx
7
x(x2 +1) 6x2 −21x+25 x(2x−5)
=
=
1
4x
x
x2 +1
= 4x 2 + 2x − 1 + −
D 2x+1
−1 =C ( )(2) −1 =D (−2)( )
1
⇒C=− ✓ 2
1
⇒D= ✓ 2
x
a 3x2 +8x+1 x2 +2x+1
2
3 +2x +1 3x 2 −(3x 2
+8x +6x 2x
+1 +3) −2
6x2 −21x+25 2x2 −5x
2x−2
3 −21x +25 2x −5x 6x 2 2 −15x) −(6x −6x +25 ⇒ A=3✓ x(2x−5)
+
V
✓
h = 3 + (x+1)2 ✓ ≡3+
2
6x2 −21x+25
C 2x−1
V = 3x 2 + 8x + 1 a = (x 2 + 2x + 1)
h=
Compare coefficients: x 2 : −3 = 1 + B ⇒ B = −4 x: C = 0 4x5 +2x4 +3x3 −x2 −x+1
−1 (2x − 1)(2x + 1)
V = ah
= (1 + B)x 2 + Cx + 1
∴
−1 4x2 −1
Cover-up rule:
Cover-up rule: x = 0:
=x+3+
4x2 −1
x(x2 +1) A
−x −4 −x) +0x −4 +0x −3) −1
⇒ A = 1, B = 3 ✓
−3x2 +1
≡ 4x 2 + 2x − 1 + + 1 ( )(1)
x +3 3 4x +0x −1 4x +12x 2 3 −(4x +0x 2 12x 2 −(12x 2 2
=3+
9(ii)
A
B
x+1
+ (x+1)2
Cover-up rule: x = −1:
−4 ( )2
=B
⇒ B = −4
−6x+25 x(2x−5) B C
≡3+ + x
Substitution: x = 0:
2x−5
−2 1
A
B
1
1
= +
⇒A=2
Cover-up rule: 5
25 ( )(−5) 10
2
( )( )
x = 0: x= :
5 2
=B
=C
© Daniel & Samuel A-math tuition 📞9133 9982
∴ h= 3 +
⇒ B = −5✓ ⇒ C=4✓
10(i)
sleightofmath.com
2 x+1
4
− (x+1)2 ✓
x 3 − 3x 2 + 4 = (x + 1)(x 2 − 4x + 4) = (x + 1)(x − 2)2 ✓
95
A math 360 sol (unofficial)
Ex 3.6
10(ii) x 2 +3x x −3x +0x +4 x 5 +0x 4 −(x 5 −3x 4 3x 4 −(3x 4 3
10(ii)
x2 +8
11(ii) 2
x5 −36x2 +53x+18
+9 +0x 3 +0x 3 +0x 3 −9x 3 9x 3 −(9x 3
−36x 2 +4x 2 ) −40x 2 +0x −40x 2 −27x 2 −13x 2
= (x 2 + 3x + 9) +
x3 −3x2 +4
= (x 2 + 3x + 9) + (x 2
≡
+ 3x + 9) +
≡− +53x +12x) +41x +18 +0x +36) +41x −18
x = 2:
12 (3)( )2
=C
−18
A
=
1(4)
1
+
x3 −3x2 +4 −13x2 +41x−18 (x+1)(x−2)2 A B x+1
+
x−2
2 (4)( )
=B
⇒B=
x2 +8
∴
=−
+
100x+250 x2 +5x
=
x+1
≡
A x−4
+
∴
5 x−2
4
+ (x−2)2 ✓
12(iii)
B
x = −2:
6 (−6)( )
11(i)
2x+16
+
2
−
2
(x−4)(x+2) x+2 2(x+8) 2 + (x−4)(x+2) x+2 2 1 2
2(
x−4
4 x−4 4 x−4
4 x
−
−
)+
x+2
2 x+2
+
⇒A=2
=B
x−4
x+2 2
x+2
x2 +2
+ −
1 2
x+2 1
+
2(x+2)
1 2 1 2
x−2
+
1 2(x−2)
✓
x
x+5
+
=
50 x
=A =B
+
50 x+5
⇒ A = 50 ⇒ B = 50 ✓
50 x 50
≡ Time for to − journey ✓ ≡ Time for return − journey ✓
x+2
=A
x+8
∴ (x−4)(x+2) =
x2 +5x
x+5
Cover-up rule: 12 ( )(6)
100x+250
x2 +2 1
−
2
12(ii) 50km ✓
13(i) x = 4:
x(x+5) B
−250 (−5)( )
x 5 − 36x 2 + 53x + 18 x 3 − 3x 2 + 4 8 = (x 2 + 3x + 9) − − x+8 (x−4)(x+2)
A
x = −5: ⇒ B = −5
1
1
100x+250
250 ( )(5)
∴
11
=−
(x2 −4)(x2 +2)
x = 0:
4
x−2
x = 2:
⇒C=4
C
B
+
⇒A=−
Cover-up rule:
+
x+2
=A
⇒ A = −8
B
A
+
x2 +2
−13x2 +41x−18
12(i)
−2
2
+ (x+2)(x−2)
x2 +2 1
2 ( )(−4)
Substitution: x = 0:
x2 +2
x = −2:
≡ =A
1
−
Cover-up rule:
Cover-up rule: −72 ( )9
x2 −4 1
=−
+53x +18
C (x−2)2
x = −1:
2
=
(x2 −4)(x2 +2)
x 3 − 8 = (x)3 − (2)3 = (x − 2)[x + x(2) + 22 ] = (x − 2)(x 2 + 2x + 4) ✓
⇒ B = −1 1
x+2
✓
=1 =1 =1 =1 =1 =x−4 =8✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
96
A math 360 sol (unofficial) 13(ii)
x2 +4 x3 −8
Ex 3.6
x2 +4
= (x−2)(x2 A
≡
+
x−2
14(iii)
1
+
2(3) 1
x2 +2x+4
2 1
3 1
3 1
4 1
4
5
= − + −
Cover-up rule: 8 ( )(12)
x = 2:
=A
⇒A=
+ −
2
+
x = 0:
4 (−2)(4)
=
x = 1:
5 (−1)(7)
=
∴
2 3
=
x3 −8
x−2 2
= 14(i)
+
1 (x+1)(x+2)
≡
A
+
x+1
+
A −1
+
C
⇒C=−
4
B+C
⇒B=
7
+
2 3
1
x−2 3(x2 +2x+4)
✓
1 ( )(1)
x = −2:
1 (−1)( )
1
∴ (x+1)(x+2) =
15(i)
14(ii)
1 2(3)
1
1
2
3
1
1
+⋯+
4(5)
101(102)
−
1 101 1 102
1
2 102 25 81
✓
5x2 −3x+8 (x−1)(x2 +4) 2
=
2
+
x−1
3x+1 x2 +4
2
5x − 3x + 8 = 2(x + 4) + (3x + 1)(x − 1)
x+2
Compare constants: 8=8−1 8 = 7 [inconsistent] ✓ ⇒A=1 15(ii)
=B
x+1
+
B
=A
1
101
−
1
Cover-up rule: x = −1:
1 100 1
= −
3
=
1 2 x− 3 3 x2 +2x+4
+
3(x−2)
A −2
3(4) 1
+⋯
3
Substitution:
x2 +4
1
+2x+4) Bx+C
−
⇒ B = −1 1
x+2
5x2 −3x+8 (x−1)(x2 +4)
x−1
+
Bx+C x2 +4
Cover-up rule:
✓
x = 1:
= − ✓
10 ( )(5)
=A
⇒A=2
Substitution: x = 0:
8 (−1)(4)
x = 2:
22 (1)8
5x2 −3x+8
∴ (x−1)(x2
© Daniel & Samuel A-math tuition 📞9133 9982
A
≡
sleightofmath.com
+4)
−1
+
A
2B+C
1
8
= +
=
A
=
2 x−1
+
3x x2 +4
C 4
⇒C=0 ⇒B=3
✓
97
A math 360 sol (unofficial)
Rev Ex 3 A3(i)
Rev Ex 3 A1(i)
g(x) = x 3 + ax 2 + x + 5 By Remainder Theorem, g(2) = 31 3 2 2 + a(2) + 2 + 5 = 31 8 + 4a + 2 + 5 = 31 4a = 16 a =4✓
Difference in volumes is 189 cm3 : (x + 3)3 − x 3 = 189 9(x 2 + 3x + 3) = 189 x 2 + 3x + 3 = 21 2 x + 3x − 18 = 0 (x + 6)(x − 3) = 0 x = −6 or x = 3 ✓ (rej x ≥ 0) x+3=6✓
=c+5 =c+5 =c+5 =6✓
g(2) 8 + 4a + 2 + 5 15 + 4(4) 31 b A2(i)
A4(a)
= 2(1)(2 − b) + 2c + 5 = 2(2 − b) + 2c + 5 = 2(2 − b) + 2(6) + 5 = 2(2 − b) + 17 = −5 ✓
1−x2
=
≡
−7x+3 x2 −1 −7x+3 (x+1)(x−1) A B x+1
x−1
x = −1:
10 ( )(−2)
x = 1:
−4 (2)( )
∴
7x−3 1−x2
−5
=
x+1 2
= =0 =0 =0 =0 =3✓
+
Cover-up rule:
f(−1) = (−1)3 + (k − 2) −(k − 7) − 4 = −1 +k − 2 −k + 7 − 4 =0 By Factor Theorem, (x + 1) is a factor of f(x) ✓
A4(b)
1−x
10x−5 (x+1)(x2 +4)
⇒ A = −5
=B
⇒ B = −2
−2
+
x−1 5
−
x+1
A
≡
=A
x+1
+
✓ Bx+C x2 +4
Cover-up rule: −15 = ( )(5)
x = −1:
f(x) = x 3 + (3 − 2)x 2 + (3 − 7)x − 4 = x 3 + x 2 − 4x − 4 … (x + 1)( ⬚) 2 … (x + 1)(x ⬚) 2 = (x + 1)(x − 4) (x = + 1)(x + 2)(x − 2)
A
⇒ A = −3
Substitution: x = 0:
−5 (1)(4)
= +
x = 1:
5 (2)(5)
= +
10x−5
∴ (x+1)(x2
∴ the third factor (x − 2) ✓
© Daniel & Samuel A-math tuition 📞9133 9982
7x−3
=
f(x) = x 3 + (k − 2)x 2 + (k − 7)x − 4
A2(ii) By Factor Theorem, f(−2) −8 + (k − 2)4 + (k − 7)(−2) − 4 4k − 8 − 2k + 14 − 12 2k − 6 k
+ x2] + x2 )
A3(ii) x ≡ shorter side x + 3 ≡ longer side
A1(ii) g(x) = x(x − 1)(x − b) + cx + 5 g(1) 1+a+1+5 1+4+1+5 c
(x + 3)3 − x 3 = [(x + 3) − x][(x + 3)2 + (x + 3)x 2 (x + 6x + 9 + x 2 + 3x =3 (3x 2 + 9x + 9) =3 = 9(x 2 + 3x + 3) ✓
sleightofmath.com
+4)
=
−3 x+1
A
C
1
4
A
B+C
2
5
+
⇒C=7
3x+7 x2 +4
⇒B=3 ✓
98
A math 360 sol (unofficial) A4(c)
x3 (x−4)2
=
Rev Ex 3
x3
x +8 3 x −8x +16 x +0x 2 3 −(x −8x 2 8x 2 −(8x 2 2
x3 (x−4)2
A6 f(x) = 4x 3 − 16x 2 − 9x + 40 (a)(i) By Remainder Theorem, f(4) = 4(4)3 − 16(4)2 − 9(4) + 40 =4✓
x2 −8x+16
+0x +16x) −16x −64x 48x
+0 +0 +128) −128
A6 f(x) = x (a)(ii) x = 4 is a root ✓ 4x 3 − 16x 2 − 9x + 40 4x 3 − 16x 2 − 10x + 40 2x 3 − 8x 2 − 5x + 20 (x − 4)( ⬚) (x − 4)(2x 2 ⬚) (x − 4)(2x 2 − 5) 2 (x − 4)(2x − 5)
48x−128 (x−4)2 A B + (x−4)2 x−4
=x+8+ ≡x+8+
Cover-up rule: x = 4:
48(4)−128 ( )2
=𝐵
⇒ B = 64
Substitution: x = 0:
−128 16
=
A −4
+
B 16
5
5
2
2
=x =0 =0
=0
(x − 4) (x + √ ) (x − √ ) = 0 ⇒ A = 48
5
x = 4 or x = ±√ ✓ x3
∴ (x−4)2 = x + 8 + A5(i)
48 x−4
2
64
+ (x−4)2 ✓
A6(b) P(x) = x 3 + 2x 2 y − 5xy 2 − 6y 3
x 3 + 3x 2 − 6x − 8 =0 (x − 2)( ⬚) 2 (x − 2)(x ⬚) (x − 2)(x 2 + 4) 2 (x − 2)(x +5x + 4) = 0 (x − 2)(x + 4)(x + 1) =0 x = 2 or x = −4 or x = −1 ✓
P(2y) = (2y)3 + 2(2y)2 y − 5(2y)y 2 − 6y 3 = 8y 3 + 8y 3 − 10y 3 − 6y 3 =0 By Factor Theorem, (x − 2y) is a factor of P(x) P(x) … (x − 4)( ⬚) 2 … (x − 4)(x ⬚) … (x − 4)(x 2 + 3y 2 ) … (x − 4)(x 2 +4xy + 3y 2 ) = (x − 2y)(x + 3y)(x + y)
A5(ii) f(x) = 22x 3 + 15x 2 − 4x − 6 (a) g(x) = 2 + 14x − 12x 2 − 5x 3 By Remainder Theorem, f(a) = g(a) 22a3 + 15a2 − 4a − 6 = 2 + 14a − 12a2 − 5a3 27a3 + 27a2 − 18a − 8 = 0 [shown] ✓
The other 2 factors are (x + 3y) & (x + y) ✓
A5(ii) (3a)3 + 3(3a)2 − 6(3a) − 8 = 0 (b) sub y = 3a: y 3 + 3y 2 − 6y − 8 = 0 y=2 y = −4 y = −1 sub y = 3a: sub y = 3a: sub y = 3a: 3a = 2 3a = −4 3a = −1 a=
2 3
a=−
© Daniel & Samuel A-math tuition 📞9133 9982
4 3
1
a=− ✓ 3
sleightofmath.com
99
A math 360 sol (unofficial) A7
Rev Ex 3
f(x) ÷ (x 2 − x − 2) ⇒ Remainder = ax + b ⇒ f(x) = (x 2 − x − 2)Q(x) + ax + b = (x + 1)(x − 2)Q(x) + ax + b f(x) has a remainder of −5 when divided by x + 1 By Remainder Theorem, f(−1) = −5 −a + b = −5 b =a−5 −(1) f(x) has a remainder of 7 when divided by x − 2 By Remainder Theorem, f(2) =7 2a + b = 7 −(2) sub (1) into (2) 2a + (a − 5) = 7 3a = 12 a =4 b|a=4 = (4) − 5 = −1
B2(a) y = x(16x − 19) −(1) 3 y = 4x − 6 −(2) sub (1) into (2): x(16x − 19) = 4x 3 − 6 16x 2 − 19x = 4x 3 − 6 4x 3 − 16x 2 + 19x − 6 = 0 (x − 2)( ⬚) 2 (x − 2)(4x ⬚) 2 (x − 2)(4x + 3) (x − 2)(4x 2 − 8x + 3) = 0 (x − 2)(2x − 1)(2x − 3) = 0 x = 2 or x =
Sub back x = a2 & y = b2 : g(a) = (a2 − 4b2 )(a2 + 3b2 ) = (a + 2b)(a − 2b)(a2 + 3b2 )✓ B3(i)
B1(b) f(x) = 3(x + 2)5 + (x + k)2
© Daniel & Samuel A-math tuition 📞9133 9982
=0 =0 =0 =0
Sub x = a2 & y = b2 : g(a) = x 2 − xy − 12y 2 = (x − 4y)(x + 3y)
1+1−4 =A−5 A =3
By Remainder Theorem, f(−1) =7 5 2 (k 3(1) + − 1) = 7 k 2 − 2k + 1 =4 2 k − 2k − 3 =0 (k − 3)(k + 1) =0 k = 3 or k = −1 ✓
2
With k = −12, g(a) = a4 − a2 b2 − 12b4
−4 = (−1)(−1) + B B = −5
Remainder = Ax + B = 3x − 5 ✓
3
or x = ✓
g(2b) 16b4 − (2b)2 b2 + kb4 16b4 − 4b4 + kb4 b4 (12 + k) b = 0 or k = −12 ✓
B1(a) x 3 + x − 4 = (x 2 + x − 1)(x − 1) + Ax + B
x = 1:
2
B2(b) g(a) = a4 − a2 b2 + kb4
Remainder = ax + b = 4x − 1 ✓
x = 0:
1
B3(ii)
81x 3 + 24y 3 = 3[(3x)3 + (2y)3 ] = 3(3x + 2y)[(3x)2 − (3x)(2y) + (2y)2 ] = 3(3x + 2y)(9x 2 − 6xy + 4y 2 ) ✓ 81x3 +24y3 9x2 −6xy+4y2
=
3(3x+2y)(9x2 −6xy+4y2 ) 9x2 −6xy+4y2
= 3(3x + 2y) ✓
sleightofmath.com
100
A math 360 sol (unofficial) B4(i) (a)
2x2 −7x+14 (x+2)(x−4)
Rev Ex 3
2x2 −7x+14
=
B5(a) Let f(x) = x 2 + 5px + p2 + 5
x2 −2x−8 2(x2 −2x−8)−3x+30
=
=2
f(x) is divisible by x + 2 By factor Theorem, f(−2) =0 (−2)2 + 5p(−2) + p2 + 5 = 0 4 − 10p + p2 + 5 =0 2 p − 10p + 9 =0 (p − 9)(p − 1) =0 p = 1 or p = 9 f(x) is not divisible by x + 3
(x+2)(x−4) 30−3x + (x+2)(x−4) A B
≡2+
+
x+2
x−4
Cover-up rule: x = −2:
36 ( )(−6)
x = 4:
18 (6)( )
∴ B4(i) (b)
2x2 −7x+14 (x+2)(x−4)
42 (2x−5)(x+1)2
⇒ A = −6
=B
=2− ≡
=A
A
⇒B=3
6 x+2
+
3 x−4
✓
B
2x−5
By Factor Theorem, f(−3) 9 + 5p(−3) + p2 + 5 p2 − 15p + 14 (p − 14)(p − 1) p ≠ 14 or p ≠ 1 ∴p= 9✓
C
+ (x+1) + (x+1)2
Cover-up rule: 5
42
2
( )( )
x= :
7 2 2
x = −1:
=A
42 (−7)( )2
24
⇒A=
=C
7
B5 (b)
⇒ C = −6
Substitution: 42 A B C = + + (−5)(1)2 −5 1 1 12
x = 0:
B
=−
42
∴ (2x−5)(x+1)2 = B4(ii)
2x4 −7x2 +14 (x2 +2)(x2 −4)
7
24 7(2x−5)
=2− =2− ≡2−
6 x2 +2 6 x2 +2 6 x2 +2
− +
12
− (x+1)2 ✓
3 x2 −4 3
A x+2
+
B x−2
Cover-up rule: x = −2:
3 ( )(−4)
x = 2:
3 (4)( )
∴
2x4 −7x2 +14 (x2 +2)(x2 −4)
=A
⇒A=−
=B
=2− =2−
⇒B= 6 x2 +2 6 x2 +2
+ +
−
x 2 (x + 3) = 10x + 24 3 2 x + 3x = 10x + 24 x 3 + 3x 2 − 10x − 24 = 0 (x − 3)( ⬚) 2 (x − 3)(x ⬚) 2 (x − 3)(x + 8) (x − 3)(x 2 +6x + 8) = 0 (x − 3)(x + 2)(x + 4) = 0 x = 3 or x = −2 or x = −4 ✓
6
7(x+1)
+ (x+2)(x−2) +
3 4
x+2 3
+
4(x−2)
3 4
3
u = −4 sub u = 3x : 3x =
4
3 4
x−2
−
B5(b) 9x (3x + 3) = 10(3x ) + 24 (32 )x (3x + 3) = 10(3x ) + 24 (i) (3x )2 (3x + 3) = 10(3x ) + 24 sub u = 3x : u2 (u + 3) = 10u + 24 u=3 u = −2 x sub u = 3 : sub u = 3x : 3x = 3 3x = −2(NA) −4 (NA) ✓ ⇒x=1
3 4(x+2)
✓
B5 25x 2 (5x + 3) = 50x + 24 (b)(ii) (5x)2 (5x + 3) = (10)5x + 24 sub y = 5x y 2 (y + 3) = 10y + 24 y=3 or y = −2 or y = −4 5x = 3 5x = −2 5x = −4 x=
© Daniel & Samuel A-math tuition 📞9133 9982
≠0 ≠0 ≠0 ≠0
sleightofmath.com
3 5
x=−
2 5
4
x=− ✓ 5
101
A math 360 sol (unofficial) B6(i)
f(x) = a[x − (−1)][x − (3)][x − (k)] = a(x + 1)(x − 3)(x − k) = 2(x + 1)(x − 3)(x − k) ∵ highest power term is 2x 3
Rev Ex 3 B7(i)
f(x) − g(x) (x 4 − x 3 − 7x 2 + x + 6) −(x 4 − 2x 3 − 10x 2 + 5x + 18) x 3 + 3x 2 − 4x − 12 (x − 2)( ⬚) (x − 2)(x 2 ⬚) (x − 2)(x 2 + 6) 2 (x − 2)(x +5x + 6) (x − 2)(x + 2)(x + 3) x = 2 or x = −2 or x = −3 ✓
By Remainder Theorem, f(4) = 20 2(5)(1)(4 − k) = 20 4−k =2 k =2✓ B6(ii) f(x) = 2(x + 1)(x − 3)(x − 2) f(−2) = 2(−1)(−5)(−4) = −40 ✓
f(x) = x 4 − x 3 − 7x 2 + x + 6 g(x) = x 4 − 2x 3 − 10x 2 + 5x + 18 =0 =0 =0
=0 =0
B7(ii) f(x) − g(x)= 0 f(x) = g(x) f(2) f(−2) f(−3)
= g(2) = −12 = g(−2) = 0 = g(−3) = 48
By Factor Theorem: (x + 2) is a factor of f(x) & g(x) ∴ α = −2 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
102
A math 360 sol (unofficial) Ex 4.1 1(a)
|5 − 9| = |−4| =4 ✓
1(b)
|3 − π − 1| = |2 − π| = −(2 − π) =π−2✓
1(c)
2|−5| − |8| = 2(5) −8 = −2 ✓
2(i)
Given: y = |x 2 − 8x + 2|
Ex 4.1 4(ii)
y = 18: 2|3 − x| + 4 = 18 |3 − x| =7 3 − x= 7 or 3 − x = −7 x = −4 ✓ x = 10 ✓
5(a)
|x − 4| = 6 x − 4 = 6 or x = 10 ✓
5(b)
|2x + 3| = 5 2x + 3 = 5 2x + 3 = −5 2x =2 2x = −8 x =1✓ x = −4 ✓
5(c)
|x − 2| + 3 = 5 |x − 2| =2 x − 2= 2 x − 2= 2 x =4✓ x =4✓
6(a)
y = |f(x)|
y|x=1 = |(1)2 − 8(1) + 2| = |−5| =5✓ 2(ii)
y|x=−1 = |(−1)2 − 8(−1) + 2| = |11| = 11 ✓
2(iii)
y|x=2 = |(2)2 − 8(2) + 2| = |−10| = 10 ✓
3(a)
x − 4 = −6 x = −2 ✓
𝑦 (1,4)
|2 − √2| +| − 1|
(3,5)
(−2,3)
= 2 − √2 +(1) = 3 − √2 ✓ 3(b)
|2 − √5|
𝑥
= −(2 − √5) +3 − √5 = √5 − 2 =1✓ 3(c)
2|√6 − √3|
✓
+|3 − √5| +3 − √5
6(b)
y = |f(x)| 𝑦
3
+|√3 − √6|
(1,4)
−1
3
𝑥
✓
= 2(√6 − √3) +[−(√3 − √6)] = 2(√6 − √3) +(√6 − √3)
4(i)
6(c)
y = |f(x)|
= 3(√6 − √3)
𝑦
= 3√6 − 3√3 ✓
3 1
Given: y = 2|3 − x| + 4 O
✓
y|x=8 = 2|3 − (8)| +4 = 2|−5| +4 [ ] = 2 −(−5) +4 = 2(5) +4 = 14 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
𝑥
sleightofmath.com
103
A math 360 sol (unofficial) 6(d)
Ex 4.1
y = |f(x)|
10
𝑦 1
7(a)
c <0 −c > 0 6 − c> 6 >0 ⇒ |6 − c| = 6 − c
𝑥
O
✓
y = |x − 3| for 0 ≤ x ≤ 4 y (−1,4) 3
∴ f(c) = (6 − c) − c 2 = 6 − c − c2
(4,1)
O
𝑥
(3,0)
f(x) |6 − x| − x 2
✓ 7(b)
y = |x + 2| for − 3 ≤ x ≤ 3 (3,5)
2 𝑥
(−2,0) O
✓ 8
y = |3x − 5| 𝑦
5 𝑂
5
𝑥
3
✓ x= 9
=0 =0
For x < 0, 6 − x − x2 =0 2 x +x−6 =0 (x + 3)(x − 2) = 0 x = −3 or x = 2 (rej ∵ x < 0) ✓
y
(−3,1)
f(x) = |6 − x| − x 2 f(c) = |6 − c| − c 2
5 3
f(x) = x + 2 − |3 − 2x| f(a) = a + 2 − |3 − 2a| a >2 −2a < −4 3 − 2a < −1 <0 ⇒ |3 − 2a| = −(3 − 2a)
11(a) 2|x + 1| + 3 = 9 2|x + 1| =6 |x + 1| =3 x + 1 = 3 or x + 1 = 3 x =2✓ x =2✓
11(b) 11 − 2|x + 3| = 1 2|x + 3| = 10 |x + 3| =5 x + 3 = 5 or x + 3= 5 x =2✓ x =2✓ 12(a) |2x − 3| = x 2x − 3 = x or x =3✓ 12(b) |5x − 8| = 3x 5x − 8 = 3x or 2x =8 x =4✓
2x − 3 = x x =3✓
5x − 8 = 3x 2x =8 x =4✓
∴ f(a) = a + 2 −[−(3 − 2a)] = a + 2 +(3 − 2a) = 5 − a [shown] ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
104
A math 360 sol (unofficial)
Ex 4.1 14(c) |x(x − 2)| = 2x − 3 x(x − 2) = 2x − 3 or x 2 − 2x = 2x − 3 x 2 − 4x + 3 =0 (x − 1)(x − 3) = 0 x = 1 (rej) or x = 3 ✓
12(c) 4|x − 6| − 5x = 0 |x − 6| x − 6= x
= 5x 4
5x 4
or
x − 6= x
= −6
4
13
4
= −6
4
x = −24 (rej ∵ x ≥ 0)
5x
x = −24 (rej ∵ x ≥ 0)
14(d) Method 1 2|x| = x 2 − 4x
1
|x − y| = |y − 5| 2
|x| y >5 y−5 >0 ⇒ |y − 5| = y − 5
x
1 2
1 2 1
5
2
2
x − y= y − 3 2
y
y
=x+
2
3
3
2 1
5
2
2
x − y= y − 3
= x+ ✓
=
x2 −4x 2
y
=x+
5 2
2
5
3
3
= x+ ✓
y
x
=
x2 −4x 2
2x = x 2 − 4x x 2 − 6x = 0 x(x − 6) = 0 x = 0 or x = 6 ✓
x = −√6 or x = √6 ✓ 15
y = |2x − 6| 𝑦
14(b) Method 1 |x|2 + x 2 =4 2 2 x +x =4 2 2x =4 2 x −2 =0 (x + √2)(x − √2) = 0
6 3
x = −√2 or x = √2 ✓ Method 2 |x|2 + x 2 =4 |x 2 | + x 2 =4 2 |x | = 4 − x2 x2 = 4 − x 2 or x 2 2x 2 = 4 2x 2 2 x =2 x2 x = ±√2 x
© Daniel & Samuel A-math tuition 📞9133 9982
or
Method 2 2|x| = x 2 − 4x 2 4|x| = (x 2 − 4x)2 4x 2 = (x 2 − 4x)2 4x 2 = x 4 − 8x 3 + 16x 2 x 4 − 8x 4 + 12x 2 =0 x 2 (x 2 − 8x 2 + 12) = 0 x 2 (x − 2)(x − 6) = 0 x = 0 ✓ or x = 2 or x = 6 ✓ (rej)
14(a) |x 2 − 4| = 2 x2 − 4 = 2 or x 2 − 4 =2 2 2 x −6 =0 x −6 =0 (x + √6)(x − √6) = 0 (x + √6)(x − √6) = 0 x = −√6 or x = √6 ✓
2
1
2 5
x2 −4x
x − y = (y − 5)
5
2
=
2x = x 2 − 4x x 2 − 6x = 0 x(x − 6) = 0 x = 0 or x = 6 ✓
∴ |x − y| = (y − 5) x − y = (y − 5) or
x(x − 2) = 2x − 3 2 x − 2x = 2x − 3 2 x − 4x + 3 =0 (x − 1)(x − 3) = 0 x = 1 (rej) or x = 3 ✓
𝑥
✓ 15(i)
=4−x =4 =2 = ±√2
2
y = 2|x − 3| = |2x − 6| ✓
15(ii) y = |6 − 2x| = |(2x − 6)(−1)| = |2x − 6||−1| = |2x − 6| ✓
sleightofmath.com
105
A math 360 sol (unofficial)
Ex 4.1
16(a) y = |1 − x 2 | = |(1 + x)(1 − x)| 𝑦 (−2,3) (0,1) 𝑥 (−1,0) 𝑂 (1,0)
17(ii) y = |2x − 4| 𝑦
4
16(b) y = |x 2 − 4| = |(x + 2)(x − 2)| 𝑦 (0,4) 𝑂 (−2,0)
✓ 18(i)
✓
16(c) y = |(x − 1)(x − 3)| 𝑦
(5,8)
(2,1) 𝑂 𝑥 (−1,0) (3,0)
y = 2|x + c| − 5 At (−1,3): 3 = 2|(−1) + c| − 5 8 = 2|c − 1| |c − 1| = 4 c − 1 = 4 or c − 1 = −4 c =5✓ c = −3 ✓
𝑥
(2,0)
18(ii) y = |2x + 5|
17(i)
𝑥 (4,0)
y = |2x − 3| 𝑦
𝑦
✓
5
16(d) y = |x 2 − 4x| = |x(x − 4)| 𝑦 (2,4) 𝑂
𝑥
2
✓
−
5
𝑂
3 𝑂
𝑥
3 2
2
✓ 19(i) ✓
y = |2x + c| At (1,2), 2 = |2(1) + c| 2 = |2 + c| |c + 2| = 2 c + 2 = 2 or c + 2 = −2 c =0 c = −4 ∴ c = −4 ✓
𝑥 ✓
y = |3 − kx| (5,12): 12 = |3 − k(5)| |3 − 5k| = 12 3 − 5k = 12 or 3 − 5k = 12 5k = −9 5k = −9
At (0,4), 4 = |2(0) + c| |c| = 4 c = ±4
k 19 (ii)(a)
9
=− ✓ 5
𝑦 (−1,6) 3
O 1
9
=− ✓
k
5
𝑦 = |3 − 3𝑥| (5,12) 𝑥 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
106
A math 360 sol (unofficial) |3 − kx| = 3 19 (ii)(b) |3 − 3x| = 3 3|1 − x| = 3 |1 − x| = 1 1 − x= 1 or x =0✓ 20(i)
Ex 4.1 22 k = 0 or k > 4 ✓ (ii)(a) 22 k=4✓ (ii)(b)
1 − x= 1 x =0✓
22 0
𝑦 𝑦 = |2𝑥 − 5| 𝑦 =𝑥+2
23(a) No. It can be 0 ✓
5 −2
2
O
23(b) |x| ≥ 0 ✓
𝑥
5 2
23(c) ℝ ✓ ✓ 24
20(ii) 2 intersections ⇒ 2 solutions ✓ 21(i)
y = |x 2 + 2x − 3| = |(x + 3)(x − 1)| 𝑦 𝑦 = |𝑥 2 + 2𝑥 − 3| (−1,4) 3 𝑦=2 𝑥 −3 𝑂 1
Method 2 x 2 − |x| − 2 = 0 |x| = x2 − 2 x = x 2 − 2 or x = x2 − 2 x2 − x − 2 =0 x2 − x − 2 =0 (x − 2)(x + 1) = 0 (x − 2)(x + 1) = 0 x = 2 or x = −1 x = 2 or x = −1 (rej) ✓ (rej) ✓
✓
2
21(ii) |x − 1|
= |x+3|
|x − 1||x + 3| = 2 |x 2 + 2x − 3| = 2
25 √x 2 = x (i)(a) Not true √x 2 = |x| ✓
Draw y = 2 4 intersections ⇒ 4 solutions ✓ 22(i)
y = |x 2 − 6x + 5| for − 1 ≤ x ≤ 7 = |(x − 1)(x − 5)| 𝑦 (−1,12) (3,4) 5 𝑂 1 5 |x 2
Method 1 x 2 − |x| − 2 =0 |x|2 − |x| − 2 =0 (|x| − 2)(|x| + 1) = 0 |x| = 2 |x| = 2 or or x = ±2 ✓ x = ±2 ✓
25 √x 2 = ±x (i)(b) By definition, square root results in only positive number ✓ 25(ii) |x| ✓
(7,12) 𝑥 ✓
− 6x + 5| = k
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
107
A math 360 sol (unofficial)
Ex 4.2 2(a)
Ex 4.2 1(a)
5
y = 3x ∵ power of 5 is positive & odd (except for 1), graph is similar to y = x 3
1
y = x4 (0 < power
1 4
< 1)
𝑦
𝑦 𝑥
O 𝑥
O
2(b) ✓
1(b)
2
y = x3 2 (0 < power < 1) 3
𝑦
y = −3x 4 ∵ power of 4 is positive & even, graph is similar to y = −x 2 𝑦
𝑥
O 2(c)
𝑥
O
✓ 3
y = x2 3 (power > 1) 2
✓ 1(c)
✓
𝑦
2
y = 3 = 2x −3 x ∵ power of − 3 is negative & odd, 1 graph is similar to y =
𝑥
O
x
✓
𝑦 2(d)
O
𝑥
3
y = 3x 2 3 (power > 1) 2
𝑦 ✓
1(d)
2
y = − 4 = −2x −4 x ∵ power of − 4 is negative & even, 1 graph similar to y = 2 x ∵ coefficient is negative, reflect in x − axis 𝑦
O
𝑥
O 2(e)
✓ 3
y = −3x 2 3 (power > 1) 2 ∵ coefficient − 3 is negative, reflect in x − axis 𝑦
𝑥 ✓
O
𝑥
✓
108
A math 360 sol (unofficial) 3(a)
Ex 4.2
1
4(c)
y = x −3 1 (power − < 0)
x = πy 2 y=√
3
𝑦
= 𝑥
O 3(b)
=
x π
√x √π 1 √π
1
x2 1
(0 < power < 1)
✓
2
𝑦
2
y = x −3 2 (power − < 0) 3
𝑦
5(i)
𝑥
O 3(c)
✓
y= 3 (power − < 0)
=
𝑦
= 5(ii)
𝑥
1
2π √10
x2 ✓
=
5(iii)
✓
4 3
5(iv)
√4√10
1
1
x2
= √10 2
x
= (10)
x
= 2.5 ✓
1 4
y = 2π√ =
✓
√10
x2 = π
1
𝑥
√10 2π
(40)2
y = π:
√10
𝑥
𝑦
1
2π
= 2π√4 = 4π ✓
y = πx 3
O
√x
y|x=40 =
2π
4(b)
√10
y = 4πx 2
O
√10
2π
✓
𝑦
x 10
√x
= 2π
2
4(a)
✓
y = 2π√
3 x −2
O
𝑥
O
2π √10
x 10 1
x2 1
(0 < power < 1) 2
𝑦
O
𝑥 ✓
109
A math 360 sol (unofficial) 6
Ex 4.2 9(b)
1
𝑦
𝑦 = 2𝑥 6 𝑥
O
1
𝑦 = −2𝑥 6
𝑦
✓ Reflection of each other in the x-axis ✓ 7
2
y=
1
3
y = − √8x = −2x 3 1 (0 < power < 1) 3 ∵ coefficient − 2 is negative, reflect in x-axis
1
= 2x −2
𝑥
O
√x 1 (power − < 0)
✓
2
𝑦
𝑦2 = 2𝑥 − 3
9(c)
2
𝑦1 = √𝑥 𝑥
O
y=
4
4
=
5
√32x2
2 2x5
2
2
= 2x −5
(power − < 0) 5
𝑦
−3 ✓ 1 sol ✓ 8
y= 1 (0 < power < 1) 3
10(i)
𝑦 1
4
𝑦1 = 4𝑥 3 𝑥 𝑦2 = 4 − 𝑥 2
O
✓ 1 3 1 3
2
4x + x = 4
✓
y = 2x + 1 −(1) 1 y= −(2) x (1) (2): sub into 1 2x + 1 = x 2x 2 + x =1 2x 2 + x − 1 =0 (2x − 1)(x + 1) = 0 1 x= or x = −1 ✓ 2
4x =4−x y1 = y2 ∴ 1 sol ✓ 9(a)
𝑥
O
1 4x 3
2
1
= 2( ) + 1
y|x=1
=2✓ 10(ii)
1
= −1 ✓
𝑦
y = √6x = √6x 2 1 (0 < power < 1)
𝑦 = 2𝑥 + 1 1
2
1
𝑦 (−1, −1)
O
y|x=−1 = 2(−1) + 1
2
2
( , 2) 2
𝑦=
1 𝑥
O
𝑥 ✓
𝑥 ✓
11(i)
1
1
5x 2
= 2x 6 1
1
5x 2 − 2x 6 1 6
=0
1 3
x (5x − 2) = 0 1
x6 = 0 x =0✓
1
or
x6 = 0 x =0✓
110
A math 360 sol (unofficial)
Ex 4.2
11(ii) y|x=0 = 0 ⇒ (0,0) y|x= 2√2 √5
8 125
×
⇒(
12(iii) Sub P = 18:
= 5(
√5
1 23 2
1 2
8 125
) = 5 ( 3) 5
21.5 51.5
=5
2√2 5√5
,
2
=
L
2(18) L
36
=√
L
36 L 36
= 2 I = 36I −2 ∵ power of − 2 is negative & even, 1 it is similar to y = 2
)
5
x
1
𝑦 = 5𝑥12 𝑦 = 2𝑥 6 8 2√10 ( , ) 125 5 𝑥 (0,0)
𝐿
✓
Note: Verify which graph is higher at x-coordinates 8 bigger & smaller than 125
12(i)
I
=
2√10
=
𝑦
𝑂
=5
5 √5 8 2√10
125
=√
I
𝐼
O 13(i)
✓
𝑦 1
𝑦2 = 4𝑥 5 I=√
2P L
O L = 8: 2P
P
√P
4 1
√4
I = √(8) = √ =
1
𝑦1 =
3
𝑥
𝑥
✓
1
= P2 2
13(ii) 1 sol ✓
(0 < power < 1) 2
𝐼
𝑝
O
✓
12(ii) Sub P = 18: I=√
2(18) L
=√
36 L
1
= 6L−2
1
(power − < 0) 2
𝐼
O
𝐿 ✓
111
A math 360 sol (unofficial) 14(i) y = −
4 √x
Ex 4.2 15(iii) 2x = 4x −12
for 0.5 ≤ x ≤ 4
3
x2 = 2
x 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 y −5.66 −4.00 −3.27 −2.83 −2.53 −2.31 −2.14 −2.00
2
x
= 23 2
y|
5
= 2(2)3 = 23
2 x=23 2 3
5
⇒ (2 , 23 ) ✓ 16(i)
2x − 3√x − 2 =0 (2√x + 1)(√x − 2) = 0 1
√x = − 2 (rej ∵ √x ≥ 0) ✓ 16(ii) y = 2x − 2 y = 3√x
or
√x = 2 x =4✓
−(1) −(2)
sub (1) into (2): 2x − 2 = 3√x 2x − 3√x − 2 = 0 ⇒x=4 y|x=4 = 2(4) − 2 =6 ⇒ (4,6) 𝑦
𝑦 = 2𝑥 − 2 𝑦 = 3√𝑥
(4,6)
𝑥
O −2
✓ 1 3x 2 1
y = 3√x = (0 < power < 1) 2
17(i) 14(ii) (1 − x)√x = −4 1−x
=
At (8,1),
At (8,1),
1 = a √8
−4 √x
b
y=
3
1 = a(2)
1 sol ✓ 15(i)
3
y = a √x
1
a= ✓
1=
2x
b 2(8)
b = 16 ✓
2
𝑦 𝑦1 = 2𝑥 1
𝑦2 = 4𝑥 −2 𝑥
O
✓
1 4x −2
y= 1 (power − < 0) 2
15(ii) 1 solution ✓ 112
A math 360 sol (unofficial) 17(ii)
Ex 4.2 17(iii) (−8, −1) ✓
𝑦 𝑦=
8 𝑥
(8,1) 𝑦 = 1 3√𝑥 2
𝑂
𝑥
✓ Symmetrical about O ✓
113
A math 360 sol (unofficial)
Rev Ex 4 A2(d) | 3√x − 1| = 3
Rev Ex 4
3
3
or √x − 1 = 3 3 =4 √x x = 43 x = 64 ✓
A1(a) f(x) = |3x − 1| f(−2) = |3(−2) − 1| = |−7| =7✓
√x − 1 = −3 = −2 √x x = (−2)3 x = −8 ✓ 3
A3(a) y = |−3x − 2| for − 2 ≤ x ≤ 1 f(2) = |3(2) − 1| = |5| =5✓
𝑦 (1,5) (−2,4)
f(x) =3 |3x − 1| = 3 3x − 1 = 3 or 3x =4 x
−
3x − 1 = −3 3x = −2
4
= ✓
x
3
2 𝑥
𝑂
2 3
2
✓
=− ✓ 3
A3(b) y = |9 − x 2 | A1(b) g(x) =
|x 2
− 2x|
𝑦 (0,9)
g(1) = |(1)2 − 2(1)| = |1 − 2| = |−1| =1✓
𝑂
(−3,0)
(3,0)
✓ A3(c) y = |4x 2 − 1| for − 1 < x < 1
g(3) = |(3)2 − 2(3)| = |9 − 6| = |3| =3✓
𝑦
(−1,3)
𝑂
1
(− , 0)
x=
© Daniel & Samuel A-math tuition 📞9133 9982
2 3
1
𝑥
( , 0) 2
✓
A3(d) y = |(2x + 1)(x − 2)|
2x − 3 = −x 3x =3 x =1✓
𝑦 3
1
4
8
( ,3 )
A2(b) |x + 1| = 2x − 3 x + 1 = 2x − 3 or x + 1 = −(2x − 3) x + 1 = −2x + 3 x =4✓ 3x = 2
A2(c) |x 2 + 6| = 5x x 2 + 6 = 5x or x 2 − 5x + 6 = 0 (x − 2)(x − 3) = 0 x = 2 or x = 3 ✓
(1,3)
(0,1) 2
A2(a) |2x − 3| = x 2x − 3 = x or x =3✓
𝑥
1
(− , 0)
𝑂 (2,0) 𝑥
2
A4
(rej) ✓
x2 + 6 = −5x x 2 + 5x + 6 = 0 (x + 2)(x + 3) = 0 x = −2 or x = −3 (rej) (rej)
sleightofmath.com
✓
y = |x − 2| − 5 At x − axis, y =0 |x − 2| − 5 = 0 |x − 2| =5 x − 2 = 5 or x =7 ⇒ P(7,0) ✓
x − 2 = −5 x = −3 ⇒ Q(−3,0) ✓
114
A math 360 sol (unofficial) A5(i)
Rev Ex 4
1
A6(ii) A6(iii)
y = 2x 3 1
(0 < 𝑝𝑜𝑤𝑒𝑟 < 1) 3
1
y=
16√x
1
1
=
x −2
16 1
𝑦 16 𝑦2 = |𝑥 − 16| 1 (25,9) 𝑦1 = 2𝑥 4 (25,4.5) 𝑥 16
O
(𝑝𝑜𝑤𝑒𝑟 − < 0)
✓
2
𝑦
𝑦=
1 16√𝑥
𝑦 = 2𝑥 𝑥
O
✓
A5(ii) y = 2x 13
−(1)
1
y=
16√x 1 −1
=
16
x
−(2)
2
sub (1) into (2): 2x
1 3
1
=
16 1
1 1
x 3+2 = x
5 6
A6(iv) 2x 14 = |x − 16| ⇒ 2 solutions ✓
1 3
x
B1(a) |2x + 4| = x 2 + 1 2x + 4 = x 2 + 1 or x 2 − 2x − 3 = 0 (x + 1)(x − 3) = 0 x = −1 or x = 3 ✓
2x + 4 = −(x 2 + 1) x 2 + 2x + 5 = 0 x= =
B1(b) |x 2 − 1| = x 2 x2 − 1 = x2 or −1 = 0 (NA)
1 − 2
= = 2−6
1
y|x= 1 = 2(2−6 )
2x 4
or x =
1 √2
✓
1
=8
1 4
1 3
x =4 x = 44 x = 256 ✓
64
= 2(2−2 )
⇒(
√2
2
2x 4 − 3 = −5
1
1
1
1
1
2x 4 − 3 = 5 or
sub (3) into (1):
=
(NA)
B1(c) |2x 14 − 3| = 5 −(3)
64
=
x=−
6 5
1
=
2
x2
32
(2−5 )
x
2(1) −2±√−16
x 2 − 1 = −x 2 2x 2 =1
= 2−5
x x
−(2)±√(2)2 −4(1)(5)
1
2x 4 x
= −2
1 4
= −1
(NA ∵
1 x4
≥ 0)
2
1
, )✓
64 2
1 A6 y = 2x 4 (i)(a)
y = 4: 1
2x 4 = 4 1
x4 = 2 x = 24 x = 16 ✓
B1(d) |√x − 2| = x − 4 = x − 4 or √x − 2 = −(x − 4) √x − 2 x − √x − 2 =0 x + √x − 6 =0 2
2
(√x) − √x − 2 = 0 (√x − 2)(√x + 1) = 0
(√x) + √x − 6 = 0 (√x + 3)(√x − 2) = 0
√x = 2 x =4✓
√x = −3 (rej)
√x = −1 (rej)
√x = 2 x=4
1 A6 y|x=25 = 2(25)4 (i)(b) ≈ 4.5 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
115
A math 360 sol (unofficial) B2(i)
Rev Ex 4 B3(b) 2x + 3y = 19 3y = 19 − 2x
𝑦 𝑦 = |2𝑥 − 5|
y
5 4 5 2
𝑦 =4−𝑥 𝑥 4
=
|x − ( |x −
B2(ii) y = |2x − 5| −(1) y=4−x −(2)
19−2x 3
19
5
| x−
3 19
3 5
3
3
2
|
B3(a) 2x + y = 3 y = 3 − 2x
y|x=1 = 4 − (1) =3 ⇒ (1,3) ✓
=3
=3
x
=
x
2x − 5 = −(4 − x) 2x − 5 = −4 + x x =1✓
=
y|x=28 =
B4(ii)
or
28 3 28 5
5 3 5 3
✓ 28 5
19−2( )
x−
13 5
19
= −3
3
x
=
10 3
=2✓
x y|x=2 =
19−2(2) 3
=5✓
3
5
B4(i)
−(2)
+ x| = 3
3 5
x−
−(1)
)| = 3
3 3 19
= y|x=2 = 4 − (3) =1 ⇒ (3,1) ✓
3
|x − y| = 3 sub (1) into (2): ✓
sub (1) into (2): |2x − 5| = 4 − x 2x − 5 = 4 − x or 3x =9 x =3✓
19−2x
✓
For unhealthy temperature, |x − 36.9| ≥ 0.9 ✓ 𝑦
−(1)
𝑦 = |𝑥 − 36.9|
y = |2x − 1| −(2) sub (1) into (2): |2x − 1| = 3 − 2x 2x − 1 = 3 − 2x or 2x − 1 = −(3 − 2x) 4x =4 2x − 1 = −3 + 2x 2 = 0 (NA) x =1✓ y|x=1 = 3 − 2(1) =1✓
36.9
𝑦 = 0.9 𝑥
36.0 36.9 37.8
|x − 36.9| = 0.9 ⇒ x − 36.9 = −0.9 and x = 36
x − 36.9 x
= 0.9 = 37.8
For healthy temperature, 36 < x < 37.8 ✓ B5(i)
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
|x 2 − 10x + 8| = 8 x 2 − 10x + 8 = 8 or x 2 − 10x =0 x(x − 10) =0 x = 0 or x = 10 ✓
x 2 − 10x + 8 = −8 x 2 − 10x + 8 = −8 x 2 − 10x + 16 = 0 (x − 2)(x − 8) = 0 x = 2 or x = 8 ✓
116
A math 360 sol (unofficial) B5(ii)
𝑦
Rev Ex 4 B6(b) y = 2√x + 1
𝑦 = |𝑥 2 − 10𝑥 + 8|
y=
(5,17) 8 𝑥 𝑂 5 − √17 5 + √17
=
2(1)
2
10±2√17
=
−(2)
√x
2√x + 1
✓
−(−10)±√(−10)2 −4(1)(8)
10±√68
−(1)
sub (1) into (2):
|x 2 − 10x + 8| = 0 x 2 − 10x + 8 = 0 x=
6
2
=
=
6 √x
2x + √x =6 2x + √x − 6 =0 (2√x − 3)(√x + 2) = 0
10±√100−32 2
3
√x = 2 or √x = −2 (rej ∵ √x ≥ 0)
= 5 ± √17
x=
B5(iii) Solutions for x in (i) are the x-coordinates of the intersection points between the graph in (ii) and the line y = 8
9 4 9
sub x = into (1): 4
9
3
4
2
y|x=9 = 2√ + 1 = 2 ( ) + 1 = 4
B6(a)
4
9
⇒ ( , 4) ✓
𝑦 𝑦2 =
4
1 2
6
= 6𝑥 1 √𝑥 𝑦1 = 2√𝑥 = 2𝑥 2 (3,2√3) 𝑥
O
✓
y = 2√x =
1 2x 2 1
(0 < power < 1) 2
y=
6
1
= 6x −2
√x 1 (power − < 0) 2
y1 = 2√x y2 =
−(1)
6
−(2)
√x
sub (1) into (2): 2√x =
6 √x
x=3
−(3)
sub (3) into (2): y2 |x=3 =
6 √3
=
6 √3
×
√3 √3
=
6√3 3
= 2√3
⇒ (3,2√3) ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
117
A math 360 sol (unofficial)
Ex 5.1
Ex 5.1 1(a)
2! × 3! = (2 × 1)(3 × 2 × 1) = (2)(6) = 12 ✓
1(b)
6! 3!
=
6⋅5⋅4⋅3! 3!
=6⋅5⋅4 = 120 ✓ 1(c)
5! 5 ( ) = (5−1)!(1)! 1 5! = 4!
=5✓ 1(d)
9! 9 ( ) = (9−2)!(2)! 2 9! =
=
7!2! 9×8 2
= 36 ✓ 2(a)
2(b)
n 0 1 2 3 4 5
Binomial Coefficients 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1
(1 − 2x)4 = [1 + (−2x)]4 = 1 +(4)(−2x)1 = 1 +(4)(−2x) = 1 −8x
+(6)(−2x)2 +(6)(4x 2 ) +24x 2
+(4)(−2x)3 +(4)(−8x 3 ) −32x 3
+(1)(2x)4 +(1)(16x 4 ) +16x 4 ✓
(1 + 3x)5 = 1 +(5)(3x)1 = 1 +(5)(3x) = 1 +15x
+(10)(3x)2 +(10)(9x 2 ) +90x 2
+(10)(3x)3 +(10)(27x 3 ) +270x 3
+(5)(3x)4 +(5)(81x 4 ) +405x 4
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
+(1)(3x)5 +(1)(243x 5 ) +243x 5 ✓
118
A math 360 sol (unofficial) 3(a)
n 0 1 2 3 4 5 1 6 1 7 1 7 8 1 8 9 1 9 36 10 1 10 45 (1 + 2x)9 = 1 +(9)(2x) = 1 +18x
3(b)
4(a)
Ex 5.1 Binomial Coefficients 1 1 1 1 2 1 1 3 3 1 4 6 4 5 10 10 6 15 20 15 21 35 35 28 56 70 56 84 126 126 120 210 252 210
+(36)(4x 2 ) +144x 2
1 5
1 6
21
1 7
28 84
1 8
36 120
1 9
45
1 10
1
+(84)(8x 3 ) + ⋯ +672x 3 + ⋯ ✓
(1 − x 2 )10 = [1 + (−x 2 )]10 = 1 +(10)(−x 2 ) +(45)(x 4 ) = 1 −10x 2 +45x 4
+(120)(−x 6 ) + ⋯ −120x 6 + ⋯ ✓
(1 + x)10 10 (x)1 ) 1 +(10)(x) +10x +(
=1 =1 =1
10 + ( ) (x)2 2 +(45)(x 2 ) +45x 2
10 (x)3 ) +⋯ 3 +(120)(x 3 ) + ⋯ +120x 3 + ⋯ ✓ +(
4(b)
(1 − 3x)8 = [1 + (−3x)]8 8 8 8 =1 + ( ) (−3x)1 + ( ) (−3x)2 + ( ) (−3x)3 + ⋯ 3 1 2 =1 +(8)(−3x) +(28)(9x 2 ) +(56)(−27x 3 ) + ⋯ =1 −24x +252x 2 −1512x 3 + ⋯ ✓
4(c)
(1 − 2x 2 )7 = [1 + (−2x 2 )]7 7 7 =1 + ( ) (−2x 2 )1 + ( ) (−2x 2 )2 1 2 =1 +(7)(−2x 2 ) +(21)(4x 4 ) =1 −14x 2 +84x 4
4(d)
1
1
7 + ( ) (−2x 2 )3 + ⋯ 3 +(35)(−8x 6 ) + ⋯ −280x 6 + ⋯ ✓
16
(1 − x 3 ) 2
1
16
= [1 + (− x 3 )] 2
1 2 1 1 16 16 = 1 + ( ) (− x 3 ) + ( ) (− x 3 ) 2 2 1 2 1 3 1 6 = 1 +(16) (− x ) +(120) ( x ) 2
= 1 −8x 3
© Daniel & Samuel A-math tuition 📞9133 9982
4
+30x 6
3 1 16 ) (− x 3 ) + ⋯ 2 3 1 +(560) (− x 9 ) + ⋯
+(
8
−70x 9 + ⋯ ✓
sleightofmath.com
119
A math 360 sol (unofficial) 5(i)
n n! n(n−1)(n−2)! ( )= (n−2)!2! = (n−2)!(2×1) 2 (
= (
n(n−1)
=
2
✓
(n+1)! (n+1)! n+1 ) = [(n+1)−2]!(3)! = (n−2)!(3)! 3
=
5(ii)
Ex 5.1
(n+1)(n)(n−1)(n−2)! (n−2)!(3.2.1) (n+1)(n)(n−1)
✓
6
n = 4( ) 2
n+1 ) 3
(n+1)(n)(n−1)
= 4[
6
(n + 1)(n)(n − 1)
n(n−1) 2
]
= 12n(n − 1)
(n)(n − 1)[(n + 1) − 12] = 0 (n)(n − 1)(n − 11) =0 n=0 or n = 1 or n = 11 ✓ (rej ∵ n ≥ 2) (rej ∵ n ≥ 2) 6(i)
5
(1 + √x) − (1 − √x)
5
5
5
= (1 + √x) − [1 + (−√x)]
0 1 2 3 4 5 5 5 5 5 5 5 = [( ) (√x) + ( ) (√x) + ( ) (√x) + ( ) (√x) + ( ) (√x) + ( ) (√x) ] 0 3 5 1 2 4 0 1 2 3 4 5 5 5 5 5 5 5 −[( ) (−√x) + ( ) (−√x) + ( ) (−√x) + ( ) (−√x) + ( ) (−√x) + ( ) (−√x) ] 0 3 5 1 2 4
= [1 −[1 = (1 −(1
+(5)(√x) +(5)(−√x)
+(10)(x)
+(10)(x√x)
+(5)(x 2 )
+(1)(x 2 √x)]
+(10)(x)
+(10)(−x√x)
+(5)(x 2 )
+(1)(−x 2 √x)]
+5√x −5√x
+10x +10x
+10x√x −10x√x
+5x 2 +5x 2
+x 2 √x) −x 2 √x)
=10√x +20x√x 6(ii)
+2x 2 √x [shown] ✓
5
5
(1 + √2) − (1 − √2) = 10√2 = 10√2 = 58√2 ✓
+20(2)√2 +40√2
© Daniel & Samuel A-math tuition 📞9133 9982
+2(2)2 √2 +8√2
sleightofmath.com
120
A math 360 sol (unofficial) 7(i)
1
(2 − x) (1 + x)
Ex 5.1
8
2
8 1 0 8 1 3 8 1 1 8 1 2 = (2 − x)[( ) ( x) + ( ) ( x) + ( ) ( x) + ( ) ( x) + ⋯ ] 0 2 3 2 1 2 2 2 1 1 2 1 = (2 − x)[1 +(8) ( x) +(28) ( x ) +(56) ( x 3 ) + ⋯ ] 2
= (2 − x)(1
4
+4x
+7x
2
8
3
+7x + ⋯ )
= 2 +8x +14x 2 +14x 3 −x −4x 2 −7x 3 + ⋯ = 2 +7x +10x 2 +7x 3 + ⋯ ✓ 7(ii)
Substitution 1.9 × (1.05)8 = (2 − 0.1) (1 + 0.05)8 1
= [2 − (0.1)] [1 + (0.1)]
8
2
= 2 +7(0.1) +10(0.1)2 +7(0.1)3 + ⋯ = 2 +0.7 +0.1 +0.007 + ⋯ ≈ 2.807 ✓ 8(i)
(1 + x)10 000 10 000 (x)0 10 000 (x)1 ) ) =( +( +⋯ 0 1 =1 +10 000x + ⋯ ✓
8(ii)
Substitution (1.1)10 000 = [1 + (0.1)]10 000 = 1 + 10 000(0.1) + ⋯ = 1 + 1000 + ⋯ = 1001 + ⋯ > 1000 ✓ 10 000 ∴ 1.1 is larger
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
121
A math 360 sol (unofficial) 9(i)
Ex 5.1
(1 + x)20 20 20 20 = ( ) (x)0 + ( ) (x)1 + ( ) (x)2 + ⋯ 0 1 2 2 = 1 + 20x + 190x + ⋯
10(ii) (1 + 4x)6 (1 − 2x)14 = (1 + 24x + 240x 2 + ⋯ )(1 − 28x + 364x 2 + ⋯ )
Estimated amount (at r = 4, t = 5) = 1 −28x +24x
) ]|
400
= 20 000 [(1 + = 20 000 [1 + (
4t
r
= [20 000 (1 +
4 400 1
100
)
t=5,r=4 (4×5)
]
)]
≈ 20 000 [1 + 20 (
20
1
= 1 − 4x − 68x 2 + ⋯ ✓
) + 190 (
100
+364x 2 −673x 2 +240x 2 + ⋯
1 100
2
) ]
≈ $24 380 ✓ 9(ii)
E = 24 380 A = 20 000 [1 + (
1
)]
20
100
= 24 403.8008 A−E A
× 100%
(24 403. 8008) − (24 380) × 100% (24403. 8008) ≈ 0.10% ✓ =
9(iii)
Yes ✓
10(i) (a)
(1 + 4x)6 6 6 = ( ) (4x)0 + ( ) (4x)1 0 1
6 + ( ) (4x)2 + ⋯ 2
=1
+6(4x)
+15(16x 2 ) + ⋯
=1
+24x
+240x 2 + ⋯ ✓
10(i) (b)
(1 − 2x)14 = [1 + (−2x)]14 14 14 14 = ( ) (−2x)0 + ( ) (−2x)1 + ( ) (−2x)2 0 1 2 +⋯ =1
+14(−2x)
+91(4x 2 ) + ⋯
=1
−28x
+364x 2 + ⋯ ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
122
A math 360 sol (unofficial) 11(i)
Ex 5.1
(1 − x)6 = [1 + (−x)]6 6 6 6 = ( ) (−x)0 + ( ) (−x)1 + ( ) (−x)2 0 1 2 =1 +6(−x) +15x 2 2 3 = 1 − 6x + 15x − 20x + ⋯ ✓
6 + ( ) (−x)3 + ⋯ 3 +20(−x 3 ) + ⋯
11(ii) Method 1 (factorize & multiply) (1 + x − 2x 2 )6 = [(1 − x)(1 + 2x)]6 = (1 − x)6 (1 + 2x)6 6 6 6 6 = (1 − 6x + 15x 2 − 20x 3 + ⋯ )[( ) (2x)0 + ( ) (2x)1 + ( ) (2x)2 + ( ) (2x)3 + ⋯ ] 0 3 1 2 = (1 − 6x + 15x 2 − 20x 3 + ⋯ )[1 +(6)(2x) +(15)(4x 2 ) + (20)(8x 3 ) + ⋯ ] = (1 − 6x + 15x 2 − 20x 3 + ⋯ )(1 + 12x + 60x 2 + 160x 3 + ⋯ )
= 1 +12x +60x 2 −6x −72x 2 +15x 2
+160x 3 −360x 3 +180x 3 −20x 3 = 1 + 6x + 3x 2 − 40x 3 + ⋯ Method 2 (substitution) (1 + x − 2x 2 )6 = [1 − (−x + 2x 2 )]6 = 1 − 6(−x + 2x 2 )
+15(−x + 2x 2 )2
−20(−x + 2x 2 )3
= 1 − 6(−x + 2x 2 )
+15[−x(1 − 2x)]2
−20[−x(1 − 2x)]3
= 1 − 6(−x + 2x 2 )
+15(−x)2 (1 − 2x)2
−20(−x)3 (1 − 2x)3
= 1 − 6(−x + 2x 2 )
+15x 2 (1 − 2x)2
+20x 3 (1 − 2x)3
= 1 − 6(−x + 2x 2 )
+15x 2 (1 − 4x + ⋯ )
+20x 3 (1 + ⋯ )
= 1 +6x −12x 2 +15x 2
−60x 3 +20x 3 + ⋯
= 1 + 6x + 3x 2 − 40x 3 + ⋯ ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
123
A math 360 sol (unofficial) 12
Ex 5.1
(1 − x)(1 + ax)6 = 1 + bx 2 + ⋯
14(i) (1 − x)4
(1 − x)(1 + ax)6 6 6 6 = (1 − x)[( ) (ax)0 + ( ) (ax)1 + ( ) (ax)2 + ⋯ 0 1 2 = (1 − x)[1 +(6)(ax) +(15)(a2 x 2 ) + ⋯ ] = (1 − x)(1 +6ax +15a2 x 2 + ⋯ ) +15a2 x 2 −6ax 2
= 1 +6ax −x
6
Compare x 2 : 15a2 − 6a
+(4)(−x 3 ) +(1)(x 4 )
= 1 − 4x
+6x 2
−4x 3
+x 4 ✓
=b
1 2
1
1
6
6
6
15 ( ) − 6 ( ) = b ∵ a =
13(i)
+(6)(x 2 )
S = y 4 − 4y 3 + 6y 2 − 4y + 1 = 1 − 4y + 6y 2 − 4y + 1 = (1 − y)4
1
= ✓
b
= 1 + (4)(−x)
Sub y = 1 − x 3 :
6a − 1 = 0 a
4 4 4 4 = 1 + ( ) (−x)1 + ( ) (−x)2 + ( ) (−x)3 + ( ) (−x)4 3 1 2 4
14(ii) S = (1 − x 3 )4 − 4(1 − x 3 )3 + 6(1 − x 3 )2 − 4(1 − x 3 ) + 1
= 1 +(6a − 1)x +(15a2 − 6a)x 2 + ⋯ Compare x:
= [1 + (−x)]4
=−
7 12
✓
Sub back y = 1 − x 3 : S = [1 − (1 − x 3 )]4 = (x 3 )4 = x12
n n (1 − 2x)n = 1 + ( ) (−2x)1 + ( ) (−2x)2 + ⋯ 1 2 n = ( ) (4x 2 ) + ⋯ 2 n =4 ( ) x2 + ⋯ 2 n ∴ Coefficient of x 2 = 4 ( ) [shown] ✓ 2
13(ii) Coefficient of x 2 = 24 n 4( ) = 24 2 n ( ) =6 2 n! (n−2)!2!
=6
n(n−1)(n−2)! (n−2)!2!
=6
n(n−1) 2
=6
n(n − 1)
= 12
n2 − n
= 12
n2 − n − 12
=0
(n − 4)(n + 3) = 0 n = 4 or n = −3 (rej ∵ n > 0) ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
124
A math 360 sol (unofficial) 15(i)
Ex 5.1
(1 + x)5 (1 − 4x)4 = (1 + x)5 [1 + (−4x)]4 4 4 4 5 5 5 = [( ) (x)0 + ( ) (x)1 + ( ) (x)2 + ⋯ ] [( ) (−4x)0 + ( ) (−4x)1 + ( ) (−4x)2 + ⋯ ] 0 1 2 0 1 2 2) 2) [ ] [ (5)(x) (10)(x (4)(−4x) (6)(16x = 1 + + +⋯ 1 + + +⋯] 2 2 (1 − 16x + 96x + ⋯ ) = (1 + 5x + 10x + ⋯ )
= 1 −16x +96x 2 +5x −80x 2 +100x 2 + ⋯ ≈ 1 − 11x + 26x 2 [shown] ✓ 15(ii) Factor & multiply polynomials (a) (1 + x)5 (1 − 4x)5 = [(1 + x)5 (1 − 4x)4 ] (1 − 4x) = [1 − 11x + 26x 2 + ⋯ ] (1 − 4x) = 1 −11x +26x 2 −4x +44x 2 + ⋯ = 1 − 15x + 70x 2 + ⋯ ✓ 15(ii) Substitute (1 − x)5 (1 + 4x)4 = [1 + (−x)]5 [1 − 4(−x)]4 (b) ≈ 1 −11(−x) +26(−x)2 ≈ 1 +11x
+26x 2 ✓
15(ii) Expand & substitute (1 + x 2 )5 (1 − 2x)4 (1 + 2x)4 = (1 + x 2 )5 (1 − 4x 2 )4 (c) = [1 + (x 2 )]5 [1 − 4(x 2 )]4 ≈ 1 −11(x 2 ) +26(x 2 )2 ≈ 1 −11x 2
© Daniel & Samuel A-math tuition 📞9133 9982
+26x 4 ✓
sleightofmath.com
125
A math 360 sol (unofficial)
Ex 5.1
16 28x 6 − 30x 4 − 1 = 0 sub x = 1 + h: 28(1 + h)6 − 30(1 + h)4 − 1 =0 6 (h)0 6 (h)1 6 (h)2 28 [( ) +( ) +( ) +⋯] 0 1 2 =0 4 4 4 −30 [( ) (h)0 + ( ) (h)1 + ( ) (h)2 + ⋯ ] − 1 0 1 2 28(1 + 6h + 15h2 + ⋯ ) −30(1 + 4h + 6h2 + ⋯ ) − 1
18(ii) Selective expansion (1 + y)7 sub y = x(1 + x): [1 + x(1 + x)]7 = 1 +7x(1 + x) +21[x(1 + x)]2 +35[x(1 + x)]3 +35[x(1 + x)]4 +21[x(1 + x)]5 +7[x(1 + x)]6 +[x(1 + x)]7 (1 + x)4 = 35x 4 +21x 5 (1 + x)5 +7x 6 (1 + x)6 (1 + x)7 + ⋯ +x 7
=0
28 + 168h + 420h2 =0 −30 − 120h − 180h2 − 1 + ⋯ 240h2 + 48h − 3 80h2 + 12h − 1 (20h − 1)(4h + 1) h=
1
1
20
or h = − (rej ∵ root greater than 1) 4
⇒ root x = 1 + 17(i)
4 = 35x 4 [… ( ) (x)3 … ] 3 5 [… (5) (x)2 +21x …] 2 6 +7x 6 [… ( ) (x)1 … ] 1 7 7 [… ( ) (x)0 ] + ⋯ +x 0
≈0 ≈0 ≈0
1 20
= 1.05 ✓
= [35(4) + 21(10) + 7(6) + 1]x 7 + ⋯ = 393x 7 + ⋯
(1 + 2x)2n 2n 2n 2n = ( ) (2x)0 + ( ) (2x)1 + ⋯ + ( ) (2x)r 0 1 r 2n (2x)2n +⋯+ ( ) ✓ 2n
17(ii) 22n = [1 + (1)]2n =(
=(
2n (1)0 2n 2n ) + ( ) (1)1 + ( ) (1)2 0 1 2 2n + ⋯ + ( ) (1)2n 2n 2n ) 0
⇒ coefficent of x 7 = 393 ✓ 18(iii) 1st Observation (1 + y)7 = 1 + 7y + 21y 2 + 35y 3 + 35y 4 + 21y 5 + 7y 6 + y7 ✓
2n 2n 2n + ( ) + ( ) + ⋯ + ( ) [proven] 1 2 2n
✓ 18(i) (1 + y)7 7 7 7 7 = ( ) (y)0 + ( ) (y)1 + ( ) (y)2 + ( ) (y)3 0 3 1 2 7 (y)4 7 (y)5 7 (y)6 7 +( ) +( ) +( ) + ( ) (y)7 5 6 4 7 2 3 4 5 = 1 + 7y + 21y + 35y + 35y + 21y + 7y 6 + y 7 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
All the coefficients of the terms from the 2nd term onwards are divisible by 7 except the last term. 2nd Observation Last Term of y = [x(1 + x)]7 = x 7 (1 + x)7 7 7 7 7 ( ) (x)0 + ( ) (x)1 + ( ) (x)2 + ( ) (x)3 0 3 1 2 = x7 [ ] 7 7 7 7 (x)4 +( ) + ( ) (x)5 + ( ) (x)6 + ( ) x 7 5 6 7 4 = x 7 [(1)x + (7)x 2 + (21)x 2 + (35)x 3 + (35)x 4 + (21)x 5 + (7)x 6 + (1)x 7 ]
126
A math 360 sol (unofficial)
Ex 5.2
Ex 5.2 1(a)
(2 − x)3 = [2 + (−x)]3 = 23
3 3 3 + ( ) (2)3−1 (−x)1 + ( ) (2)3−2 (−x)2 + ( ) (2)3−3 (−x)3 3 1 2
=8
+(3)(4)(−x)
+(3)(2)(x 2 )
+(−x)3
= 8 − 12x + 6x 2 − x 3 ✓ 1(b)
(x + 2y)4 = x4
4 4 4 4 + ( ) (x)4−1 (2y)1 + ( ) (x)4−2 (2y)2 + ( ) (x)4−3 (2y)3 + ( ) (x)4−4 (2y)4 3 1 2 4
= x4
+(4)(x 3 )(2y)
+(6)(x 2 )(4y 2 )
+(4)(x)(8y 3 )
+(16y 4 )
= x 4 + 8x 3 y + 24x 2 y 2 + 32xy 3 + 16y 4 ✓ 1(c)
(2 + x 2 )5 = 25
5 5 5 5 5 + ( ) (2)5−1 (x 2 )1 + ( ) (2)5−2 (x 2 )2 + ( ) (2)5−3 (x 2 )3 + ( ) (2)5−4 (x 2 )4 + ( ) (2)5−5 (x 2 )5 3 5 1 2 4
= 25
+(5)(16)(x 2 )
+(10)(8)(x 4 )
+(10)(4)(x 6 )
+(5)(2)(x 8 )
+x10
= 32 + 80x 2 + 80x 4 + 40x 6 + 10x 8 + x10 ✓ 2(a)
x 5
1
2
2
(4 − ) = [4 + (− x)]
5
1 1 5 + ( ) (4)5−1 (− x) 2 1
= 45
1
= (1024) +(5)(256) (− x) 2
2 1 5 + ( ) (4)5−2 (− x) 2 2
3 1 5 + ( ) (4)5−3 (− x) + ⋯ 2 3
1
1
+(10)(64) ( x 2 )
+(10)(16) (− x 3 )
4
8
+⋯
= 1024 − 640x + 160x 2 − 20x 3 + ⋯ ✓ 2(b)
1
12
( + x2 ) 2
1 12 2
= = 2(c)
(
1 2x
12 1 12−1 (x 2 )1 12 1 12−2 (x 2 )2 +( )( ) +( )( ) 2 1 2 2
=( ) 1
+(12) (
4096 1 4096
8
− 2x 2 ) = [
+
1 2x
3 512
1 8 1 1
© Daniel & Samuel A-math tuition 📞9133 9982
x4 +
55 128
+(66) (
1 1024
) (x 4 )
−
1 8x5
+
12 1 12−3 (x 2 )3 )( ) +⋯ 3 2
+(220) (
1
) (x 6 )
512
+⋯
x6 + ⋯ ✓
8
+(8) (
256x8 256x8
) (x 2 )
8 1 8−1 (−2x 2 )1 8 1 8−2 (−2x 2 )2 +( )( ) +( )( ) 1 2x 2 2x
2x
=
33 512
+ (−2x 2 )]
=( ) =
x2 +
1 2048
+(
1 128x7
7 4x2
) (−2x 2 )
+(28) (
1 64x6
) (4x 4 )
8 1 8−3 (−2x 2 )3 +( )( ) +⋯ 3 2x +(56) (
1 32x5
) (−8x 6 ) + ⋯
− 14x + ⋯ ✓
sleightofmath.com
127
A math 360 sol (unofficial) 3(a)
Ex 5.2
For (x + 2y)5
5
5 Tr+1 = ( ) (x)5−r (2y)r ✓ r 3(b)
3(c)
Tr+1 4(a)
1 13 2y
)
= [3x 2 + (−
1 2y
13
4
For coefficient of x 3 ,
1 r
13 = ( ) (3x 2 )13−r (− ) ✓ 2y r
r=6
6(a)
10 (2)10−6 (x)6 ) 6 = (210)(16)(x 6 ) = 2260x 6 ✓
(rej)
18
1
For ( − x 2 )
For term independent of x, 3r − 18 = 0 r =6
r=3
Term independent of x 18 = ( ) (−1)6 (x)0 6 = (18 564)(1)(x)0 = 18 564 ✓
9 4th term = ( ) (3x)9−3 (−2)3 3 = (84)(729x 6 )(−8) = 489 888x 6 ✓ For (y − 2x)10 = [y + (−2x)]10
6(b)
10 (y)10−r (−2x)r ) r
For middle term,
r=
10 2
= [x −1 + (−x 2 )]18
18 (x −1 )18−r (−x 2 )r ) r 18 (−1)r x 2r = ( ) x r−18 r 18 = ( ) (−1)r x 3r−18 r
For (3x − 2)9 = [3x + (−2)]9
Tr+1 = (
2
Tr+1 = (
9 Tr+1 = ( ) (3x)9−r (−2)r r
4(c)
3
2r = 6 ⇒ r = 3 1 3 15 10 Coefficient of x 6 = [( ) (− ) ] = (− ) ✓ 4 8 3
7th term = (
For 4th term,
⇒r=
For coefficient of x 6 ,
x
4(b)
2r = 3
Coefficient of x 3 = 0 ✓
10 = ( ) (2)10−r (x)r r
For 7th term,
10
1
= [1 + (− x 2 )]
)]
For (2 + x)10 Tr+1
4
10
)
r 1 10 ) (− x 2 ) 4 r 1 r 10 = ( ) (− ) (x 2 )r 4 r 1 r 10 = ( ) (− ) x 2r 4 r
10 (2x)10−r (−3)r ) ✓ r
For (3x 2 −
x2
Tr+1 = (
For (2x − 3)10 = [2x + (−3)]10 Tr+1 = (
For (1 −
For (x +
1 2x2
12
)
1
= [x + (2 x−2 )]
12 12−r )x r 12 = ( ) x12−r r 12 1 r = ( )( ) r 2
Tr+1 = ( =5
10 Middle term = ( ) (y)10−5 (−2x)5 5 = (252)(y 5 )(−32x 5 ) = −8064x 5 y 5 ✓
For middle term,
1
( x −2 )
12
r
2
1 r
( ) x −2r 2
x12−3r r=
12 2
=6
12 1 6 (x)12−3(6) )( ) 6 2 231 = 6 ✓
Middle term = (
16x
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
128
A math 360 sol (unofficial) 7
Ex 5.2
(px − 3)n = [px + (−3)]n n = ( ) (px)n−0 (−3)0 0 = (px)n
n + ( ) (px)n−1 (−3)1 + ⋯ 1 +(n)(px)n−1 (−3) + ⋯
= pn x n
−3npn−1 x n−1 + ⋯
= 512x 9 −qx 8 + ⋯ [given] Compare 1st term: Compare 2nd term: −3npn−1 x n−1 = −qx 8 pn x n = 512x 9 −3(9)29−1 x 9−1 = −qx 8 ⇒ n =9✓ ∵ n = 9, p = 2 8 )x 8 −27(2 = −qx 8 ⇒ pn = 512 ⇒q = 6912 ✓ ∵ n = 9, p9 = 512 p =2✓ 8(i)
x 7 (2 − ) 2
7 1 = [2 + (− x)] 2 1 1 7 = (2)7 + ( ) (2)7−1 (− x) 2 1 1 = 128 +(7)(64) (− x) 2 2
2 1 7 + ( ) (2)7−2 (− x) 2 2 1 2 +(21)(32) ( x ) 4
3 1 7 + ( ) (2)7−3 (− x) + ⋯ 2 3 1 3 +(35)(16) (− x ) + ⋯ 8
3
= 128 − 224x + 168x − 70x + ⋯ ✓ 8(ii)
(1.995)7 = (2 − 0.005)7 = (2 −
0.01 7 2
)
= 128 − 224(0.01) + 168(0.01)2 − 70(0.01)3 + ⋯ ≈ 125.7767 ✓ 9(i)
(1 − 2x)9 = [(1) + (−2x)]9 9 9 =1 + ( ) (−2x)1 + ( ) (−2x)2 + ⋯ 1 2 =1 +(9)(−2x) +(36)(4x 2 ) + ⋯ = 1 − 18x + 144x 2 + ⋯ ✓ 5 5 + ( ) (2)5−1 (x)1 + ( ) (2)5−2 (x)2 1 2 = 32 +(5)(16)(x) +(10)(8)(x 2 ) = 32 + 80x + 80x 2 + ⋯ ✓
(2 + x)5 = 25
9(ii)
(1 − 2x)9 (2 + x)5 = (1 − 18x + 144x 2 + ⋯ )(32 + 80x + 80x 2 + ⋯ )
= 32 +80x +80x 2 −576x −1440x 2 +4608x 2 + ⋯ = 32 −496x +3248x 2 + ⋯ ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
129
A math 360 sol (unofficial) 10(i)
Ex 5.2
(2x − 1)6 = [(2x) + (−1)]6 6 6 6 = (2x)6 + ( ) (2x)6−1 (−1)1 + ( ) (2x)6−2 (−1)2 + ( ) (2x)6−3 (−1)3 3 1 2 = (64x 6 ) +(6)(32x 5 )(−1) +(15)(16x 4 )(1) +(20)(8x 3 )(−1) = 64x 6 −192x 5 +240x 4 −160x 3 + ⋯ ✓
10(ii) (2x − 1)6 (x 2 − 2x + 3) = (64x 6 − 192x 5 + 240x 4 − 160x 3 + ⋯ )(x 2 − 2x + 3) = (−192x 5 )(3) +(240x 4 )(−2x) +(−160x 3 )(x 2 ) + ⋯ = −576x 5 −480x 5 = −1216x 5 + ⋯
−160x 5 + ⋯
∴ Coefficient of x 5 = −1216 ✓ 11(i)
1
( − 2x)
5
1
= [ + (−2x)]
2
5
2
1 5
5 1 5−1 (−2x)1 +( )( ) 1 2 1 +(5) ( ) (−2x)
=( ) = =
2 1
32 1 32
5 1 5−2 (−2x)2 +( )( ) 2 2 1 +(10) ( ) (4x 2 )
16
5
2
8
5 1 5−3 (−2x)3 +( )( ) +⋯ 3 2 1 +(10) ( ) (−8x 3 ) + ⋯ 4
3
− x + 5x − 20x + ⋯ ✓ 8
11(ii) Expansion 1
(1 + ax + 3x 2 ) ( − 2x) 2
= (1 + ax + 3x 2 ) ( = 5x 2 5a 2 x 8 3 + x2 32 5a
= (5 − 163 32
5
− x + 5x 2 − 20x 3 + ⋯ ) 8
−20x 3 +5ax 3
−
=(
1 32
5
+
8
−
15 3 x +⋯ 8 3 ) x 2 + (5a 32
−
5a 8
) x2
− 20 −
+ (5a −
175 8
15 8
) x3 + ⋯
) x3 + ⋯
Coefficients Coefficient of x 2 = (
163
32 5a
−
5a 8
)
2
=
[given] 13 2
=−
8
a
=−
Coefficent of x = 5a −
32 9 4
3
8
= 5 (− ) − 4 265 8
45
175 9
=−
13
175 8
∵a=−
9 4
✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
130
A math 360 sol (unofficial) 12(i)
Ex 5.2
For (x + my)8 8 Tr+1 = ( ) x 8−r (my)r ✓ r
13(iii) For constant term,
Constant Term = (
12(ii) if m = 2: 8 (a) Tr+1 = ( ) x 8−r (2y)r r 8 8−r r r = ( )x 2 y r 8 = ( ) 2r x 8−r y r r
14(i)
For (x 3 −
2 10 x2
)
x
k r 9 Tr+1 = ( ) x 9−r ( ) x r 9 9−r (kx −1 )r = ( )x r 9 9−r r −r = ( )x k x r 9 r 9−2r = ( )k x r For coefficient of x 3 , For coefficient of x 3 , 9 − 2r = 3 9 − 2r = 3 −2r = −6 −2r = −6 r =3 r =3
r=5 8 5 = ( )2 5 = 1792 ✓
= −1512x 5 y 3
Coefficient of x 3 Coefficient of x 3 9 9 = ( ) k3 = ( ) k3 3 3 3 = 84k = 84k 3 Equate coefficients Coefficient of x 3 = Coefficient of x [given] 84k 3 = 126k 4 2k 3 = 3k 4 3 4 2k − 3k =0 3 k (2 − 3k) =0
= −1512x 5 y 3 = −1512x 5 y 3 = −1512x 5 y 3 = −1512 = −3 ✓ = [x 3 + (−2x −2 )]10
10 (x 3 )10−r (−2x −2 )r ) r 10 = ( ) x 30−3r (−2)r x −2r r 10 (−2)r =( ) x 30−5r r
2
k = 0 (rej ∵ k is positive)or k = ✓
Tr+1 = (
13(i)
Specific coefficients k 9
For term (−1512x 5 y 3 ), r=3
13
= 13 440
For (x + ) ,
8 8−r (my)r 12(ii) Recall: T r+1 = ( ) x r (b)
T4 8 ( ) x 8−3 (my)3 3 8 ( ) x 5 m3 y 3 3 56m3 x 5 y 3 56m m
10 (−2)6 30−5(6) ) x 6
✓
For coefficient of x 3 y 5 , Coefficient of x 3 y 5
30 − 5r = 0 −5r = −30 r =6
3
For term in x10 ,
Term in x10
30 − 5r = 10 −5r = −20 r =4 10 (−2)4 10 =( ) x = 3360x10 ✓ 4
13(ii) For coefficient of 1 , 5
30 − 5r = −5
x
−5r r Coefficient of
1 x5
=(
= −35 =7
10 (−2)7 ) = −15 360 ✓ 7
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
131
A math 360 sol (unofficial)
Ex 5.2
14(ii) Put k = 2, 3
(1 − 6x
2)
2 3
9
(x + ) x
= (1 − 6x 2 )[(term in x 3 ) + (term in x 5 ) + ⋯ ] [to be continued] Specific terms 2
9
9
2
For (x + 3 ) = [x + ( x −1 )] , x
3
r 2 9 Tr+1 = ( ) x 9−r ( x −1 ) 3 r 9 9−r 2 r −r ( ) x = ( )x 3 r r 9 2 = ( ) ( ) x 9−2r r 3
For term in x 3 , 9 − 2r = 3 2r =6 r =3 2 3
Term in x 3 = 84 ( ) x 3 = 3
224 3 x 9
For term in x 5 , 9 − 2r = 5 2r =4 r =2 2 2 9 Term in x 5 = ( ) ( ) x 5 = 16x 5 2 3 Expansion (1 − 6x
2)
2 3
9
(x + ) x
= (1 − 6x 2 ) (
224 3 x 9
+ 16x 5 + ⋯ )
= (1)(16x 5 ) + (−6x 2 ) ( =
400 5 − x 3
224 3 x ) 9
+⋯
+⋯
∴ Coefficient of x 5 = −
© Daniel & Samuel A-math tuition 📞9133 9982
400 3
sleightofmath.com
132
A math 360 sol (unofficial) 15(i)
Ex 5.2
x n
(2 − ) 2
1
= [2 + (− x)]
n
2
0 1 n n 1 1 = ( ) (2)n−0 (− x) + ( ) (2)n−1 (− x) 2 2 0 1 1
2 n 1 + ( ) (2)n−2 (− x) + ⋯ 2 2 n(n−1)
1
= 2n
+n(2n−1 ) (− x)
= 2n
−n(2n−1 ) ( ) x
+
= 2n
−n(2n−1 )(2−1 )x
+n(n − 1)(2−3 )2n−2 x 2 + ⋯
= 2n
−n(2n−2 )x
+n(n − 1)2n−5 x 2 + ⋯ ✓
2
1 2
+
2
(2n−2 ) x 2 + ⋯
n(n−1) n−2 2 2 x 8
4
+⋯
15(ii) (1 + 2x) (2 − x)n 2
= (1 + 2x)[2n −n(2n−2 )x +n(n − 1)2n−5 x 2 + ⋯ ] = 2n
−n(2n−2 )x +(2n+1 )x
+n(n − 1)2n−5 x 2 −(n)2n−1 x 2 + ⋯
= 2n +[2n+1 − n(2n−2 )]x = a + bx 2 + ⋯ [given]
+[n(n − 1)2n−5 − (n)2n−1 ]x 2 + ⋯
Compare x: 2n+1 −n(2n−2 ) =0 n−2 3 n−2 (2 )2 −n(2 ) = 0 2n−2 (23 − n) =0 n =8✓ 15(iii) Compare x 0 : a = 2n = 28 ∵ n = 8 = 256 ✓ Compare x 2 : b = n(n − 1)2n−5 − (n)2n−1 = 8(8 − 1)28−5 − (8)28−1 ∵ n = 8 = −576 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
133
A math 360 sol (unofficial) 16
Ex 5.2
Expansion (1 + x)(a − bx)12 = (1 + x)[(term in x 7 ) + (term in x 8 ) + ⋯ ] [to be continued]
17(i)
Specific terms For (a − bx)12 = [a + (−bx)]12 , 12 12−r (−bx)r )a r 12 = ( ) a12−r (−b)r x r r
For coefficient of x 2 , r = 2 n n Coefficient of x 2 = ( ) 32 = 9 ( ) 2 2 Equate coefficients (Coefficient of x 3 ) = 6(Coefficient of x 2 ) n n 27 ( ) = 6 ⋅ 9( ) 3 2 n n ( ) = 2 ( ) [shown] ✓ 3 2
Tr+1 = (
For term in x 7 ,
Find specific coefficients For (1 + 3x)n n Tr+1 = ( ) (3x)r r n r r = ( )3 x r For coefficient of x 3 , r = 3 n n Coefficient of x 3 = ( ) 33 = 27 ( ) 3 3
r=7
12 Term in x 7 = ( ) a5 (−b)7 x 7 7 = −792a5 b7 x 7
17(ii)
For term in x 8 , r = 8 12 4 (−b)8 8 )a x 8 = 495a4 b8 x 8
Term in x 8 = (
n! (n−3)!3! n(n−1)(n−2)(n−3)! (n−3)!3! n(n−1)(n−2) 3! (n)(n−1)(n−2) 6
Expansion (1 + x)(a − bx)12 = (1 + x)[(−792a5 b7 x 7 ) + (495a4 b8 x 8 ) + ⋯ ] = 1(495a4 b8 x 8 ) + x(−792a5 b7 x 7 ) + ⋯ = 495a4 b8 x 8 − 792a5 b7 x 8 + ⋯
n!
= 2 ⋅ (n−2)!2! =2⋅ =2⋅ =2⋅
n(n−1)(n−2)! (n−2)!2! n(n−1) 2! (n)(n−1) 2
(n)(n − 1)(n − 2) = 6(n)(n − 1) (n)(n − 1)[(n − 2) − 6] = 0 (n)(n − 1)(n − 8) =0 n=0 or n = 1 or n = 8 ✓ (rej ∵ n ≥ 2) (rej ∵ n ≥ 2)
= (495a4 b8 − 792a5 b7 )x 8 + ⋯ Coefficient of x 8 = 0 [given] 4 8 5 7 495a b − 792a b = 0 5a4 b8 − 8a5 b7 =0 5a4 b8 = 8a5 b7 a b
5
= ✓
© Daniel & Samuel A-math tuition 📞9133 9982
8
sleightofmath.com
134
A math 360 sol (unofficial) 18(i)
Ex 5.2
(2 + p)5 5 5 5 + ( ) (2)5−1 (p)1 + ( ) (2)5−2 (p)2 + ( ) (2)5−3 (p)3 + ⋯ 3 1 2 2 = (32) +(5)(16)(p) +(10)(8)(p ) +(10)(4)(p3 ) +⋯ 2 3 = 32 +80p +80p +40p +⋯✓ = 25
18(ii) (2 + x − 2x 2 )5 = [2 + (x − 2x 2 )]5 = 32 +80(x − 2x 2 ) +80(x − 2x 2 )2 = 32 +80(x − 2x 2 ) +80(x 2 − 4x 3 + ⋯ ) = 32 +80x −160x 2 2 +80x −320x 3 +40x 3 + ⋯ = 32 +80x 19
−80x 2
+40(x − 2x 2 )3 + ⋯ +40(x 3 + ⋯ )
−280x 3 + ⋯ ✓
(a + bx + cx 2 )4 = 81 + 216x + 108x 2 + dx 3 + ⋯ [given] (a + bx + cx 2 )4 = [a + (bx + cx 2 )]4 4 4 = a4 + ( ) (a)4−1 (bx + cx 2 )1 + ( ) (a)4−2 (bx + cx 2 )2 1 2
4 + ( ) (a)4−3 (bx + cx 2 )3 + ⋯ 3
= a4 + 4a3 (bx + cx 2 )
+6a2 (b2 x 2 + 2bcx 3 + ⋯ )
+4a(b3 x 3 + ⋯ ) + ⋯
= a4 + 4a3 bx +4a3 cx 2
+6a2 b2 x 2 +12a2 bcx 3
+4ab3 x 3 + ⋯
= a4 + 4a3 bx + (4a3 c + 6a2 b2 )x 2 + (12a2 bc + 4ab3 )x 3 + ⋯ = 81 + 216x + 108x 2 + dx 3 + ⋯ [given] Compare x 0 : a4 = 81 a = 3 ✓ or a = −3 Compare x:
(rej ∵ a > 0)
4a3 b = 216 a3 b = 54 ∵ a = 3, (3)3 b = 54 b =2✓
Compare x 2 : 4a3 c + 6a2 b2 = 108 3 2 2 2a c + 3a b = 54 ∵ a = 3, b = 2, 2(3)3 c + 3(3)2 (2)2 = 54 54c + 108 = 54 c = −1 ✓ Compare x 3 : 12a2 bc + 4ab3 =d ∵ a = 3, b = 2, c = −1, 12(3)2 (2)(−1) + 4(3)(2)3 = d d = −120 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
135
A math 360 sol (unofficial) 20(i)
For (2x 2 −
1 n √x
Ex 5.2 1
) = [2x 2 + (−x −2 )]
n
21(i)
1 r n Tr+1 = ( ) (2x 2 )n−r (−x −2 ) r 1 n n−r 2n−2r (−1)r x −2r = ( )2 x r 5 n n−r = ( ) 2 (−1)r x 2n−2r r
For (a + b)n , n TR+1 = ( ) an−R bR R For 2nd term, R = 1 n 2nd term: p = ( ) an−1 b1 [given] 1 = nan−1 b For 3rd term: R = 2 n 3rd term: q = ( ) an−2 b2 [given] 2
For term independent of x: 5
n!
2n − r = 0
= (n−2)!2! an−2 b2
2
5 2
r
= 2n 5
n
4
n(n−1) n−2 2 a b 2
n!
= (n−3)!3! an−3 b3
For coefficient of x 7 √x: 5
10 − r = 7.5 2
r
=
For 4th term: R = 3 n 4th term: r = ( ) an−3 b3 [given] 3
5 5−r (−1)r 2(5)−52r 20(ii) T x r+1 = ( ) 2 r 5 5 = ( ) 25−r (−1)r x10−2r r
2
n(n−1)(n−2)! n−2 2 a b (n−2)!2!
= r
∵ r is non − negative integer, smallest n = 5 ✓
5
=
r
=
5 2
=
n(n−1)(n−2)(n−3)! n−3 3 a b (n−3)!3!
=
n(n−1)(n−2) n−3 3 a b 6
pr q2
=1
nan−1 b
Coefficient of x 7 √x 5 = ( ) (2)5−1 (−1)1 1 = (5)(16)(−1) = −80 ✓
=
n(n − 1)(n − 2) n−3 3 [ a b ] 6 n(n − 1) n−2 2 [ a b ] 2
2
1 2 n (n − 1)(n − 2)a2n−4 b4 6 = 1 2 n (n − 1)2 a2n−4 b 4 4 =
2(n − 2) [shown] 3(n − 1)
✓ 21(ii) when p = 8, q = 24, r = 36: (8)(36) (24)2 1 2
= =
2(n−2) 3(n−1) 2(n−2) 3(n−1)
3(n − 1) = 4(n − 2) 3n − 3 = 4n − 8 n =5✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
136
A math 360 sol (unofficial)
Ex 5.2
22 3
3
Given: a = √2 + √5 + √2 − √5 Prove: a3 = 4 − 3a LHS = a3 3
3
= [( √2 + √5) + ( √2 − √5)] 3
= ( √2 + √5)
3
3
3−1 3 1 3−2 3 2 3 3 3 3 ( √2 − √5) + ( ) ( √2 + √5) ( √2 − √5) + ( ) ( √2 + √5) 1 2 3
2
3
3
+3 ( √2 + √5) ( √2 − √5)
= 2 + √5 3
3
3
3
+3 ( √2 + √5) ( √2 − √5)
3−3 3 3 3 3 ( √2 − √5) + ( ) ( √2 + √5) 3
2
+2 − √5
3
= 4 +3 ( √2 + √5) ( √2 − √5) [( √2 − √5) + ( √2 + √5)] 3
= 4 +3( √4 − 5)
(a)
= 4 +3(−1)
(a)
= 4 −3
(a)
3
3
∵ a = √2 + √5 + √2 − √5
= 4 −3a = RHS [proven] ✓ a3 = 4 − 3a 3 a + 3a − 4 =0 (a − 1)( + + ⬚) (a − 1)(a2 + + ⬚) 2 (a − 1)(a + + 4) 2 (a − 1)(a + a + 4) = 0 a = 1 or a =
−(1)±√(1)2 −4(1)(4) 2(1)
© Daniel & Samuel A-math tuition 📞9133 9982
=
−1±√−15 2
(rej ∵ discriminant < 0) ✓
sleightofmath.com
137
A math 360 sol (unofficial)
Rev Ex 5 A2(b)
Rev Ex 5 A1(i) (a)
(1 + 3x)6 6 6 6 = 1 + ( ) (3x)1 + ( ) (3x)2 + ( ) (3x)3 + ⋯ 3 1 2 = 1 + (6)(3x) +(15)(9x 2 ) +(20)(27x 3 ) + ⋯ = 1 + 18x + 135x 2 + 540x 3 + ⋯ ✓
A1(i) (b) (1 − 4x)5
For (x −
2 12 x2
)
= [x + (−2x −2 )]12
12 12−r (−2x −2 )r )x r 12 = ( ) x12−r (−2)r x −2r r 12 = ( ) (−2)r x12−3r r
Tr+1 = (
For coefficient of x 3 , 12 − 3r = 3 −3r = −9 r =3
= [1 + (−4x)]5 5 5 5 = 1 + ( ) (−4x)1 + ( ) (−4x)2 + ( ) (−4x)3 + ⋯ 3 1 2
Coefficient of x 3 12 = ( ) (−2)3 3 = −1760 ✓
= 1 + (5)(−4x) +(10)(16x 2 ) +(10)(−64x 3 ) + ⋯ = 1 − 20x + 160x 2 − 640x 3 + ⋯ ✓ A1(ii) (1 + 3x)6 (1 − 4x)5 = (1 + 18x + 135x 2 + ⋯ )(1 − 20x + 160x 2 + ⋯ ) = (1)(160x 2 ) +(18x)(−20x)
+(135x 2 )(1) + ⋯
= 160x 2
+135x 2 + ⋯
−360x 2
= −65x 2 + ⋯ Coefficient of x 2 = −65 ✓ A2(a)
x 8
For (1 + ) , 2
8 x r Tr+1 = ( ) ( ) r 2 8 1 r = ( ) ( x) r 2 8 1 r = ( ) ( ) xr r 2 For coefficient of x 3 , r=3 Coefficient of x 3 8 1 3 = ( )( ) 3 2 =7✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
138
A math 360 sol (unofficial) A3(i)
Rev Ex 5
2 8
(x 2 − ) x
2 8 = [x 2 + (− )] x = (x 2 )8
2 1 2 2 8 8 + ( ) (x 2 )8−1 (− ) + ( ) (x 2 )8−2 (− ) x x 1 2
= x16
+(8)(x14 ) (− )
2 x
2 3 8 + ( ) (x 2 )8−3 (− ) x 3
4
8
+(28)(x12 ) ( 2 )
+(56)(x10 ) (− 3 )
x
x
= x16 − 16x13 + 112x10 − 448x 7 + ⋯ ✓ A3(ii)
2 8
(x 3 + 1)2 (x 2 − ) x = (x 6 + 2x 3 + 1)(x16 − 16x13 + 112x10 − 448x 7 + ⋯ ) = (x 6 )(−448x 7 ) +(2x 3 )(112x10 ) = (−448x13 ) +(224x13 ) 13 = −240x + ⋯
+(1)(−16x13 ) + ⋯ +(−16x13 ) + ⋯
Coefficient of x13 = −240 ✓ A4(i)
x n
1
2
2
(1 − ) = [1 + (− x)]
n
0 1 n n 1 1 = ( ) (− x) + ( ) (− x) 2 2 0 1 1
= (1)
+(n) (− x)
=1
− nx
2
1
2
+( +
2
A4(ii) (1 − x)n = 1 + ax + 7x 2 + ⋯
2 n 1 + ( ) (− x) + ⋯ 2 2 n(n−1)
1
2
4
) ( x2 ) + ⋯
n(n−1) 2 x 8
+⋯✓
[given]
Compare x 2 : n(n−1)
=7
8 2
n −n = 56 2 n − n − 56 =0 (n − 8)(n + 7) = 0 n = 8 or n = −7 (rej ∵ n > 2) ✓ A4(iii) Compare x: 1
− n 2 1
=a
− (8) = a 2
a
= −4 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
139
A math 360 sol (unofficial) A5(i)
Rev Ex 5
(1 + p)4 4 4 4 4 = ( ) (p)0 + ( ) (p)1 + ( ) (p)2 + ( ) (p)3 0 3 1 2 =1
+6p2
+4p
+4p3
B2
4 + ( ) (p)4 4 4 +p ✓
B2(i)
8
1
1 1
= [a2 x −2 + (− x 2 )]
8
a
r
8
For middle term,
r= =4 2
B2(ii) For coefficient of 1, x
= 1 + 4x + 10x 2 + 16x 3 + ⋯ ✓
Coefficient of
A5(iii) (1.11)4 = [1 + (0.1) + (0.1)2 ]4 ≈ 1 + 4(0.1) +10(0.1)2 + 16(0.1)3 ≈ 1 + 0.4 +0.1 +0.016 ≈ 1.516 ✓ B1(i)
√x ) a
8 Middle term = ( ) a16−12 (−1)4 x 4−4 4 = 70a4 ✓
= 1 +4x +4x 2 +6(x 2 + 2x 3 + ⋯ ) +4(x 3 + ⋯ ) + ⋯ = 1 +4x +4x 2 +6x 2 +12x 3 +4x 3 + ⋯
√x
−
8−r
= [(1) + (x + x 2 )]4 +4(x + x 2 )3 + ⋯
a2
1 1 1 8 (− x 2 ) Tr+1 = ( ) (a2 x −2 ) a r 1 1 8 = ( ) a16−2r x 2r−4 (−1)r a−r x 2r r 8 = ( ) a16−3r (−1)r x r−4 r
A5(ii) (1 + x + x 2 )4 = 1 +4(x + x 2 ) +6(x + x 2 )2
For (
1 x
r=3
8 = ( ) a16−3(3) (−1)(3)−4 3 = (56)a7 (−1) = −56a7 ✓
(2 − x)7 = [2 + (−x)]7 7 7 = ( ) (2)7−0 (−x)0 + ( ) (2)7−1 (−x)1 0 1 7 + ( ) (2)7−2 (−x)2 + ⋯ 2 = 128
+(7)(64)(−x) +(21)(32)(x 2 ) + ⋯ = 128 − 448x + 672x 2 + ⋯ ✓ B1(ii) 1.997 = (2 − 0.01)7 = 128 −448(0.01) +672(0.01)2 + ⋯ = 128 −4.48 +0.0672 + ⋯ ≈ 123.587 ✓ B1(iii) (k − x)(2 − x)7 = (k − x)(128 − 448x + 672x 2 + ⋯ ) = k(672x 2 ) +(−x)(−448x) + ⋯ = 672kx 2 +448x 2 + ⋯ = (672k + 448)x 2 + ⋯ Coefficient of x 2 = 616 [given] 672k + 448 = 616 672k = 168 k
1
= ✓ 4
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
140
A math 360 sol (unofficial)
Rev Ex 5
B3(i) 5
(2 + √3) 0 5 = ( ) (2)5−0 (√3) 0
1 2 3 4 5 5 5 5 5 5 + ( ) (2)5−1 (√3) + ( ) (2)5−2 (√3) + ( ) (2)5−3 (√3) + ( ) (2)5−4 (√3) + ( ) (2)5−5 (√3) 3 5 1 2 4
= (32)
+(5)(16)(√3)
+(10)(8)(3)
+(10)(4)(3√3) +(5)(2)(9)
+(1)(1)(9√3)
= (32 + 240 + 90) + (80 + 120 + 9)√3 = 362 + 209√3 ✓ B3(ii) (2 − √3)5 = 362 − 209√3 ✓ 5
Show: (2 − √3) =
1 (2+√3)
5 (2+√3)
LHS = (2 − √3) B4(i)
(2+√3)
5
5 5
=
(4−3)5 (2+√3)
5
=
1 (2+√3)
5
= RHS [shown] ✓
(a − x)(1 + 2x)n = 3 + 47x + bx 2 + ⋯ sub x = 0: n
(a − 0)(1 + 2(0)) = 3 + 47(0) + b(0)2 a
=3✓
B4(ii) (3 − x)(1 + 2x)n = 3 + 47x + bx 2 + ⋯ [given] (3 − x)(1 + 2x)n
= (3 − x) [1
n n + ( ) (2x)1 + ( ) (2x)2 + ⋯ ] 1 2 n(n−1) (4x 2 ) + ⋯ ] + (n)(2x) +
= (3 − x)(1
+ 2nx
= (3 − x) [1
= 3 +6nx −x
2
+ 2n(n − 1)x 2 + ⋯ )
+6n(n − 1)x 2 −2nx 2
= 3 +(6n − 1)x +(6n2 − 6n − 2n)x 2 + ⋯ = 3 +(6n − 1)x +(6n2 − 8n)x 2 + ⋯ = 3 +47x + bx 2 + ⋯ [given] Compare x: (6n − 1) = 47 6n = 48 n =8✓ B4(iii) Compare x 2 : (6n2 − 8n) = b 6(8)2 − 8(8) = b ∵ n = 8 b = 320 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
141
A math 360 sol (unofficial) B5
Rev Ex 5
Expansion (1 + ax)6 (2 + bx)5 6 6 = [1 + ( ) (ax)1 + ( ) (ax)2 + ⋯ ] 1 2 5 (2)5−1 (bx)1 5 5 [2 + ( ) + ( ) (2)5−2 (bx)2 + ⋯ ] 1 2 = (1 + 6ax + 15a2 x 2 + ⋯ )(32 + 80bx + 80b2 x 2 + ⋯ )
+80b2 x 2 +480abx 2 +480a2 x 2 + ⋯ +(80b2 + 480ab + 480a2 )x 2 + ⋯
= 80bx +192ax = (80b + 192a)x
Equate coefficients Coeff. of x = −112 [given] 80b + 192a = −112 b
= =
−112−192a 80 −7−12a
−(1)
5
Coeff. of x 2 = 80 [given] 2 2 80b + 480ab + 480a = 80 b2 + 6ab + 6a2 =1 −(2) sub (1) into (2): (
−7−12a 2
)
5 144a2 +168a+49 25
+6a ( +
−7−12a
5 −42a−72a2
) + 6a2 = 1
5
+6a2 = 1
(144a2 + 168a + 49) −210a − 360a2 + 150a2
= 25
(144a2 + 168a + 49) −210a − 210a2
= 25
−66a2 −42a +24 11a2 +7a +4 (11a + 4)(a + 1)
=0 =0 =0
a=−
4 11
(rej ∵ a ∈ ℤ)
or
a = −1 ✓ b|a=1 =
−7−12(−1) 5
=1✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
142
A math 360 sol (unofficial)
Ex 6.1 4(ii)
Ex 6.1 1(a)
Point:
D(1,4) or E(−3,1) (4)−(1)
Gradient: mDE = (1)−(−3) =
A(4,5) B(6,9) MAB = (
4+6 5+9
,
2
2
y − (4)=
= (5,7) ✓ 1(b)
−5+11 3+(−7)
,
2
2
y
2(b)
4
4
✓
C = MAB 9+b (−6)+b2 (3, −4) = ( 1 , )
2
3 = 2 a1 = 0 ⇒ A(0,3) ✓
4 13
A(9, −6) C(3, −4) B(b1 , b2 )
M = MAB a +6 a +7 (3,5) = ( 1 , 2 ) 2 (a1 )+(6)
3
4 3
5(i) A(a1 , a2 )
M(3,5) B(6,7)
[x − (1)]
4 3
= x+
)
= (3, −2) ✓ 2(a)
3
y−4 = x−
A(−5,3) B(11, −7) MAB = (
4
y − y1 = mDE (x − x1 )
DE:
)
3
9+b1
(a2 )+(7)
and
5 = a2 = 3
2
(−6)+b2
3 = and −4 = 2 2 b1 = −3 b2 = −2 ∴ B(−3, −2) ✓
2
5(ii)
M(−2,6) B(−4, −8) A(a1 , a2 )
2
Radius = |BC| = √[(−3) − 3]2 + [(−2) − (−4)]2
M = MAB a +(−4) a2 +(−8) (−2,6) = ( 1 ) , 2 (a1 )+(−4)
2
−2 = 2 a1 = 0 ∴ A(0,20) ✓ 3(a)
and
= √40
(a2 )+(−8)
6 = a2 = 20
= √4 × 10 = 2√10 ✓
2
6(i)
A(2a, −a) B(4a, 5a) MAB = (
= √36 + 4
|AC| = √(5 − 6)2 + [3 − (−4)]2
2a+4a −a+5a
,
2
)
2
= √1 + 49 = √50
= (3a, 2a) ✓ 3(b)
|BC| = √[5 − (−2)]2 + (3 − 4)2
A(2t, 5) B(4,1 − 2t) MAB = (
= √49 + 1 = √50
(2t)+4 5+(1−2t)
,
2
2
)
∵ |AC| = |BC|, △ ABC is isosceles ✓
= (t + 1,3 − t) ✓ 4(i)
A(−1,6) B(3,2)
C(−5, −4)
6(ii)
MAB = (
6+(−2) (−4)+4 2
,
2
)
= (2,0) ✓
D = MAB =(
A(6, −4) B(−2,4) C (5,3)
(−1)+3 6+2
,
2
2
)
= (1,4) ✓ E = MAC =(
(−1)+(−5) 6+(−4) 2
,
2
)
= (−3,1) ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
143
A math 360 sol (unofficial) 6(iii)
Ex 6.1
area of △ ABC
8
=
1 |AB||MAB C| 2
=
1 [6 − (−2)]2 √(5 − 2)2 + (3 − 0)2 √ 2 +[(−4) − 4]2 1
= √64 + 64 2
y = x 2 + 2x − 3
√9 + 9
1 √128√18 2 1 = √2304 2 1 = (48) 2
x= =
= 24 unit 2 ✓
(
2 p2 +q2 2 2
2
=
−4±4√2
2
= −2 ± √2
2
y|x=−2+√2 = 1 − 2(−2 + √2)
) = (5,1)
=5
−4±√16×2
−4±√32
⇒ A(−2 − √2, −3 + 2√2)
= (5,1) 2
=
2(1)
= 5 + 2√2
p2 +q2 p+q
,
−(4)±√(4)2 −4(1)(−4)
y|x=−2−√2 = 1 − 2(−2 − √2)
A(p2 , p) B(q2 , q) MAB
−(2)
sub (1) into (2): 1 − 2x = x 2 + 2x − 3 2 x + 4x − 4 = 0
=
7
Points A & B At A & B, 2x + y = 1 intersects y = x 2 + 2x − 3. 2x + y = 1 y = 1 − 2x −(1)
and
2
p + q = 10 −(1) sub (2) into (1): p2 + (2 − p)2 = 10 2 2) (4 p + − 4p + p = 10 2p2 − 4p − 6 =0 2 p − 2p − 3 =0 (p + 1)(p − 3) =0
p+q 2
= 5 − 2√2 =1
⇒ B(−2 + √2, −3 − 2√2)
q = 2 − p −(2)
p = −1 or q|p=−1 = 3 A = (p2 , p) = ((−1)2 , −1) = (1, −1)
p=3 q|p=3 = −1 A = (p2 , p) = ((3)2 , 3) = (9,3) ✓
B = (q2 , q) = ((3)2 , 3) = (9,3)
B = (q2 , q) = ((−1)2 , −1) = (1, −1) ✓
Midpoint of AB MAB = (
(−2−√2)+(−2+√2) (5+2√2)+(5−2√2)
,
2
2
)
= (−2,5) ✓ 9
B(−2,5) C(c1 , c2 )
A(3,7) MAC = (
(3)+(c1 ) (7)+(c2 ) 2
,
2
)
MAC lies on x-axis (y = 0): 7+c2 2
c2
=0 = −7
MBC = (
(−2)+(c1 ) (5)+(c2 ) ) , 2 2
MBC lies on y − axis (x = 0): −2+c1 2
c1
=0 =2
∴ C(2, −7) ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
144
A math 360 sol (unofficial) 10(i)
Ex 6.1
A(6,8) B(8, −4) C(−2, −2) Point M M = MAB = (
6+8 8+(−4) 2
,
2
12(i)
O(0,0) P(4, r) Q(q1 , q2 ) R(3,4) For rhombus OPQR: |OP| = |OR|
) = (7,2) ✓
√(4 − 0)2 + (r − 0)2 = √(3 − 0)2 + (4 − 0)2
Point N N = MBC = ( Line MN Points:
8+(−2) (−4)+(−2)
,
2
2
M(7,2) or N(3, −3) (2)−(−3)
Gradient: mMN =
=
(7)−(3)
= √9 + 16 √16 + r 2 r2 =9 r = 3 ✓ or r = −3 (NA)
) = (3, −3) ✓
12(ii) O(0,0) P(4,3) Q(q1 , q2 ) R(3,4)
5 4
MPR = (
y − y1 = mMN (x − x1 )
MN:
5
35
4
4
+2
12(iii) O(0,0) P(4,3) Q(q1 , q2 ) R(3,4) MOQ
Point P 5
27
4
4
At P, MN (y = x − y 5
x−
4 5
4
=
x
=
⇒ P(
27 5
) cuts x-axis (y = 0).
27 4 27
2
q2
7
= 2 =7
For parallelogram PQRS, MPR = MQS
27 5
(
M = MAC = (
1+6 3+2
2 1+6
, 0) N(3, −3)
2
A(3, −2) B(b, 3) C(6,2) 3+6 (−2)+2 2
,
2
,
=
) =(
2 3+s1 2
3+s1 5+s2
and
s1 = 4 ∴ S(4,0) ✓
2
,
2 3+2 2
s2
) 5+s
2 = 2 =0
D(7, d) 9
) = ( , 0) ✓ 2
=M
b+7 3+d
2
and
2 2 0+q2
13(a) P(1,3) Q(3,5) R(6,2) S(s1 , s2 )
By similar triangles (using x-coordinates) MP: PN = (2 − 0) : [0 − (−3)] = 2: 3 ✓
2 b+7
2
7 7
)=( , )
5
M(7,2) P (
(
=
2 7
q1 = 7 ∴ Q(7,7) ✓
, 0) ✓
11(ii) MBD
,
2
10(ii) Ratio 𝐌𝐏: 𝐏𝐍
11(i)
= MPR
0+q1 0+q2
2 0+q1
=0
x
4
(
=0 27
)
2
2 2
5 27 x− 4 4
=
,
7 7
4
= x−
2
=( , )✓
5
y − (2)= ( ) [x − (7)] y
4+3 4+3
,
=
2 9 2
9
) = ( , 0) 2
and
b =2✓
3+d 2
=0
d = −3 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
145
A math 360 sol (unofficial)
Ex 6.1
13(b) P(1,3) Q(3,5) R(6,2) S(4,0) T(t1 , t 2 )
15(i)
T(t1 , t 2 ) lies on y = 2x: t 2 = 2t1 ⇒ T(t1 , 2t1 ) PT
M = MPR = ( N = MQS = ( 15(ii) M
= √(3 − t1
)2
+ [5 − (2t1
)]2
(
5(t1 )2 − 14t1 + 10 12t1 t1
2
= 5(t1 )2 − 26t1 + 34 = 24 =2
r
r−4 7
6+0 (−2)+s
,
2
2
s−2
) = (3,
2
, )✓
2
2
)✓
2
) =(
,
=
2 0+d1
(−1)+d1 6+d2
=
,
2
2 6+1 2
) =(
2 0+3 2
(−1)+0 6+0
,
=
2
) 7
and
2
= 10 ✓
s−2
=
2
s =9✓
𝑦
=
2
0+b a+0
,
2
b a
) =( , )
2
2 2
b 2
a 2
2
2
=√
b2 4
+
a2 4
0+d2 2 b 2
a 2
2
2
b 2
a 2
2
2
|AM| = √(0 − ) + (a − )
=√
|BM| = √(b − ) + (0 − )
=√
b2 4
b2 4
+
+
a2 4
a2 4
0+3 0+1
and
) =(
2 3+d1
𝑥
|OM| = √(0 − ) + (0 − )
)
2
,
2 6+d2
) =
2
d2 d1 =4 ∴ D(4, −5) ✓ Case 3 For parallelogram ACBD, MAB = MCD 2 (−1)+0
s−2
𝑂 B(b, 0)
d1 =2 ∴ D(2,7) ✓ Case 2 For parallelogram ABDC, MAD = MBC
2
=3
M = MAB = (
0+d1 0+d2
and
2
,
2
16
d2 = 7
2 (−1)+d1
, ) = (3,
D(d1 , d2 )
C(3,1)
(−1)+3 6+1
2 (−1)+3
=N
PQRS is a parallelogram ✓
Case 1 For parallelogram ABCD, MAC = MBD
2
)=(
2
A(0, a)
A(−1,6) B(0,0)
(
,
2
S(0, s)
15(iii) ∵ MPR = MQS ,
⇒ T(2,4) ✓
(
R(r, 5)
(−4)+r 2+5
r−4 7
2 r−4
(t1 )2 − 2t1 + 1 (t1 )2 − 6t1 + 9 = + 4(t1 )2 − 12t1 + 9 +4(t1 )2 − 20t1 + 25
(
Q(6, −2)
= QT
(1 − t1 )2 √ +[3 − (2t1 )]2
14
P(−4,2)
and
d1 = −4 ∴ D(−4,5) ✓
,
17(i)
O(0,0)
P(2a, 0) Q(2b, 2c)
A = MOP = (
(0)+(2a) (0)+(0)
,
2
2
R(2d, 2e)
)
= (a, 0) [shown] ✓
2 6+0 2
2
= −5
3+d1 1+d2 2
∵ |OM| = |AM| = |BM|, M is equidistant from the three vertices ✓
0+1
)
=
B = MPQ
1+d2 2
=(
(2a)+(2b) (0)+(2c)
,
2
2
)
= (a + b, c) [shown] ✓
d2 = 5
C = MQR = (
(2b)+(2d) (2c)+(2e)
,
2
2
)
= (b + d, c + e) [shown] ✓ D = MRO = (
(2d)+(0) (2e)+(0) 2
,
2
)
= (d, e) [shown] ✓ © Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
146
A math 360 sol (unofficial)
Ex 6.1
17(ii) A(a, 0) B(a + b, c) C(b + d, c + e) D(d, e) MAC = ( MBD = (
a+(b+d) 0+(c+e)
,
2 2 (a+b)+d c+e
,
2
2
)= (
)= (
a+b+d c+e
,
2 2 a+b+d c+e 2
,
2
19 O(0,0) B(2,4) (a)(ii) Let A be (x, y)
) OA
)
√ ∵ MAC = MBD , ABCD is a parallelogram ✓ 18
𝑦 C(0, n)
B(m, n)
O
A(m, 0)
𝑥
MAC = (
0+m 0+n
,
2 2 m+0 0+n 2
,
2
=√
x2 + y2 4x x
= x 2 + y 2 − 4x − 8y + 20 = −8y + 20 = −2y + 5 −(1)
m n 2 2 m n
√
) =( , ) 2 2
∵ MOB = MAC , diagonals of rectangle OABC bisect each other ✓
= OM 1)2
+ (y −
(x 2 − 2x + 1) +(y 2 − 4y + 4)
2)2
= √(0 − 1)2 + (0 − 2)2 = √12 + 22
(x 2 − 2x) + (y 2 − 4y) + 5 (x 2 − 2x) + (y 2 − 4y)
=5 =0
−(2)
sub (1) into (2): (−2y + 5)2 − 2(−2y + 5) +y 2 − 4y = 0 (4y 2 − 20y + 25) + (4y − 10) +y 2 − 4y = 0 (4y 2 − 16y + 15) +y 2 − 4y = 0 5y 2 − 20y + 15 = 0 y 2 − 4y + 3 =0 (y − 3)(y − 1) =0 y=3 or y=1 x = −2(3) + 5 x = −2(1) + 5 = −1 =3 A(−1,3) or A(3,1) C(3,1) C(−1,3)
19 As OABC is a square, 0+2 0+4 (a)(i) M ) = (1,2) ✓ , AC = MOB = (
© Daniel & Samuel A-math tuition 📞9133 9982
(x 2 − 4x + 4) +y 2 − 8y + 16
√x 2 + y 2
AM
) =( , )
2
= AB
(x − 0)2 = √(x − 2)2 + (y − 4)2 +(y − 0)2
√(x − MOB = (
M(1,2)
2
sleightofmath.com
147
A math 360 sol (unofficial) 19(a) (ii)
Ex 6.1 19 (a) (iii)
𝑦 𝐵(2,4) 𝐴
𝐶
𝑥
𝑂
19(b) M(1,2) ⇒ (m + 1, m + 2) ✓ A(−1,3) ⇒ (m − 1, m + 3) ✓ C(3,1) ⇒ (m + 3, m + 1) ✓
⊥ 𝐛𝐢𝐬𝐞𝐜𝐭𝐨𝐫 𝐨𝐟 𝐎𝐁 OB⊥ ≡ ⊥ bisector of OB Point: MOB (1,2) Gradient: mOB⊥ =
−1
=
mOB
−1
=−
4−0 2−0
20
1 2
y − y1 = mOB⊥ (x − x1 )
OB⊥ :
y − (2)= (− ) (x − 1)
(
2
1
2 a+b
2 1
2 5
2
2
2
=− x+
2
5 2
1
5
2
2
⇒ A (a1 , − a1 + ) |AM|
= |OM|
√(a1 − 1)2 + [(− 1 a1 + 5) − 2] 2
2
1
5
2
2
(a1 − 1)2 + [(− a1 + ) − 2] 1
1 2
2
2
2
(a1 − 1)2 + (− a1 + )
1
1
1
4
2 5
4
5
5 a − a1 + 4 1 2 4 5 5 15 (a1 )2 − a1 − 4 2 4 5(a1 )2 − 10a1 − 15 (a1 )2 − 2a1 − 3
(a1 + 1)(a1 − 3) a1 = −1 or 1
5
2
2
a2 = − (−1) + =3 ⇒ A(−1,3) ⇒ C(3,1)
© Daniel & Samuel A-math tuition 📞9133 9982
2
) = (2,6)
=2
2
=√
(0 − 1)2 +(0 − 2)2
=5
and
2a+b+3 2
=6
2a + b + 3 = 12 2a + b =9 b = 9 − 2a −(2) sub (1) into (2): b = 9 − 2(4 − b) b = 9 − 8 + 2b b = 1 + 2b −b = 1 b = −1 a|b=−1 = 4 − (−1) =5 ⇒ A(5,10) ⇒ B(−1,2)
=5
(a1 )2 − 2a1 + 1 + (a1 )2 − a1 +
,
a + b= 4 a =4−b −(1)
Point A A(a1 , a2 ) lies on OB⊥ : 1
= (2,6)
a+b 2a+b+3
1
y−2 =− x+
a2 = − a1 +
A lies on y = 2x ⇒ A(a, 2a) B lies on y = x + 3 ⇒ B(b, b + 3) MAB
1
y
M(1,2) ⇒ (4,5) ✓ A(−1,3) ⇒ (2,6) ✓ C(3,1) ⇒ (6,4) ✓
=5 =5 =0 =0 =0 =0 a1 = 3 1
5
2
2
a2 = − (3) + =1 ⇒ A(3,1) ✓ ⇒ C(−1,3) ✓
sleightofmath.com
148
A math 360 sol (unofficial)
Ex 6.2 3
Ex 6.2
P(−1,2) Q(5,0)
R(7,4)
S(1,6)
𝑆 1(a)
A(−3,5) B(2,7)
𝑄
(5)−(7)
mAB = (−3)−(2) tan θ =
1(b)
(2)−(0)
mPQ = (−1)−(5) = −
2
(6)−(4)
5
mSR = (1)−(7) = −
A(4, −3) B(4,6)
mPS = (−1)−(1) = 2 (0)−(4)
(4)−(4)
∵ mPQ = mRS and mPS = mQR , P, Q, R and S are vertices of a parallelogram ✓
A(5, −4) B(7, −4)
A(1,0)
4
(1)−(−5)
B(4,2)
(0)−(2) 6
C(0, −3) D(3, −1)
−2
−3 c
2 3
(−3)−(−1) (0)−(3)
=
B(2,7)
(1)−(c)
= (0)−(−1) =
1−c 1
=1−c =4✓
2 3
5(a)
Point: A(−1,3) Gradient: ∵ line ∥ y = 4x − 1, m=4 Line: y − y1 = m (x − x1 ) y − (3)= (4)[x − (−1)] y − 3 = 4x + 4 y = 4x + 7 ✓
5(b)
Point:
∵ mAB = mCD , AB ∥ CD ✓ A(1,5)
B(2, −5) C(−1, c)
A,B,C lie on same straight line, mAB = mAC
5−7
(0)−(2)
2(b)
A(0,1)
(−4)−(−4)
mAB = (1)−(4) = mCD =
3
mQR = (5)−(7) = 2
(−3)−(6)
tan θ = 0 θ = 0° ✓ 2(a)
3
(2)−(6)
tan θ → ∞ θ = 90° ✓
mAB =
1
1
θ ≈ 21.8° ✓
mAB =
1(c)
𝑅
𝑃
C(0,4)
D(1,3)
(5)−(7)
mAB = (1)−(2) = 2 (4)−(3)
A(0,1)
mCD = (0)−(1) = −1 Gradient: ∵ line ∥ 2x + y = 3 y = −2x + 3 m = −2
∵ mAB ≠ mCD , AB is not ∥ CD ✓
Line:
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
y − y1 = m (x − x1 ) y − (1)= (−2)[x − (0)] y − 1 = −2x y = −2x + 1 ✓
149
A math 360 sol (unofficial) 5(c)
Ex 6.2
Point:
A(−2,0)
7
Gradient:
∵ line ∥ x + 3y = 12 3y = 12 − x
Line:
b
1
y m=−
=− x+4
2nd line dx + ey + f = 0 ey = −dx − f
3
= m(x − x1 )
y
1
y − (0)= − [x − (−2)]
5(d)
1
2
3
3
=− x− ✓
a
− =− b
A(−2,0)
Gradient:
∵ line ∥ BC, m = mBC =
Line:
6(a)
Point:
a
8 3−6
=
−6 −3
e
d e
[shown] ✓
P(k 2 , 3k) Q(k, k − 2) R(k, k + 2)S(1,1) For PQ ∥ RS: mPQ
y − y1 = m (x − x1 ) y − (1)= (2)[x − (3)] y − 1 = 2x − 6 y = 2x − 5 ✓
= mRS
3k−(k−2)
=
k2 −k 2k+2
=
k2 −k 2(k+1)
(1,2)
=
k(k−1) k+1 2
( − 1)
k+1 2−k
y − y1 = m(x − x1 ) y − (2)= (4)[x − (1)] y − 2 = 4x − 4 y = 4x − 2 ✓
(
k
(k+2)−1 k−1 k+1 k−1 k+1 k−1
=0
k−1 k k−1
)
=0
(k + 1)(2 − k) = 0 k = −1 or k = 2 ✓ 9
6(b)
e
=2
Gradient: ∵ line ∥ y = 4x − 3, m=4 Line:
d
=
b
(−2)−4
f
e
Lines are parallel: m1 = m2
A(3,1) B(3, −2) C(6,4) Point:
d
=− x−
3
y
b
3
1
y − y1
1st line ax + by + c = 0 by = −ax − cy a c y =− x−
P(a + b, a) Q(a − b, 2a)
R(b, c)
y − intercept: c = 3 Gradient: ∵ line ∥ y = 3x + 4, m=3
P, Q, R are collinear points, mPQ = mQR
Line:
(a+b)−(a−b)
(a)−(2a)
y = mx + c = 3x + 3 ✓
−a 2b 2ab−a2 2b
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
(2a)−(c)
= (a−b)−(b) =
2a−c a−2b
= 2a − c 2ab−a2
c
= 2a −
c
= 2a − a +
c
=a+
a2 2b
2b a2 2b
✓
150
A math 360 sol (unofficial) 10(i)
Ex 6.2
Gradient of AP: 3−(−5) (−2)−p
mAP =
=
11(ii) Line Point:
8
Gradient: ∵ Line ∥ 3x + 2y − 6 = 0 2y = −3x − 6
Line & its gradient: 4x + 3y − 5 = 0 3y = −4x + 5 y
A(−1, −1)
−2−p
4
5
3
3
=− x+
3
y ⇒m=−
=− x−3 2
3 2
4
⇒ mline = −
3
Line:
y − y1
= m (x − x1 ) 3
y − (−1) = (− ) [x − (−1)]
∵ AP ∥ line mAP = mline 8 −2−p
24 p
=−
2
= 8 + 4p =4✓
10(ii) Line AP Point:
12(i) A(−2,3) or P(4, −5) 8
mAP =
AP:
y − y1 = mAP (x − x1 )
−2−(4)
=−
4
Gradient:
4 3
y−3 =−
4 3
(x + 2)
4
8
3
3
4
1
3
3
y−3 =− x− y
=− x+ ✓
Point A At A, x + y + 2 = 0 intersects 3x − 2y + 1 = 0: x+y+2 =0 y = −x − 2 −(1) 3x − 2y + 1 = 0
= − (x + 1)
y+1
=− x−
y
=− x− ✓
2 3
3
2 3
2 5
2
2
A(3, −1) or P
Gradient:
∵ AP ∥ y = 2x + 3, mAP = 2
AP:
y − y1 = mAP (x − x1 ) y − (−1) = 2 (x − 3) y+1 = 2x − 6 y = 2x − 7 ✓
12(ii) Point P At P, AP (y = 2x − 7) intersects y = 3x − 11. 2x − 7 = 3x − 11 −x = −4 x =4 y|x=4 = 2(4) − 7 =1 ⇒ P(4,1) ✓
−(2) 13(i)
sub (1) into (2): 3x − 2(−x − 2) + 1 = 0 3x + 2x + 4 + 1 =0 5x = −1 x = −1 −(3) y|x=−1 = −(−1) − 2 = −1 ⇒ A(−1, −1) ✓
© Daniel & Samuel A-math tuition 📞9133 9982
Line AP Point:
3
y − (3)= (− ) [x − (−2)]
11(i)
y+1
4 3
3
sleightofmath.com
Point B B = (6 − 3,2) = (3,2) ✓
151
A math 360 sol (unofficial) 13(ii) Line BC Point: Gradient:
Ex 6.2
B(3,2) or C ∵ BC ∥ 2y + x = 0 2y = −x
BC:
C or D(0,5)
Gradient:
∵ CD ∥
=− x 2
1
y
2
1
mCD =
y − y1 = mBC
1
3
2
2
1
7
2
2
y−2 =− x+
y − 5 = (x − 0) 2 1
= x+5✓
y
2
=− x+ ✓ Point C 1
1
7
2
2
2
At C, CD (y = x + 5) meets BC (y = − x + )
A(6,2)
1 2
∵ AD ∥ BC,
1
7
2 3
2
x+5=− x+
x
mAD = mBC = − AD:
2
1
2
Gradient:
2
y − y1 = mCD (x − x1 )
CD:
1
13(iii) Line AD Point:
1
= x
(x − x1 )
y − (2)= − (x − 3)
y
2y − x = 0 2y =x
1
y mBC = −
13(iv) Line CD Point:
=−
1
2
2 1
3
2 17
2
y|x=−3 = (− ) + 5
y − y1 = mAD (x − x1 )
2
=
1
4 3 17
y − (2)= (− ) (x − 6) 2
⇒ C (− , 2
1
y−2 =− x+3
4
)✓
2
y
1
=− x+5✓ 2
Point D At D, AD cuts y − axis (x = 0): y|x=0 = 5 ⇒ D(0,5) ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
152
A math 360 sol (unofficial)
Ex 6.3 4(ii)
Ex 6.3 1
A(3,7) B(6,1) C(20,8) (7)−(1)
6
mAB = (3)−(6) =
−3
(1)−(8)
mBC = (6)−(20) =
=
−14
1 2
−5
3
) (− )
= −1 = −1
2t − t 2 = −15 t 2 − 2t − 15 = 0 (t − 5)(t + 3) = 0 t = 5 or t = −3 ✓
2
∴ AB ⊥ BC ✓ A(2, −1) B(5,4) C(15, −2) 5 mAB = mBC =
(−1)−(4)
−5
=
(2)−(5) (4)−(−2)
−3 6
=
(5)−(15)
5
=
3
=−
−10
5
3
3
5
3
mBC =
a−2 (−3)−1 2−10
= =
1
6
(− ) (k)= −1 2
a−2 −4
1
−8
2
=
k
AB ⊥ BC: (mAB )(mBC ) = −1 (
6
1
)( )
a−2 6
2
6
= −1 = −1
2a−4
6 2a a
mBC =
2−0 1−9 0−t 9−6
= =
2 −8 −t 3
=− =−
t
4
3
1st line & its gradient y = ax + b m1 = a
(1, −2) lies on y = ax + b −2 = a + b −(1)
1 4 t
lines are ⊥: m1 ⋅ m2 = −1 a ⋅ (3) = −1
3
∡ABC = 90°: (mAB )(mBC ) = −1 1
=2✓
2nd line & its gradient y − 3x = 4 y = 3x + 4 m2 = 3
= 4 − 2a = −2 = −1 ✓
A(1,2) B(9,0) C(6, t) mAB =
2
Lines are ⊥: m1 m2 = −1
A(a, 3) B(2, −3) C(10,1) 3−(−3)
1
=− x+1
2nd line y − kx + 4 = 0 y = kx − 4
∴ AB ⊥ BC ∡ABC = 90° ✓
mAB =
1st Line x + 2y − 2 = 0 2y = −x + 2 y
5
(mAB ) (mBC ) = ( ) (− ) = −1
4(i)
t
−5 2t−t2 15
(mAB )( mBC ) = (−2) ( ) = −1
3
2−t
(
1
2
2−t
AC ⊥ BC: (mAC )(mBC ) = −1
= −2 −7
(2)−(t)
mAC = (1)−(6) =
a
1
= − ✓ −(2) 3
(− ) (− ) = −1 t 12
t
sub (2) into (1):
= −1
1
−2 = (− ) + b
= −12 ✓
3
5
b =− ✓ 3
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
153
A math 360 sol (unofficial) 7
Ex 6.3
(4,5)
Point:
10
Gradient: ∵ Line ⊥ x + 2y − 4 = 0 2y = −x + 4 1
y ⇒m=
1 (− ) 2
=− x+2 2
y 2 = 6x − 32
=2
Point A At A, y = x − 1 intersects y = x 2 − x x−1 = x2 − x x 2 − 2x + 1 = 0 (x − 1)2 =0 x =1
⊥ bisector of AB AB⊥ ≡ ⊥ bisector of AB
y|x=1 = (1) − 1 =0 ⇒ A(1,0) Line Point: A(1,0) Gradient: ∵ line ⊥ y = x − 1
9
11(i)
A(3,3) B(7,3) AB⊥ ≡ ⊥ bisector of AB AB⊥ :
x=
3+7
Gradient:
mAB⊥ =
AB⊥ :
y − y1 = mAB⊥ (x − x1 ) y − (−3) = 1(x − 11) y+3 = x − 11 y = x − 14 ✓
2
,
2 −1 mAB
2
=
=1
A(3,6) or F
Gradient:
∵ F is foot of ⊥ from A to BC,
AF:
−1 mBC
=
−1 (−1)−(7) ( (2)−(6) )
=−
1 2
y − y1 = mAF (x − x1 ) 1
y − 6 = − (𝑥 − 3) 2 1
3
2 1
2 15
2
2
y−6 =− x+ y
© Daniel & Samuel A-math tuition 📞9133 9982
−1 (2)−(−8)
( (6)−(16) )
Line AF Point:
mAF =
=5✓
) = (11, −3)
MAB = (
1
y − y1 = m (x − x1 ) y − 0 = −1(x − 1) y = −x + 1 ✓
6+16 2+(−8)
Point:
m = − (1) = −1 Line:
−(2)
sub (1) into (2): (8 − x)2 = 6x − 32 x 2 − 16x + 64 = 6x − 32 x 2 − 22x + 96 = 0 (x − 6)(x − 16) = 0 x=6 or x = 16 y = 8 − 6 y = 8 − 16 =2 = −8 ⇒ A(6,2) ⇒ B(16, −8)
y − y1 = m(x − x1 ) y − 5 = 2 (x − 4) y = 2x − 3 ✓
Line:
8
−1
Points A & B At A & B, x + y = 8 meets y 2 = 6x − 32: x + y= 8 y = 8 − x −(1)
sleightofmath.com
=− x+
✓
154
A math 360 sol (unofficial) 11(ii) Line BC Point:
Ex 6.3
B(2, −1) or C(6,7) (−1)−7
Gradient:
mBC =
BC:
y − y1 = mBC (x − x1 ) y − (−1) = 2 [x − (2)] y+1 = 2x − 4 y = 2x − 5
2−6
=2
12(ii) Point P At P, AP (y = −4x + 13) cuts x − axis (y = 0). y =0 −4x + 13 = 0 x ⇒ P(
1
15
2
2
).
1
15
2
2
2x − 5 = − x + 5 2
x
x
=
13 4
P(
2
=5
, 0) ✓
13 4
, 0) A(3,1)
PA: AQ = (
11(iii) Perpendicular distance AF A(3,6) F(5,5) 13(i)
= √4 + 1 = √5 units ✓
Line AB Point:
AB: A(3,1) or P
y
y − y1 y−1 y−1 y
4
− 3) : (3 − 0)
1
:3
4
A(4,13) or B(9,3) (13)−(3)
Gradient: mAB =
Gradient: ∵ AP ⊥ x − 4y = 8 −4y = −x + 8
AP:
13
= 1: 12 ✓
|AF| = √(3 − 5)2 + (6 − 5)2
mAP =
Q(0,13)
By similar triangles (using x-coordinates) [diagram?]
=
Line AP Point:
4
12(iii) Ratio 𝐏𝐀: 𝐀𝐐
25
y|x=5 = 2(5) − 5 =5 ⇒ F(5,5) ✓
12(i)
13
Point Q At Q, AP(y = −4x + 13) cuts y-axis (x = 0). y|x=0 = 13 ⇒ Q(0,13) ✓
Point F At F, BC (y = 2x − 5) intersects AF (y = − x +
=
−1 1 4
( )
1
= x−2 4
= −4
13(ii) Line Point:
(4)−(9)
=
= −2
= mAB (x − x1 ) = −2(x − 4) = −2x + 8 = −2x + 21 ✓
y − y1 y − 13 y − 13 y
C(10,8)
Gradient: ∵ Line ⊥ y − 4x = 5 y = 4x + 5
= mAP (x − x1 ) = −4(x − 3) = −4x + 12 = −4x + 13 ✓
m=− Line:
1 4
y − y1 = m (x − x1 ) 1
y − 8 = − (x − 10) 4 1
5
4 1
2 21
4
2
y−8 =− x+ y
© Daniel & Samuel A-math tuition 📞9133 9982
10 −5
sleightofmath.com
=− x+
✓
155
A math 360 sol (unofficial)
Ex 6.3
13(iii) Point P 1
21
4
2
At P, y = − x + 1
21
4
2
− x+ 7 4
meets AB (y = −2x + 21):
= −2x + 21
x
=
x
14(iii) Ratio 𝐀𝐌: 𝐌𝐃 A(3,1) M(4,3) D(−2,6) AM: MD = √(3 − 4)2 + (1 − 3)2
21
: √[4 − (−2)]2 + (3 − 6)2
2
=6
= √5 : √45
y|x=6 = −2(6) + 21 =9 ⇒ P(6,9)
= √5 : √9 × 5 = √5 : 3√5 =1
14(i)
Line DM Point: Gradient:
D(−2,6) ∵ DM ⊥ AB (y = 2x − 5) −1
mDM =
=−
mAB
15(i)
2
AB⊥ ≡ ⊥ bisector of AB
1
y − 6 = − [x − (−2)] 2 1
y−6 =− x−1 2 1
=− x+5✓
y
⊥ bisector of AB A(5,4) B(3, −2)
1
y − y1 = mDM (x − x1 )
DM:
:3✓
2
5+3 4+(−2)
) = (4,1)
Point:
MAB = (
Gradient:
mAB⊥ =
AB⊥ :
y − y1 = mAB⊥ (x − x1 )
2
,
−1 mAB
2
=
−1 (4)−(−2)
( (5)−(3) )
=
−1 6 2
( )
=−
1 3
1
y − 1 = − (x − 4)
14(ii) Point M 1
3 1
4
3 1
3 7
3
3
At M, DM (y = − x + 5) intersects
y−1 =− x+
AB (y = 2x − 5).
y
2
=− x+ ✓
1
− x + 5 = 2x − 5 2 5
− x
15(ii) Point P
= −10
2
x
1
7
3
3
At P, AB⊥ (y = − x + ) intersects y = x + 5.
=4
1
7
3 4
3
− x+ =x+5 1
8
y|x=4 = − (4) − 5
− x
=
=3 ⇒ M(4,3) ✓
x
= −2
2
3
y|x=−2 = (−2) + 5 =3 ⇒ P(−2,3) ✓
Point B Let B be (b1 , b2 ) M
= MAB
(4,3) = ( 4 =
3
3+b1 1+b2 2
3+b1 2
b1 = 5 ∴ B(5,5) ✓
,
2
and
) 3 =
1+b2 2
b2 = 5
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
156
A math 360 sol (unofficial) 16(i)
Ex 6.3
⊥ bisector of AB A(5,2) B(3,6) AB⊥ ≡ ⊥ bisector of AB MAB = (
Point:
−1
18(i)
2
=
,
) = (4,4)
2 −1
m=
AB⊥ :
y − y1 = m (x − x1 )
(2)−(6)
((5)−(3))
=
−1 −4 ) 2
(
=
2
1
Point C At C, BC(y = 5x + 6) cuts y − axis (x = 0). y|x=0 = 6 ⇒ C(0,6)
2 1
y−4 = x−2 2 1
= x+2✓ 2
16(ii) Point P At P, AB⊥ cuts x-axis (y = 0) 1 2
Point Q At P, AB⊥ cuts y-axis (x = 0)
18(ii) Line AC Point:
∵ BD is ⊥ bisector of AC, mAC =
2
x = −4 ⇒ P(−4,0) ✓
A or C(0,6)
Gradient:
1
y|x=0 = (0) + 2
x+2=0
y − y1 = mBC (x − x1 ) y − (1)= (5) [x − (−1)] y − 1 = 5x + 5 y = 5x + 6
BC:
1
y − 4 = (x − 4)
y
B(−1,1) or C ∵ BC ∥ y = 5x mBC = 5
5+3 2+6
Gradient:
mAB
Line BC Point: Gradient:
=2 ⇒ Q(0,2) ✓
AC:
−1 mBD
=
−1 (1)−(7)
((−1)−(8))
=−
3 2
y − y1 = mAC (x − x1 ) 3
y − 6 = − (x − 0)
17(a) ⊥ bisector of PQ P(3,5) Q(5,9) PQ ⊥ ≡ ⊥ bisector of PQ
2 3
y−6 =− x
3+5 5+9
MPQ = (
Gradient:
m=
PQ ⊥ :
y − y1 = m (x − x1 )
−1 mPQ
=
,
2 −1
(5)−(9) ((3)−(5))
=−
1
18(iii) Point A 1
2
At A, AC (y = − x + 6) cuts x − axis (y = 0): 3
y
=0 3
1
y − 7 = − (x − 4)
− x + 6= 0
y−7 =− x+2
− x
2 3
2 1
y
2
) = (4,7)
Point:
2
2 3
=− x+6✓
y
2
2 1
= −6
x =4 ⇒ A(4,0) ✓
=− x+9✓ 2
17(b) Point At point where y = 6x intersects
Midpoint of AC A(4,0) C(0,6)
1
PQ ⊥ (y = − x + 9). 2
M = MAC = (
1
6x = − x + 9
4+0 0+6 2
,
2
) = (2,3) ✓
2
13 2
x
x= 9 =
18 13 18
y|x=18 = 6 ( ) 13
=
13 108
⇒ Point (
13 18 108 13
,
13
)✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
157
A math 360 sol (unofficial)
Ex 6.3
18(iv) Area of quadrilateral 𝐀𝐁𝐂𝐃 A(4,0) B(−1,1) C(0,6) D(8,7)
20(i)
|AC| = √(4 − 0)2 + (0 − 6)2 = √52 = √4 × 13 = 2√13
Line AB Point:
A(1, −1) or B(5,3)
Gradient:
mAB =
AB:
y − y1 = mAB (x − x1 ) y − (−1) = (1) [x − (1)] y+1 =x−1 y =x−2✓
|BD| = √[(−1) − 8]2 + (1 − 7)2 = √117 = √9 × 13 = 3√13
M = MAB = ( 20(ii) Line PQ Point:
Line CD A(2,3) B(6,7) C(7, t) MAB = (
Point:
2+6 3+7 2
,
2
) = (4,5)
−1
CD:
y − y1 y−5 y−5 y
mAB
1
1
(2)−(6)
−4
= − (3)−(7) = − −4
= mCD (x − x1 ) = (−1)[x − (4)] = −x + 4 = −x + 9 ✓
(1)+(5) (−1)+(3) 2
−4 −4
= −1
,
2
) = (3,1) ✓
Gradient:
mPQ =
PQ:
y − y1 y−1 y−1 y
−1 mAB
=
−1 1
= −1
= mPQ (x − x1 ) = (−1)(x − 3) = −x + 3 = −x + 4 ✓ Value of q Q(7, q) lies on PQ(y = −x + 4), (q) = −(7) + 4 q = −3 ✓
20(iii) Area of quadrilateral APBQ A(1, −1) P(0.5,3.5) B(5,3) Q(7, −3)
19(ii) Value of t C(7, t) lies on y = −x + 9: (t) = −(7) + 9 t =2✓
|AB| = √(1 − 5)2 + [(−1) − 3]2
19(iii) Point D C(7,2) D(d1 , d2 )
area of APBQ = |AB||PQ|
= √32 = √16 × 2 = 4√2 169
|PQ| = √(0.5 − 7)2 + [3.5 − (−3)]2 = √
4 =
7+d1 2+d2 2
7+d1 2
,
2
2
=
13 √2
1 2 1
13
2
√2
= (4√2) ( )
AB is ⊥ bisector of CD, MAB = MCD (4,5) = (
=1
M(3,1) or P(p, 3.5) or Q(7, q)
Value of p P(p, 3.5) lies on PQ(y = −x + 4), (3.5) = −(p) + 4 p = 0.5 ✓
Gradient: ∵ CD is ⊥ bisector of AB, mCD =
=
(1)−(5)
Midpoint of AB
Area of ABCD 1 = |AC||BD| 2 1 = (2√13)(3√13) 2 = 3(13) = 39 unit 2 ✓ 19(i)
(−1)−(3)
= 26 ✓
)
and
d1 = 1
5 =
2+d2 2
d2 = 8
∴ D(1,8) ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
158
A math 360 sol (unofficial) 21(i)
Ex 6.3
⊥ 𝐛𝐢𝐬𝐞𝐜𝐭𝐨𝐫 𝐨𝐟 𝐀𝐁 A(−4,3) B(8, −3) AB⊥ ≡ perpendicular bisector of AB
21(iii) C(p, q) lies on AB⊥ : q = 2p − 4 ⇒ C(p, 2p − 4)
C A(−4,3)
MAB B(8, −3) C
Point:
MAB = (
(−4)+(8) (3)+(−3)
Gradient: mAB⊥ = − =− AB⊥ :
,
2 1 mAB 1 6 −12
=−
2
) = (2,0)
MAB = (
−4+8 3+(−3)
,
2
1 (3)−(−3)
|CMAB | = √(p − 2)2 + [(2p − 4) − 0]2
((−4)−(8))
= √(p2 − 4p + 4) + (4p2 − 16p + 16)
=2
= √5p2 − 20p + 20
y − y1 = mAB⊥ (x − x1 ) y − 0 = 2 (x − 2) y = 2x − 4 ✓
|AB| = √[(−4) − 8]2 + [3 − (−3)]2 = √180 = √36 × 5 = 6√5
21(ii) Show If (10,16) lies on AB⊥ (y = 2x − 4), (16) = 2(10) − 4 16 = 16 [consistent] ∴ (10,16) lies on AB⊥
△ ABC area 1 2 1 2
=6
|CMAB ||AB|
3√5p2 − 20p + 20√5
=6
√5p2 − 20p + 20√5
=2
√25p2 − 100p + 100
=2
25p2 − 100p + 100
=4
25p2 − 100p + 96
=0
(5p − 8)(5p − 12)
=0
8
or
5
2p − 4 = − 8
4
5
5
4 5
⇒ C( ,− )
sleightofmath.com
=6
√5p2 − 20p + 20(6√5) = 6
p=
© Daniel & Samuel A-math tuition 📞9133 9982
2
) = (2,0)
p=
12 5
2p − 4 = ⇒ C(
4 5
12 4 5
, )✓ 5
159
A math 360 sol (unofficial)
Ex 6.3
21(iii) Shoelace formula A C B C(p, q) lies on AB⊥ (y = 2x − 4) q = 2p − 4 ⇒ C(p, 2p − 4)
22
P(0,4)
−4 | | 2 3
2
−4 8 || 3 −3
p 2p − 4 p 2p − 4
Q
−4 || 3
Line PQ Pt: P(0,4) or Q
=6
Grad: mPQ =
−4 || 3
= 12
|30p − 60|
p
=
PQ:
= 12
p
5 12
⇒ C(
5
4
=−
5
12 4
8
4
5
5
5
5 4
1 2
(− )
=2
y − y1 = mPQ (x − x1 ) y − (4)= (2) [x − (0)] y = 2x + 4
Line PR Pt: P(0,4) or R
5
, ) or C ( , − ) ✓ 5
−1
y|x=−4 = −4 ⇒ Q(−4, −4) ✓
2p − 4 = 2 ( ) − 4
5
=
8
8
2p − 4 = 2 ( ) − 4 =
=
−1 ml3
Point Q At Q, PQ meets y = x 2x + 4 = x x = −4
=2 or 5p − 10 = −2 5p =8
12
R
l1 : x = 0
|12 + (16p − 32) + 3p = 12 −24 − (−3p) − (−8p + 16)| |5p − 10| 5p − 10 = 2 5p = 12
𝑥
𝑂 =6
8 −3
l2 : y = x
1
l3 : y = − x
△ ABC area 1
𝑦
Grad: mPR = −
1 ml2
1
= − (1) = −1
PR: y − y1 = mPR (x − x1 ) y − (4)= (−1)[x − (0)] y = −x + 4 Point R 1
At R, PR meets y = − x 2
1
−x + 4 =− x 2
1
− x
= −4
x
=8
2
1
y|x=8 = − (8) 2
= −4 ⇒ R(8, −4) ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
160
A math 360 sol (unofficial) 23(i)
Ex 6.3
∵ AO = OC, (radius) △ AOC is isosceles △ ∵ BO = OC, (radius) △ BOC is isosceles △ ✓
A
23(ii) α = ∡AOC = ∡OCA β = ∡OBC = ∡OCB sum of ∡s in △
= 180°
23(iii) A(1,0) B(5,2) C(a, b)
C
A
O = MAB = ( B
O
C 𝛼 𝛽 𝛼 O
= 180°
2α + 2β
= 180°
2(α + β)
= 180°
α+β
= 90°
∡ACB
= 90°
∴AC ⊥ BC ✓
© Daniel & Samuel A-math tuition 📞9133 9982
,
2
) = (3,1)
= radius
|OC|
= (diameter AB)
|OC|
= |AB|
1 2 1
3)2
+ (b −
1)2
2 1
= √(1 − 5)2 + (0 − 2)2 2 1
√(a − 3)2 + (b − 1)2 = √20 2
B
∡AOC + ∡OCA = 180° +∡OBC + ∡OCB α +α +β + β
2
|OC|
√(a − 𝛽
1+5 0+2
1
(a − 3)2 + (b − 1)2
= (20)
(a − 3)2 + (b − 1)2
= 5 [shown] ✓
4
Note: Alternate approach is to use right angle triangle in semicircle. By Pythagoras’ Theorem, |AC|2 + |BC|2 = |AB|2 . 23(iv) At (2,3), [(2) − 3]2 +[(3) − 1]2 = 5 (−1)2 +22 =5 1 +4 =5 5 = 5 [consistent] ∴ (2,3) lies on circle ✓
sleightofmath.com
161
A math 360 sol (unofficial)
Ex 6.4 3(i)
Ex 6.4 1(a)
A(2,3) B(5,6) C(−1,4)
△ ABC area
△ ABC area
=| |
1 2 = | 2 3
5 6
1 2
−1 4
2 | 3
2 1
= (12) 2
A(5,2) B(1,6) C(−2, −3) △ ABC area 1 −2 6 −3
A, B and C are collinear ✓
4(a)
O(0,0) A(4,1) B(6,4) C(−2,4)
5 | 2
Area of OABC =
1 2
2
2 4
−2 4
0 | 0
2
=
3 6 5 2
4(b) 2 || 4
1 = |10 + 6 + 24 2 1 = |−6| 2
1 (42) 2
= 21 unit 2 ✓
△ ABC area 1
4 6 1 4
= [0 + 16 + 24 + 0 −0 − 6 − (−8) − 0]
A(2,4) B(3,5) C(6,2)
=| |
1 0 | 2 0 1
1 (48) 2
= 24 unit 2 ✓ 2(a)
− 4 − 0 − (−10)|
3(ii)
= [30 + (−3) + (−4) −2 − (−12) − (−15)] =
−5 || −2
= 0 unit 2 ✓
= 6 unit 2 ✓
5 2
−2 1 0 2
1 |0 + (−4) + (−2) 2 1 = |0| 2
= [12 + 20 + (−3) −15 − (−6) − 8]
=|
−5 −2
=
1
1(b)
A(−5, −2) B(−2,0) C(1,2)
P(1,4) Q(−4,2) R(1, −2) S(4,0) Area of PQRS 1 1 −4 1 4 1 | | 2 4 2 −2 0 4 1 = [2 + 8 + 0 + 16 − (−16) − 2 − (−8) − 0] 2 1 = (48) 2 =
− 12 − 30 − 4|
= 3 unit 2 ✓
= 24 unit 2 ✓ 2(b)
A(−4, −2) B(−2,4) C(6,0) △ ABC area 1
=| | 2
−4 −2
−2 6 4 0
−4 || −2
1 |−16 + 0 + (−12) 2 1 = |−56| 2 =
− 4 − 24 − 0|
= 28 unit 2 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
162
A math 360 sol (unofficial) 5(i)
Ex 6.4
A(2, −3) B(3, −1) C(2,0) D(−1,1) E(−2, −1)
6(iii)
Area of △ ABC 1 2 3 2 2 | = | 2 −3 −1 0 −3 1 = [−2 + 0 + (−6) −(−9) − (−2) − 0] =
2 3
1 2 1 2
2 9
7(i)
unit 2 ✓
2
√5(5) sin ∡BAC
A(3,5)
1
| | 2
||
= 5 unit 2 ✓
9
2
2
= 11 unit 2 ✓ 𝑦
3 5
3 5
7(ii) 𝑥
𝑂
A
C(9, −1)
1 2
4 −1
B(−5,9) C(k, k + 2)
−5 9
= 18
k k+2
−5 9
k k+2
3 || 5
= 18
3 || 5
= 36
5 9 1 −1
= 36
F
B
CF ≡ perpendicular distance of C from AB Area of △ ABC = 18
Area of △ ABC =| |
✓
C
B(5,1)
A(4, −1)
2 √5
|−2k + 6| =6 −2k + 6 = 6 or −2k + 6 = −6 −2k =0 −2k = −12 k =0✓ k =6✓
Area of pentagon 3
=
|−12k + 36|
= + +5
1
4 || −1
2
|AB||CF|
|CF|
1
=
= [4 + (−5) + (−9) −(−5) − 9 − (−4)] 2 1
=
= |−10| 2
= 5 unit 2 ✓ 6(ii)
=5
|27 + (−5k − 10) + 5k = 36 −(−25) − 9k − (3k + 6)|
2
6(i)
(AB)(AC) sin ∡BAC = 5
Area of △ ABC
Area of △ ADE 1 2 −1 −2 2 | = | 2 −3 1 −1 −3 1 = [2 + 1 + 6 −3 − (−2) − (−2)]
5(ii)
=5
sin ∡BAC
Area of △ ACD 1 2 2 −1 2 | = | 2 −3 0 1 −3 1 = [0 + 2 + 3 −(−6) − 0 − 2] =
Area of △ ABC
unit 2 ✓
2
AC = 9 − 4 =5
8(i)
AB = √(4 − 5)2 + [(−1) − 1]2
= 18
36 |AB| 36 √80
= =
36 √[3−(−5)]2 +(5−9)2 36 √5×16
=
36 4√5
=
9 √5
9
= √5 ✓ 5
A(2, t) B(3 + t, 2) C(3,4) Area of △ ABC 1 2 3+t 3 2 | = | 2 t 2 4 t 1 = (4 + 12 + 4t + 3t − 3t − t 2 − 6 − 8)
= √1 + 4 = √5 units [shown] ✓
2 1
= (−t 2 + 4t + 2) unit 2 ✓ 2
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
163
A math 360 sol (unofficial) 8(ii)
Ex 6.4
Area of △ ABC = 2 1
(−t 2 + 4t + 2) =
2
1
11(i)
2
5
Area of △ ABC 1 3 −4 6 3 | = | 2 4 2 −1 4 1 = [6 + 4 + 24 − (−16) − 12 − (−3)] 2 1 = (41) 2 = 20.5 unit 2 ✓
2
−t 2 + 4t + 2 =5 2 t − 4t + 3 =0 (t − 1)(t − 3) =0 t = 1 or t = 3 ✓ 9(i)
A(1,3) B(5,1) C(3, r) Area of △ ABC =4 1 1 5 3 1 | | =4 2 3 1 r 3 1 (1 + 5r + 9 − 15 − 3 − r) = 4 2 1
(4r − 8)
2
A(3,4) B(−4,2) C(6, −1) D(p, 3)
=4
2r − 4 2r r
=4 =8 =4✓
11(ii) Area of ABCD 1 3 −4 6 p 3 | = | 2 4 2 −1 3 4 1 = [6 + 4 + 18 + 4p − (−16) − 12 − (−p) − 9] 2 1 = (23 + 5p) unit 2 ✓ 2
11(iii) (Area of ABCD) = 3(Area of △ ABC) 1 2
9(ii)
Area of △ ACB =4 1 1 3 5 1 | | =4 2 3 r 1 3 1 (r + 3 + 15 − 9 − 5r − 1) = 4 2 1
(−4r + 8)
2
=4
−2r + 4 −2r r 10(i)
12(i)
2
=9 = −3x + 9
y
= x−
3
9
2
2
3 2
AD ⊥ line ⇒ mAD =
−1 mline
=
−1
= MBD
2+1 1+4
2 2+1
= 123 = 100 = 20 ✓
3x − 2y −2y mline =
A(2,1) B(b1 , b2 ) C(1,4) D(0,2)
(
= 3(20.5)
23 + 5p 5p p
=4 =0 =0✓
MAC
(23 + 5p)
,
=
) =(
2 b1 +0 2
b1 +0 b2 +2 2
,
and
b1 = 3 B(3,3) ✓
Line BC Point: Gradient:
)
2 1+4 2
=
b2 +2 2
b2 = 3
BC:
=−
2 3
B(4,7) or C ∵ BC ∥ AD mBC = mAD =
10(ii) Area of rhombus 1 2 3 1 0 2 | = | 2 1 3 4 2 1 1 = (6 + 12 + 2 + 0 − 3 − 3 − 0 − 4)
3 2
−1 3 ( ) 2
=−
2 3
y − y1 = mBC (x − x1 ) 2
y − (7)= (− ) (x − 4) 3
2
8
3 2
3 29
3
3
y−7 =− x+
2 1
= (10)
y
2
=− x+
✓
2
= 5 unit ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
164
A math 360 sol (unofficial) 12(ii) Line DE Point:
Ex 6.4 12(iv) Area of quadrilateral ABFD 1
D(−3,3) or E
A (1, ) 2
∵ DE ⊥ BC (y = − x +
Gradient:
3
−1
mDE =
=
mBC
−1 2 3
(− )
=
29 3
Area of ABFD 0 1 1 4 = | 1 7 29 2
3 2
3
3 2
3
2
2
y
3
15
2
2
= x+
= 13(i)
Point E 1
15
3 29
2
At E, DE (y = x + 2
(y = − x + 3
3
x+
2 13 6
15 2
x
6
=1 29
3
3
=9 ⇒ E(1,9) ✓
3
104
unit 2 ✓
3
𝐕𝐚𝐥𝐮𝐞 𝐨𝐟 𝐚 A(3a, 4a + 1), a > 0 B(0,1) =5 1]2
⇒ A(3,5) 13(ii) Line BC Point:
12(iii) Point F 2
At F, BC (y = − x + 3
2
29
3
3
y|x=0 = − (0) + =
)
2
√(3a − + [(4a + 1) − =5 2 2 9a + 16a = 25 2 25a = 25 a2 − 1 =0 (a + 1)(a − 1) =0 a = −1 (rej ∵ a > 0) or a = 1 ✓
3
2
3
0)2
13
y|x=1 = − (1) +
4
+ 0 + (−1) − − 0 − (−29) − 3]
|AB|
29
3
3
3
) intersects BC
)
=− x+ =
x
3 2
116
2
= (
2
9
1
−3 1 1| 3
1 208
y − 3 = (x + 3) 3
3
= [7 +
y − (3)= ( ) [x − (−3)]
y−3 = x+
3
)
y − y1 = mDE (x − x1 )
DE:
29
F (0, ) D(−3,3)
B(4,7)
3
29 3
B(0,1) or C
) cuts y-axis (x = 0) Gradient: ∵ BC ⊥ AB, mBC =
29 3 29
−1 mAB
1
1
(0)−(3)
4 3
= − (1)−(5) = −
=−
3 4
⇒ F (0, ) 3
y − y1 = mBC (x − x1 )
BC:
3
y − 1 = − (x − 0)
Point A A(a1 , a2 ) B(4,7)
29 3
(
2
a1 +0 2
a1
,
=
2
)=(
4+(−3) 2
3
At C, BC (y = − x + 1) cuts x-axis (y = 0) 4
3
4+(−3) 7+3
and
=1
,
2
2
29 a2 +( ) 3
2
a2
4
Point C
For Parallelogram ABFD, MAF = MBD 29
=− x+1✓
y
F (0, ) D(−3,3)
a1 +0 a2 +( 3 )
4 3
− x + 1= 0
) = =
4 3
− x
= −1
x
=
4
7+3 2 1
4 3
4
3
⇒ C ( , 0) 3
1
A (1, ) ✓ 3
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
165
A math 360 sol (unofficial)
Ex 6.4
13(iii) ⊥ bisector of AB AB⊥ ≡ ⊥ bisector of AB MAB = (
Point:
13(iv) Area of quadrilateral ABCD
(3)+(0) (5)+(1) 2
,
2
A(3,5)
3
3
C ( , 0)
B(0,1)
4
) = ( , 3)
D(
11 2
, 0)
2
Area of ABCD Gradient: mAB⊥ = mBC = −
3
y − y1 = mAB⊥ (x − x1 )
AB⊥ :
3 4 3
9
4 3
8 33
y
4
8
=− x+
3
0
2
5
1
4
11
3
2
0
0
2
=
3
|
5
1
55
2
2
= (3 + 0 + 0 +
3
y − 3 = − (x − ) y−3 =− x+
1
= |
4
4
− 0 − − 0 − 0) 3
1 175 ( ) 2 6
= 14
7 12
unit 2 ✓
Point D At D, AB⊥ cuts x-axis (y = 0). y =0 3
33
4 3
8
− x+ − x
=−
4
x ⇒ D(
=0
= 11 2
33 8
11 2
, 0) ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
166
A math 360 sol (unofficial)
Rev Ex 6 A2(ii) Point D at k = 2: A(3,1) B(5,3)
Rev Ex 6 A1(i) A(−2,1) B(10,6) C(a, −6) AB
D on x − axis: D(d, 0)
= BC 10]2
√[(−2) − + (1 − 169 169 a2 − 20a + 75 (a − 5)(a − 15) a = 5 or a = 15 ✓
6)2
= √(10 − a)2 + [6 − (−6)]2 = (100 − 20a + a2 ) + 144 = 244 − 20a + a2 =0 =0
BD ⊥ AC: mBD ⋅ mAC = −1 3−0 5−d 3 5−d
Let D be (d1 , d2 ) For ABCD is rhombus, MAC = MBD (−2)+a 1+(−6)
2 (−2)+a 2
d1
,
=
) =(
2 10+d1
and
2
= a − 12
,
)
2 1+(−6) 2
d2
A(k + 1,1) B(2k + 1,3)
3−6 −3 −3
mBD =
= −1 = −1
=
3−0 5−8
tan θ = −1 α = 45°
6+d2 2
= −11
a = 5: D(−7, −11) ✓ a = 15: D(3, −11) ✓
A2(i)
⋅
1−4
Obtuse angle that BD makes with x-axis
10+d1 6+d2 2
⋅
3 =d−5 d =8 ⇒ D(8,0) ✓
A1(ii) A(−2,1) B(10,6) C(a, −6)
(
C(6,4)
∴ obtuse ∡= 180 − 45 = 135° ✓ A3(i)
A(6,7)
B(0,1)
C(9,4)
|BC| = √(0 − 9)2 + (1 − 4)2
C(2k + 2,2k)
= √81 + 9 ∵ A, B, C are collinear, mAB = mBC (1)−(3) (k+1)−(2k+1) −2 −k 2
= √9 × 10 = 3√10 units ✓
(3)−(2k)
= (2k+1)−(2k+2) =
3−2k −1
= 2k − 3
k
= √90
2 = 2k 2 − 3k 2k 2 − 3k − 2 = 0 (2k + 1)(k − 2) = 0 1
k = − or k = 2 ✓ 2
A3(ii) Area of △ ABC 1 6 0 9 6 | = | 2 7 1 4 7 1 = (6 + 0 + 63 − 0 − 9 − 24) 2 1 = (36) 2 = 18 ✓ A3(iii) Area of △ ABC = 18 1 2 1 2
|AF||BC|
|AF|(3√10) = 18
|AF|
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
= 18
=
36 3√10
=
12 √10
=
12√10 10
=
6√10 5
✓
167
A math 360 sol (unofficial)
Rev Ex 6
A4(a) y = ax + b ⇒ m1 = a
A5(i)
2x + y = 8 y = −2x + 8 ⇒ m2 = −2
Line BC Point:
B(−1, −3) or C
Gradient:
mBC =
BC:
y − y1
1 2
= mBC (x − x1 ) 1
y − (−3) = ( ) [x − (−1)] 2
y = ax + b ⊥ 2x + y = 8 ⇒ m1 m2 = −1 a(−2) = −1 a
1
= ✓
A5(ii) Line AC Point: Gradient:
2
y = ax + b on y − axis (x = 0): y = a(0) + b =b ⇒ (0, b)
A4(b) AB: y = 3x + 1 BC: y = x − 1 F(3,2)
2
2
y
= x− ✓
−1
=−
mAB
=−
1 −8 ( ) −4
1 2
B
y
C F(3,2)
1
3
2 1
2 13
2
2
1 2
x−
5 2
1
13
2
2
=− x+
1
5
2
2
−1 −3 −1 −3
9 2
=9 1
13
2
2
y|x=9 = − (9) +
Gradient: ∵ AF ⊥ BC, −1
=2 ⇒ C(9,2) ✓
= (1) = −1
A5(iv) Height of triangle ABC A(3,5) B(−1, −3) C(9,2) Equating area of △ ABC, 1
Point A At A, AF intersects AB (y = 3x + 1) −x + 5 = 3x + 1 −4x = −4 x =1
2
|BC||AD|
|BC||AD| √
=4
1
= | 2
=|
sleightofmath.com
3 5
3 5
9 2
3 | 5 3 | 5
[(−1) − 9]2 −9 − 2 + 45 |AD| = [ ] 2 −(−50) − (−27) − 6 [( ] + −3) − 2
√125|AD| 5√5|AD|
= 60
|AD|
=
= 60
= © Daniel & Samuel A-math tuition 📞9133 9982
✓
At C, AC intersects BC (y = x − )
𝑥
y=x−1
y − y1 = mAF (x − x1 ) y − (2)= (−1)[x − (3)] y − 2 = −x + 3 y = −x + 5
=− x+
A5(iii) Point C
x
mBC
2
y − (5)= (− ) [x − (3)]
y = 3x + 1
−1
1
y − y1 = mAC (x − x1 )
𝑦 A
mAF =
1 (−3)−(5)
((−1)−(3))
=−
y−5 =− x+
Line AF Point: A or F(3,2)
y|x=1 = −(1) + 5 ⇒ A(1,4) ✓
2 5
= x+
A(3,5) or C ∵ ∡BAC = 90°,
AC:
𝑂
AF:
1
2 1
y+3
mAC =
(0, b) lies on x + y + 3 = 0, 0+b+3 =0 b = −3 ✓
1
12 √5 12√5 5
✓
168
A math 360 sol (unofficial) A6(i)
Rev Ex 6 𝑦
AD: 3x + 2y = 6
E
C
B AB: 5y + 6 = 3x 𝑥
D
𝑂
A
A6(ii) Line BC ∵ BC ∥ x − axis, BC is y = 6 Point B At B, BC (y = 6)cuts AD (5y + 6 = 3x), 5(6) + 6 = 3x 36 = 3x x = 12 ⇒ B(12,6) ✓ Line CD Pt: C or D(0,3) Grad: ∵ CD ∥ AB,
Point A At A, AD cuts x − axis (y = 0): 3x + 2(0) = 6 3x =6 x =2 ⇒ A(2,0) ✓ Point D At D, AD cuts y − axis (x = 0): 3(0) + 2y = 6 y =3 ⇒ D(0,3) ✓
mCD = mAB = CD: y − y1
5 3
0 =
2
3
2+e1 0+e2
2+e1
2
= x+3 5
Point C At C, CD cuts BC (y = 6),
= MAE ,
= mCD (x − x1 ) 3
y
(0,3) = (
5
y − (3)= [x − (0)]
A6(ii) Point E Let E be (e1 , e2 ) D
3
2
5 3
)
and
e1 = −2 ∴ E(−2,6) ✓
3 =
0+e2
5
2
x+3=6 x
=3
x =5 ⇒ C(5,6) ✓
e2 = 6
Area of trapezium ABCD Area of ABCD 1 2 12 5 0 2 | = | 2 0 6 6 3 0 1 = (12 + 72 + 15 + 0 − 0 − 30 − 0 − 6) 2 1 = (63) 2 = 31.5 unit 2 ✓ B1(a) A(−1,2) B(3,10) C(p, 8) A, B and C lie on the same line: mAB = mBC 2−10 (−1)−3 −8 −4
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
= =
10−8 3−p 2 3−p 2
2
=
3−p p
=1 =2✓
3−p
169
A math 360 sol (unofficial) B1(b) AC ⊥ BC mAC ⋅ mBC 2−8 10−8 ⋅ (−1)−p 3−p −6 2
⋅
−1−p 3−p 6 2
⋅
Rev Ex 6 B2(iii) 𝐑𝐚𝐭𝐢𝐨 𝐀𝐏: 𝐏𝐐 3
= −1
A ( , 0) P(1, −1) B(0, −3) 2
= −1
By similar triangles (using x-coordinates) [diagram?]
= −1 = −1
p+1 3−p
3
AP: PB = ( − 1) : (1 − 0) 2
12 = (p + 1)(p − 3) 12 = p2 + 2p − 3 2 p − 2p − 15 = 0 (p + 3)(p − 5) = 0 p = −3 or p = 5 ✓ B2(i)
=
:1
2
= 1: 2 ✓ B3(i)
Point P At P, x − y − 2 = 0 intersects 2x − 5y − 7 = 0. x−y−2 =0 y = x − 2 −(1)
Show 𝐚 = 𝟑 A(2,6) B(6, −2) C(a, 8 − 3a) 8 − 3a < 0 −3a < −8 a
2x − 5y − 7 = 0 −(2) sub (1) into (2): 2x − 5(x − 2) − 7 = 0 2x − 5x + 10 − 7 = 0 −3x = −3 x =1
>
8 3
Area of △ ABC
= 10
6 a 2 || = 10 −2 8 − 3a 6 2 6 a 2 | | = 20 6 −2 8 − 3a 6 | − 4 + (48 − 18a) + 6a = 20 −36 − (−2a) − (16 − 6a)| |−8 − 4a| = 20 −8 − 4a = 20 or −8 − 4a = −20 −4a = 28 −4a = −12 a = −7 a =3 8 (rej ∵ a > ) 3 Point C C(3, −1) 1
| | 2
y|x=1 = (1) − 2 = −1 ⇒ P(1, −1) ✓ B2(ii) Line AB Point: P(1, −1) or A or B Gradient: mAB = 2 y − y1 = mAB (x − x1 ) y − (−1) = (2) [x − (1)] y+1 = 2x − 2 y = 2x − 3 ✓ Point A Point B At A, AB cuts x-axis At B where cuts y-axis (x = 0). (y = 0). y =0 y|x=0 = 2(0) − 3 2x − 3 = 0 = −3 3 ⇒ B(0, −3) ✓ x = AB:
1
2 6
B3(ii) Line AB Point:
2
A(2,6) or B(6, −2) (6)−(−2)
mAB =
AB:
y − y1 = mAB (x − x1 ) y − (6)= (−2)[x − (2)] y − 6 = −2x + 4 y = −2x + 10 ✓
(2)−(6)
=
8
Gradient:
−4
= −2
3
⇒ A ( , 0) ✓ 2
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
170
A math 360 sol (unofficial)
Rev Ex 6
B3(iii) Line (through C & ⊥ to AB) Point: C(3, −1)
B4(iv) Line CD Point: C(8,2) or D Gradient: ∵ CD ∥ AB, (4)−(9)
Gradient: ∵ line ⊥ AB (y = −2x + 10) m=−
1 mAB
=−
1 −2
=
mCD = mAB = (2)−(7) =
1
= m (x − x1 )
y − y1
1
y − (−1) = ( ) [x − (3)] 2
1
3
2 1
2 5
2
2
y+1
= x−
y
= x− ✓
B3(iv) Point F (Foot of ⊥) C A
2 5 2
x− x
x
2
1
5
2
2
y|x=3 = (3) − 6 = −3 ⇒ D(3, −3) ✓
= −2x + 10 =
B5(i)
25 2
=5 1
5
2
2
y|x=5 = (5) −
Show △ 𝐏𝐐𝐑 𝐢𝐬 𝐢𝐬𝐨𝐬𝐜𝐞𝐥𝐞𝐬 P(1,0) Q(0,2) R(2,3) |PQ| = √[(1) − (0)]2 + [(0) − (2)]2 = √1 + 4 = √5
=0 ⇒ F(5,0) ✓ B4(i)
= mCD (x − x1 ) = (1) [x − (8)] =x−8 =x−6✓
y − y1 y − (2) y−2 y
B
F
5
=1
B4(v) Point D At D, BM (y = 3x − 12) intersects CD (y = x − 6). 3x − 12 = x − 6 2x =6 x =3
At F, y = x − meets AB (y = −2x + 10). 1
−5
2
CD: Line:
−5
|QR| = √[(0) − (2)]2 + [(2) − (3)]2 = √4 + 1 = √5
Show 𝐀𝐁 = 𝐁𝐂 A(2,4) B(7,9)
C(8,2)
∵ |PQ| = |QR|, PQR is isosceles ✓
AB = √[(2) − (7)]2 − [(4) − (9)]2 = √50 BC = √[(7) − (8)]2 + [(9) − (2)]2 = √50
B5(ii) Area of △ 𝐏𝐐𝐑 1
area of △ PQR = | |
∴ AB = BC [shown] ✓
2
1 0
0 2
2 3
1 || 0
1
= |2 + 0 + 0 − 0 − 4 − 3|
B4(ii) Point M M = MAC = (
(2)+(8) (4)+(2)
,
2
2
2 1
= |−5|
) = (5,3) ✓
= B4(iii) Line BM Point:
2 5 2
unit 2 ✓
B(7,9) or M(5,3) (9)−(3)
6
Gradient: mBM = (7)−(5) = = 3 2
BM:
y − y1 = mBM (x − x1 ) y − (9)= (3) [x − (7)] y − 9 = 3x − 21 y = 3x − 12 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
171
A math 360 sol (unofficial)
Rev Ex 6
B5(iii) Line QS
B6(ii) Angle that BC makes with the positive x-axis 2−30
mBC = (−12)−12
R Q
tan β = S
6
β ≈ 49.4° ✓
P Point: Q(0,2) or S Gradient: ∵ QS ⊥ PR (using kite property), 1
mQS = −
mPR
=−
1 (0)−(3) ((1)−(2))
=−
1 −3 ( ) −1
=−
y − y1 = mQS (x − x1 )
QS:
7
1 3
B6(iii) Angle ACB ∡ACB = α − β = 69.4 − 49.4 = 20.0° ✓ B6(iv)
𝑦
C(12,30)
1
y − (2)= (− ) [x − (0)] 3
1
y−2 =− x 3 1
y
=− x+2 3
=− x+2
𝛾 Point D D(d1 , d2 ) BC = BD: B = MDC
−(1)
3
(−12,2) = (
x − y= 5 sub (1) into (2):
𝑥
A(−3, −10)
D
B5(iv) Point S At S, QS (x + 3y = 6) intersects x − y = 5. x + 3y = 6 3y = −x + 6 1
α 𝑂
3y = −x + 6 x + 3y = 6 ✓
y
β
B(−12,2)
−(2)
−12 = d1
1
d1 +12 d2 +30 2
d1 +12 2
,
2
)
and
2 =
= −36
d2 +30 2
d2 = −26
x − (− x + 2) = 5 3
4 3 4 3
x−2
=5
x
=7
x
=
∴ D(−36, −26) ✓
B6(v) Line AD Point:
21 4
A(−3, −10) or D(−36, −26)
1 21
y|x=21 = − ( ) + 2 3
4
= ⇒ S( B6(i)
4
tan α =
AD:
y − y1
4
, )✓ 4
(−10)−30 (−3)−12 8
(−10)−(−26) (−3)−(−36)
=
16 33
= mAD (x − x1 ) 16
y − (−10) = ( ) [x − (−3)]
Angle that AC makes with the positive x-axis A(−3, −10) 𝑦 𝐶(12,30) B(−12,2) C(12,30) mAC =
mAD =
1
21 1 4
Gradient:
𝐵(−12,2)
3
α ≈ 69.4° ✓
© Daniel & Samuel A-math tuition 📞9133 9982
𝛽
𝛼 𝑂
y + 10
=
y
=
33 16
48
33 16
33 282
33
x+ x−
33
✓
𝑥
𝐴(−3, −10)
sleightofmath.com
172
A math 360 sol (unofficial)
Rev Ex 6
B6(vi) Angle ADB mAD = tan γ =
16 33 16 33
γ ≈ 25.9° ∡ADB = β − γ = 29.4 − 25.9 ≈ 23.5° ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
173
A math 360 sol (unofficial)
Ex 7.1 2(e)
Ex 7.1 1(a)
ln 4 + lg 6 ≈ 2.16 ✓
1(b)
3 lg 2 − ln 2 ≈ 0.210 ✓
1(c)
ln 7.1 2 lg 5
1(d)
= log √2 (5 − 2√2) Is base √2 > 0 ? True Is base √2 ≠ 1 ? True Is input 5 − √2 > 0 ? True
≈ 1.40 ✓
lg 9−ln 3 ln(e2 −1)
∴ Yes ✓
≈ −0.0778 ✓ 3(a)
2(a)
log x (5 − 2x)|x=√2
log x (5 − 2x)|x=0.5 = log 0.5 (4)
3−2 log 3
Is base 0.5 > 0 ? True Is base 0.5 ≠ 1 ? True Is input 4 > 0 ? True
3(b)
10n
= 1 9
1 9
= −2 ✓ =5
log10 5 = n lg 5 =n✓
∴ Yes ✓ 3(c) 2(b)
log x (5 − 2x)|x=3 = log 3 (−1)
ex
=4
log e 4 = x ln 4 =x✓
Is base 3 > 0 ? True Is base 3 ≠ 1 ? True Is input −1 > 0 ? False
3(d)
2x
=p
log 2 p = x ✓ ∴ No ✓ 2(c)
3(e)
log x (5 − 2x)|x=2.5 = log 2.5 (0) Is base 2.5 > 0 ? Is base 2.5 ≠ 1 ? Is input 0 > 0 ?
=y
log a y = 3 ✓ True True False
∴ No ✓ 2(d)
a3
4(a)
53 4(b)
log x (5 − 2x)|x=1 = log1 (3) Is base 1 > 0 ? True Is base 1 ≠ 1 ? False Is input 3 > 0 ? True ∴ No ✓
log 5 125 = 3
lg 100 =2 log10 100 = 2 102
4(c)
sleightofmath.com
=x✓
log x 3 = 4 x4
© Daniel & Samuel A-math tuition 📞9133 9982
= 100 ✓
ln x = 2 log e x = 2 e2
4(d)
= 125 ✓
=3✓
174
A math 360 sol (unofficial) 4(e)
log 4 x = 2 4 x x y
=
log 2 𝑦 = 3 3
=x = 16 16 8
2 y
=y =8
=b
6(a)
log 4 4 −3 log 2 2 = 1 −3(1) = −2 ✓
6(b)
log 2 1 +4 log 5 5 = 0 +4(1) =4✓
6(c)
(3 − log 3 3)3 = [3 − (1)]3 = 23 =8✓
6(d)
(
8(a)
3 logx x+2 2
3(1)+2 2
4−2 log5 1
4−2(0) 5 2
) =[
8(b)
= 6(e)
6(f)
7(a)
16
8(c)
8(d)
9(a)
=x =8✓
ln x = lg 2 log e x = lg 2 =x ≈ 1.35 ✓
lg(3x) = 9 log10 3x = 9 109
= 3x
x
= (109 )
x
≈ 3.33 × 108 ✓
e2x
1 3
=k
log e k = 2x ln k = 2x ✓ 9(b)
10x−4 = 9 log10 9 = x − 4 lg 9 =x−4✓
log 2 x = 3 23 x
= e±√3 ≈ 5.65 or 0.177 ✓
elg 2 x
✓
log 2 (4 − 2 lg 10) = log 2 [4 − 2 log10 10] = log 2 [4 − 2(1)] = log 2 2 =1✓
= 100.61 ≈ 4.07 ✓
(ln x)2 = 3 ln x = ±√3
x x
]
log 2 (6 − 5 log 7 7) = log 2 [6 − 5(1)] = log 2 (1) =0✓
lg x = 0.61 log10 x = 0.61
log e x = ±√3
=( ) 4 25
2
x x
log y b = 2
x1 =a y2 x =a 2 xy = (a)(b) = ab ✓
3
= ✓
x
=2✓
log x a = 1
log 4 8 = x 4x =8 22x = 23 ⇒ 2x = 3
=y✓
2
5(b)
7(c)
log 3 y = n 3n
5(a)
Ex 7.1
9(c)
x4
=2−k
log x (2 − k) = 4 ✓ 7(b)
log x 9 = 2 x2 =9 x = −3 or x = 3 ✓ (rej)
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
175
A math 360 sol (unofficial) 9(d)
em+5
=x−2
Ex 7.1 12
log 3 p = a p
log e (x − 2) = m + 5 ln(x − 2) = m+5✓
= 3a
log 27 q = b 10(a) log 3 y = n + 1 3n+1
e
33b a−3b
= 3c
13(a) log 2 (2x + 1) = −3
=x−y✓
2x + 1
= 2−3
2x
=−
x
=−
= 4y ✓ 13(b) log 3 (x 2 − 1)
log 4 y = a = 4a
= 21+2a = 21+2a = 1 + 2a = 3b − 1 [shown] ✓
7 8 7 16
✓
=1
x2 − 1 = 31 2 x −4 =0 (x + 2)(x − 2) = 0 x = −2 or x = 2 ✓
−(1)
log 8 (2y) = b −(2) sub (1) into (2): log 8 [2(4a )] = b log8 [2(22a )] = b log 8 (21+2a ) = b 8b 23b ⇒ 3b 2a
= 3c
3 = 3c ⇒ c = a − 3b ✓
10(d) log 2 (4y) = p + 1
y
= 3c
27b 3a
=k✓
10√2
11
p q 3a
10(c) lg(x − y) = √2 log10 (x − y) = √2
2p+1
= 27b
=y✓
10(b) ln k = x − 3 log e k = x − 3 x−3
q
13(c)
log x (6x − 8) = 2 x2 = 6x − 8 x 2 − 6x + 8 =0 (x − 2)(x − 4) = 0 x = 2 or x = 4 ✓
13(d) log x 64 = 3 2
3
x2
= 64
3 2
= 26
x
2
x x x
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
= (26 )3 = 24 = 16 ✓
176
A math 360 sol (unofficial)
Ex 7.1
13(e) log 9 √27 = x + 1 9x+1
15(b) log y x = 2
= √27
2x+2
3
= y2
x
3 2
−(1)
=3
⇒ 2x + 2 =
xy = 8 −(2) sub (1) into (2): (y 2 )y = 8 y3 = 23 ⇒ y =2✓
3 2 1
2x
=−
x
=− ✓
2 1 4
14(a) ln 2 × ln(4x)= 3 3
ln(4x)
=
log e (4x)
=
4x
= eln 2
x|y=2 = (2)2
ln 2 3
16
ln 2
=4✓
log 2 (log 3 x) = ln e
3
1
log 2 (log 3 x) = 1 log 3 x = 21
3 ln 2
x
= e
x
≈ 18.9 ✓
4
= 32 =9✓
x x
14(b) lg(x − 2) = (lg 3)2 log10 (x − 2) = (lg 3)2
17(a) For lg(x + 2) to be defined, 2
= 10(lg 3)
x−2
= 2 + 10(lg 3) ≈ 3.69 ✓
x x
x + 2> 0 x > −2
2
17(b) For ln(x 2 − 2x) to be defined, 14(c) ln(4x) = lg 3 × lg 5 log e 4x = lg 3 × lg 5 4x
= elg 3×lg 5
x
= e(lg 3×lg 5)
x
≈ 0.349 ✓
x 2 − 2x x(x − 2) +
1
17(c) For log x (3 − x) to be defined, x > 0, x ≠ 1 and 3 − x > 0 3 >x x <3 ∴ 0 < x < 3, x ≠ 1 ✓
15(a) log x 16 = 4 x4 = 16 x = 2 or x = −2 (rej) ✓ −(1)
y
+ 2
x < 0 or x > 2 ✓
14(d) lg(x − 1) = lg(e2 − 1) ⇒ x − 1 = e2 − 1 x = e2 x ≈ 7.39 ✓
log 2 y = x sub (1) into (2): log 2 y = 2
− 0
4
>0 >0
−(2)
18(a) ln(y + 1) − x = 0 ln(y + 1) =x log e (y + 1) = x y+1 y
= ex = ex − 1 ✓
= 22 =4✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
177
A math 360 sol (unofficial) 18(b) 2 lg y lg y
Ex 7.1
=x−2
20(ii) log 9 (31 + log x 16) = log 2 √8
x−2
=
log 9 (31 + log x 16) =
2 x−2
log10 y =
log 9 (31 + log x 16) =
2 x−2 2
y
= 10
y
= 102x−1 ✓
= (9)2
31 + log x 16 31 + log x 16 31 + log x 16 log x 16
= (32 )2 = 33 = 27 = −4
x −4 x −4
= 16 = 24
x
= (24 )−4 = 2−1
3
=x =x−4
1
= ln(x − 4) ✓
y
2 3
= log e (x − 4)
2y
2 3
31 + log x 16
1
18(c) e2y + 4 e2y
3
2
1
18(d) ln(x + y) − 4x = 0 ln(x + y) = 4x log e (x + y) = 4x
2
= e4x = e4x − x ✓
x+y y 19
1
= ✓
ln(x 2 + 1 − e3 lg 10 )
21
For equal real roots: b2 − 4ac =0 2 (−4) − 4(1)(log 2 p) = 0 16 = 4 log 2 p log 2 p =4 p = 24 p = 16 ✓
=3
log e (x 2 + 1 − e3 lg 10 ) = 3 x 2 + 1 − e3 lg 10 x 2 + 1 − e3(1) x2
= e3 = e3 = 2e3 − 1
x = ±√2e3 − 1 x = ±6.26 ✓ [textbook answer is wrong] 20(i)
p = log 2 √8 3
p = log 2 22 3
p= ✓ 2
x 2 − 4x + log 2 p = 0 i.e. a = 1, b = −4, c = log 2 p
22(i) (a) (b) (c)
lg 546 ≈ 2.74 ✓ lg 12 458 ≈ 4.10 ✓ lg 464 777 399 ≈ 8.67 ✓
22(ii) Number of digits in integer k from lg k lg k + 1 if lg k ∈ ℤ ={ ✓ ⌈lg k⌉ if lg k ∉ ℤ 22(iii) Number of digits in 342 = ⌈lg 342 ⌉ = ⌈20.03⌉ = 21 ✓ Number of digits in 732 = ⌈lg 732 ⌉ = ⌈27.02⌉ = 27 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
178
A math 360 sol (unofficial)
Ex 7.1
22(iv) As we use the base-10 numeral system, The ‘index of base 10’ is very indicative of the number of digits. 1 digit: k = 1 to 9 ⇒ lowest k = 1 = 100 2 digits: k = 10 to 99 ⇒ lowest k = 10 = 101 3 digits: k = 100 to 999 ⇒ lowest k = 100 = 102 Observe that the lowest k for each digit range is always 10integer Every integer increase in index results in increase in digits but increase in index smaller than 1 will not result in increase in digits and still be registered as the same number of digits. ∴ for k with lg k is an integer, the no. of digits is lg k + 1 1 digit: k = 100 ⇒ no. of digits = lg 100 + 1 = 0 + 1 = 1 2 digit: k = 10 = 101 ⇒ no. of digits = lg 101 + 1 = 1 + 1 = 2 ∴ for k with lg k is a non-integer, the no. of digits is ⌈lg k⌉ (round to the next higher integer) 1 digit: k = 5 ≈ 100.699 ⇒ no. of digits = ⌈lg 100.699 ⌉ = ⌈0.699⌉ = 1 2 digit: k = 55 ≈ 101.74 ⇒ no. of digits = ⌈lg 101.74 ⌉ = ⌈1.74⌉ = 2
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
179
A math 360 sol (unofficial)
Ex 7.2 4(a)
Ex 7.2 1(a)
1(b)
1
9
9
log 3 27 + log 3 = log 3 (27 ⋅ )
4(b)
log5 4×log2 10 log25 √10
=
= log 6 (6) =1✓
=
3
=
log 5 4 +2 log 5 3 −3 log 5 2 = log 5 4 + log 5 32 − log 5 23 23
=
]
=
9
= log 5 ✓ 2
2(b)
lg
8
=
−2 lg
75
3 5
+4 lg
3
8
3 2
3 4
75
5
2
8 3 4 ( ) 75 2 3 2 ( ) 5
= lg [
5(a)
]
3
= lg ✓ 2
1
+2 log 3 5 − log 3
3(52 ) 3−3
]
5(b)
= log 3 2025 ✓ 3(a)
log 5 7 =
3 ln 3 ln 3
lg 4 lg 10 × lg 5 lg 2 lg √10 lg 25
lg 4 lg 10 lg 5
⋅
lg 22 lg 5 2 lg 2 lg 5 2 lg 2 lg 5 2 lg 5
lg 2
⋅ ⋅ ⋅ ⋅
⋅
1 lg 2 1 lg 2 1 lg 2
lg 25 lg √10
⋅
lg 52 1
lg 102 2 lg 5
⋅1 2
lg 10
2 lg 5
⋅1 2
lg 10
2 lg 5 1 2
4 1 2
y = 100x1.5 lg y = lg(100x1.5 ) = lg 100 + lg x1.5 = 1.5 lg x + lg 102 = 1.5 lg x +2 ✓ m = 1.5 ✓ X = lg x ✓ c =2✓
1 27
= log 3 3 + log 3 52 − log 3 3−3 = log 3 [
ln 3
=8✓
2
= lg ( ) − lg ( ) + lg ( )
2(c)
=
= log 6 ( 2 )
= log 5 [
ln 33
=3✓
log 6 54 −2 log 6 3 = log 6 54 − log 6 32
4(32 )
ln 5
ln 3
=
54
2(a)
ln 27
ln 27
=
1
×
ln 3
=
log 2 8 = log 2 23 =3✓
= log 3 (3) =1✓ 1(c)
ln 5
log 3 5 × log 5 27 =
ln 7 ln 5
y = 0.1(1000)x y = (10−1 )(103 )x y = 103x−1 lg y = 3x − 1 ✓
≈ 1.21 ✓ 3(b)
log 1 5.3 = 2
m = 3✓ X= x✓ c = −1 ✓
ln 5.3 ln
1 2
≈ −2.41 ✓ 6(a)
log a 8 −2 log a 4 = log a 8 − log a 42 8
= log a ( 2 ) 4
1
= log a ✓ 2
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
180
A math 360 sol (unofficial) 6(b)
2 log x 5 −3 log x 2 + log x 4 = log x 52 − log x 23 + log x 4 = log x [ = log x
6(c)
Ex 7.2
52 (4) 23
25 2
8(iv)
log a 3 = 0.477 log a 5 = 0.699 loga 25 loga 3a
= =
loga 52 loga 3+loga a 2 loga 5 (0.477)+1
2
9 5a
log 4 3 = a 3 = 4a
3
= (4a )(4b ) = 4a+3b ✓ 9 2
= log a 9
− log a 5a
= log a 32 −(log a 5 + log a a) = 2 log a 3 − log a 5 − log a a = 2(0.477) −0.699 −1 = −0.745 ✓ log 4 3 = a log 4 5 = b
= 2(lg 3 + lg √x)
− (lg − lg x 2 )
1
4
+
3 4
− (lg − 2 lg x)
= 2 lg 3 + lg x
− lg + 2 lg x
= 3 lg x
+2 lg 3 − lg
2
+ lg 32 − lg + lg
9
= lg x
+ lg
2 9
= lg x
+ lg
2
log 4 20= log 4 × 5) 2 = log 4 2 + log 4 5 =1 +b ✓
4
+
3 4
2 lg 22 +3 lg x 2 2 lg 2+3 lg x 2 2
32
+ lg 2
4 3
32 ×2 4 3
27
✓
2
x = 10p
y = 10q
y2
lg 4+lg x3
3
lg y =q log10 y = 𝑞
100√x
lg 4x3 lg 100
+ lg 2 + lg x
3
lg x =p log10 y = 𝑝
lg (
sleightofmath.com
+ +
3
9
(22
3
4
2
© Daniel & Samuel A-math tuition 📞9133 9982
3x2
= 2 (lg 3 + lg x)
10(i) 8(ii)
+ log100 4x 3
− lg
= lg x
log 4 45= log 4 (32 × 5) = log 4 32 + log 4 5 = 2(log 4 3) + log 4 5 = 2a +b ✓
4
2 lg 3√x
= 3 lg x 8(i)
✓
375 = 3 × 53
log a (5a ) = log a 5 + log a a = 0.699 +2 = 2.699 ✓ log a
a+2b
log 4 5 = b 5 = 4b
2(0.699) = 1.477 ≈ 0.947 ✓
7(iii)
2
=
]
= log a 8a ✓
7(ii)
log 4 42 log 4 (3 × 52 ) 2 = log 4 3 + log 4 52 2 = log 4 3 + 2 log 4 5
✓
a6 2
log4 75
=
]
23 (a6 )
log4 16
log 75 16 =
3 log a 2 −4 +2 log a a3 = log a 23 − log a a4 + log a (a3 )2 = log a [
7(i)
8(iii)
) = lg 100 + lg √x − lg y 2 1
=2
+ lg x
−2 lg y
=2
+ p
−2q ✓
2 1 2
181
A math 360 sol (unofficial)
Ex 7.2
10(ii) lg(y x ) = x lg y = 10p (q) = q(10p ) ✓ 11
14
log 8 5 =
ln K = ln a − ln b + ln c − t − bc
1
ln K = ln (a ⋅ ⋅ c ⋅ e b
K
=
lg(y + 1) = lg ⇒y+1
=
y
=
⇒
√x 100 √x
34
15(ii) lg(√3 − √2) = lg [
(1)−(m) 3(m)
=
1−m 3m
✓
√3+√2 √3+√2
1 √3+√2
]
= lg 1 − lg(√3 + √2)
15(iii) k = log 2 (√9 + √5) log √2 (√9 − √5) = log √2 [(√9 − √5) = log √2 (
9−5 √9+√5
√9+√5 √9+√5
]
)
= (x + 2)3
= log √2 4 − log √2 (√9 + √5)
= 81(x + 2)3
=
3 2
or y = −9(x + 2) ✓ (rej ∵ y > 0)
12(c) 3 + log 2 (x + y) 3 log 2 2 + log 2 (x + y) log 2 8(x + y) ⇒ 8(x + y) 8x + 8y = x − 2y 10y = −7x 7
=
√3+√2
= 3 log 3 (x + 2) = log 3 (x + 2)3
y2
10
3 lg 2
√3 + √2 1 = [shown] ✓
= log 3 (x + 2)3
=−
lg 10−lg 2
=
3−2
=
)
−1✓
34
=
= log 2 (x − 2y) = log 2 (x − 2y) = log 2 (x − 2y) = x − 2y 16(i)
x✓
y = 3, x = 2: log 2 (3 + 1) = 2 log 2 (2) + c log 2 22 =2+c 2 =2+c c =0
log2 22 1 log2 22
2 1 2
−
log2 (√9+√5) 1
log2 22
−
log2 (√9+√5) 1 2
=4
−2 log 2 (√9 + √5)
=4
−2k
= 2(2 − k) ✓
log 2 (y + 1) = 2 log 2 x + c
∴ log 2 (y + 1) log 2 (y + 1) ⇒y+1 y
10 2 lg 23
lg( )
= − lg(√3 + √2) ✓
y2
3 2
=
√3 − √2 = (√3 − √2)
√x 100
y = 9(x + 2)
13
lg 8
100
y2
y
15(i)
t bc
− lg √x − lg √x
12(b) 2 log 3 y −4 log 3 y 2 − log 3 34 log 3
−
[shown] ✓
12(a) lg(y + 1) = 2 lg(y + 1) = lg 102
lg 5
t bc
ln K = ln a − ln b + ln c + ln e ac − t e bc b
m = lg 2
16(ii)
p log a p log a p ⇒p 1 q
= aloga x = log a aloga x = log a x =x✓
3 =3
1 log4 3
=3
1 1 log3 4
= 3log3 4 = 4 ✓
= 2 log 2 x = log 2 x 2 = x2 = x2 − 1 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
182
A math 360 sol (unofficial) 17
Ex 7.2
Method 1 (prime factorization) (lg 5)2 + lg 2 lg 50 = (lg 5)2 + lg 2 lg(2 × 52 ) = (lg 5)2 + lg 2 (lg 2 + 2 lg 5) = (lg 5)2 + 2 lg 5 lg 2 + (lg 2)2 = (lg 5 + lg 2)2 = (lg 10)2 =1✓
1 2 18 un = (1 − ) n (ii)(a) 1 2
lg u4 = lg (1 − ) 4
3
= 2 lg [shown] ✓ 4
lg u Method 2 (selective factorization) (lg 5)2 + lg 2 lg 50 = (lg 5)2 + lg 2 lg(5 × 10) = (lg 5)2 + lg 2 (lg 5 + lg 10) = (lg 5)2 + lg 2 (lg 5 + 1) = (lg 5)2 + lg 2 lg 5 + lg 2 = lg 5 (lg 5 + lg 2) + lg 2 = lg 5 lg 10 + lg 2 = lg 5 + lg 2 = lg 10 =1✓ 18(i)
1
2
3
998
2
3
998
999 999
999
lg + lg + lg + ⋯ + lg 1
2
4 3
2 1
3
4
= lg [( ) ( ) ( ) … ( = lg (
)(
+ lg
1000
= lg (1 − = 2 lg (
1 10k
)
2
10k −1 10k
)✓
lg u2 + lg u3 + lg u4 + ⋯ + lg u10k 18 (ii)(b) 1 2 1 2 3 = lg (1 − ) + lg (1 − ) +2 lg 2
3
4
+ ⋯ + 2 lg = 2 lg
1 2 1
= 2(lg
2
+2 lg + lg
2
2 3
+2 lg
+ lg
3
3
3
+ ⋯ + 2 lg
4
+ ⋯ + lg
1
2
3
4 10k −1
2
3
4
10k
= 2 lg [( ) ( ) ( ) … (
10k −1 10k 10k −1 10k
10k −1 10k
)
)]
1 = 2 lg ( k ) 10 = 2 lg(10−k ) = 2(−k) = −2k ✓
999 1000
)]
)
1000 −3 )
= lg(10 = −3 ✓
(10k )
19
1 lg ≈ −0.301 < 0 2 When you multiply both sides of an inequality with a negative number, switch the reverse the inequality sign from 2nd line onwards
20
lg[(−2)(−5)] ≠ lg(−2) + lg(−5) ✓
20(i)
x = −2, y = −5 ✓
20(ii) x = −2, r = 2 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
183
A math 360 sol (unofficial)
Ex 7.3
Ex 7.3 1(a)
log 5 (x + 1) = log 5 3 ⇒x+1 =3 x = 2✓
1(b)
log 2 (x − 1) ⇒x−1 3x x
1(c)
2(a)
2(b)
3(a)
3(b)
= log 2 (4x − 7) = 4x − 7 =6 = 2✓
3(c)
log 2 (x − 1)2 =2 + log 2 (x + 2) 2 2 (x log 2 − 1) = log 2 2 + log 2 (x + 2) log 2 (x − 1)2 = log 2 4(x + 2) 2 ⇒ (x − 1) = 4(x + 2) 2 x − 2x + 1 = 4x + 8 2 x − 6x − 7 =0 (x − 7)(x + 1) = 0 x = 7 or x = −1 ✓
4(a)
log 3 x = 9 log x 3 log 3 x =
log 3 x + log 3 (x + 2)= 1 log 3 [x(x + 2)] = log 3 3 ⇒ x(x + 2) =3 x2 + 2 =3 2 x + 2x − 3 =0 (x + 3)(x − 1) =0 x = −3 (rej) or x = 1 ✓ log x 25 + log x 5 log x (125) ⇒ 125 x
=3 = log x x 3 = x3 =5✓
9 log3 x
sub u = log 3 x: u=
9 u
u2 = 9 u =3 log 3 x = 3 x x 4(b)
or
u = −3 log 3 x = −3
= 33 = 27 ✓
x
= 3−3
x
=
1 27
✓
log 3 x + 2 = 3 log x 3 3
log 3 x + 2 =
log3 x
3 log x 2 + log x 18 = 2 log x 23 + log x 18 = log x x 2 log x (23 × 18) = log x x 2 log x 144 = log x x 2 ⇒ 144 = x2 x = 12 or x = −12 (rej) ✓
sub u = log 3 x:
lg[(x + 2)(x − 2)] = lg(2x − 1) ⇒ (x + 2)(x − 2) = (2x − 1) x2 − 4 = 2x − 1 2 x − 2x − 3 =0 (x − 3)(x + 1) =0 x = 3 or x = −1 (rej) ✓
x
u+2
=
3 u
u2 + 2u − 3 =0 (u + 3)(u − 1) = 0 u = −3 or u =1 log 3 x = −3 log 3 x = 1
x
= 3−3 =
1 27
x
=3✓
✓
log 2 [(x − 2)(8 − x)] − log 2 (x − 5)= 3 log 2 [ ⇒
(x−2)(8−x)
(x−5) (x−2)(8−x)
]
(x−5)
= log 2 23 = 23
−(x − 2)(x − 8) = 8(x − 5) 2 −(x − 10x + 16) = 8x − 40 x 2 − 2x − 24 =0 (x − 6)(x + 4) =0 x = 6 or x = −4 (rej) ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
184
A math 360 sol (unofficial) 5
Ex 7.3
ln(3x − y) = ln 36 − ln 9
7(a)
36
ln(3x − y) = ln ( )
2 log 5 x + (
⇒ 3x − y = 4 y = 3x − 4 −(1)
2 log 5 x + (
(ex )2
2 log 5 x + (
9
=e
ey
5
e2x−y = e1 ⇒ 2x − y = 1
2
= 55 2
log 2 x − log 4 (x + 6) = 0 log 2 x = log 4 (x + 6) =[ =[ =[
=2
6
)
x
2
= 5q − p = 5q − 1
log2 (x+6) 2
] ]
= √x + 6
2
=x+6 =0
x = 3 or x = −2 (rej) ✓ 7(c) −(2)
sub (1) into (2): 2 + 3q = 5q − 1 2q =3 3
log 5 (5 − 4x) = log √5 (2 − x) log 5 (5 − 4x) =
log5 (2−x)
log 5 (5 − 4x) =
log5 (2−x)
log 5 (5 − 4x) =
log5 (2−x)
log5 √5 1
log5 52 1 2
log 5 (5 − 4x) = 2 log 5 (2 − x)
= ✓
q
log2 22
]
(x − 3)(x + 2) = 0
=2
1 p
log2 (x+6)
x2 − x − 6
=2
5q−p
log2 4
⇒x
= log 2 2
15q−3p
log2 (x+6)
= log 2 √x + 6
2p+2 = 24 (23q ) 2p+2 = 24+3q ⇒ p + 2 = 4 + 3q p = 2 + 3q −(1) log 2 6 − log 2 (15q − 3p) = 1
⇒
= log 5 55 = (55 )5 = 52 = 25
3
15q−3p 6
= log 5 55
)
2
x
4 [(22 )2q ]
log 2 (
) = log 5 55
= log 5 55
= 16 (4 )
2
log5 52 log5 x
5 2
3 q 2
p+2
) = log 5 55
log5 25 log5 x
log 5 x
⇒x
Put x = 3 into (1): y|x=5 = 3(3) − 4 =5✓ 2
=5
log 5 x 2
7(b)
p+2
log5 x
5
−(2)
sub (1) into (2): 2x − (3x − 4) = 1 −x + 4 =1 −x = −3 x =3✓
6
2 log 5 x + log 25 x
2
log 5 (5 − 4x) = log 5 (2 − x)2 Put q =
3 2
into (1): 3
p|q=3 = 2 + 3 ( ) 2
2
=
13 2
✓
⇒ 5 − 4x
= (2 − x)2
5 − 4x
= 4 − 4x + x 2
−x 2 + 1
=0
x2 − 1
=0
(x + 1)(x − 1) = 0 x = −1 or x = 1 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
185
A math 360 sol (unofficial) 8(b)
log 9 y + log 3 y log3 y
+ log 3 y
log3 9 log3 y
+ log 3 y log3 32 1 log 3 y + log 3 y 2 3 log 3 y 2 3
Ex 7.3
= 2 log 3 x +3 log 3 2 = log 3 x
2
9(c)
+ log 3 2
3
= log 3 [(x 2 )(23 )] = log 3 (8x 2 )
1
= log 3 (8x 2 )
log 3 √3x + 1 = log 3 (2x) ⇒ √3x + 1 = 2x 3x + 1 = 4x 2 4x 2 − 3x − 1 = 0 (4x + 1)(x − 1) = 0
2
⇒ y2
= 8x 2
y
= (8x 2 )3 2
=
2 4 (23 )3 x 3
=
4 22 x 3
log 3 (3x + 1) = log 3 (2x)
1
2
x = − (rej) or x = 1 ✓
= (8)3 (x 2 )3
4
9(d)
3 log 4 x − log16 x = 3.75 log 4 x 3 −
4
= 4x 3 ✓ log 4 (6 − x) − log 2 8
log 4 x 3 −
= log 9 3
log 4 x 3 −
1
log 4 (6 − x) − log 2 23 = log 9 92
log4 x
= log 4 43.75
log4 16 log4 x log4
log4 x
= log 4 4
2
1
log 4 x 2
2
5
15
x2
= 44
log 4 (6 − x)
=
6−x
= 42
x
= (22 )2 = 27 = −122 ✓
5
5
15
= (22 ) 4
5
15
x2
= 22 2 15 5 2
= (2 )
x
= 23 =8✓
log 7 (9x + 38) − log 7 (x + 2) = log 9 81 log 7 ( log 7 ( ⇒
9x+38
)
= log 9 92
)
=2
x+2 9x+38 x+2 9x+38
x+2 9x+38
x+2 9x+38 x+2
)
9(e)
log 5 x − log 25 (x + 10) = 0.5 log 5 x −
2
= log 7 7 = 72
log 5 x −
= 49
log 5 x −
9x + 38 −40x
= 49x + 98 = 60
x
=− ✓
15 4
( )
= log 4 4
x2 7
15 4
( )
2 7
=
log 7 (
15 4
( )
1
log 4 (6 − x) −3
15 4
( )
= log 4 4
42
log 4 x 3 − log 4 x 2 = log 4 4
7
9(b)
= log 3 (2x)
log3 32
2
9(a)
= log 3 (2x)
log3 9 log3 (3x+1)
= log 3 (8x 2 )
log 3 y 2
log 9 (3x + 1) = log 3 x + log 3 2 log3 (3x+1)
3
log5 (x+10) log5 25 log5 (x+10) log5 52 log5 (x+10) 2
log 5 x − log 5 √x + 10
3
log 5 (
2
⇒
x
)
√x+10
x √x+10
x2 x+10
= log 5 50.5 = log 5 √5 = log 5 √5 = log 5 √5 = log 5 √5 = √5 =5
x2
= 5x + 50
x 2 − 5x − 50
=0
(x − 10)(x + 5)
=0
x = 10 or x = −5 (rej ∵ x > 0) ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
186
A math 360 sol (unofficial) 10
Ex 7.3 + log a (7x − 10a)
2 log a x
=1
log a x 2
= log a a + log a (7x − 10a)
1st eqn log 2 (2y − 3x) − log 2 3 = 4 log 4 2
= log a [a(7x − 10a)]
log 2 (
= a(7x − 10a)
log 2 (
log a x ⇒x x
2
2
2
12
2
log 2 (
= 7ax − 10a
x 2 − 7ax + 10a2 = 0
log 2 (
(x − 2a)(x − 5a) = 0
⇒
x = 2a or x = 5a ✓ 11
27 × 3lg x
= 91+lg(x−20)
(33 )(3lg x )
= (32 )1+lg(x−20)
33+lg x
= 32+2 lg(x−20)
⇒ 3 + lg x
= 2 + 2 lg(x − 20)
1 + lg x
= 2 lg(x − 20)
lg 10 + lg x
= lg(x − 20)2
lg(10x)
= lg(x − 20)2
⇒ 10x
= (x − 20)2
2y−3x 3 2y−3x 3 2y−3x 3 2y−3x 3
2y−3x
1
)
= 4 (log 4 42 )
)
= 4( )
)
=2
)
= log 2 22
1 2
= 22
3
2y − 3x 2y
= 12 = 3x + 12
y
= x + 6 −(1)
3 2
2nd eqn log 3 6 + log 3 (x + y) log 3 6 + log 3 (x + y) log 3 [6(x + y)] ⇒ 6(x + y) 6x + 6y
= log 3 (−x) + log 3 (1 − x) = log 3 [(−x)(1 − x)] = log 3 (x 2 − x) = x2 − x = x2 − x −(2)
sub (1) into (2): 3
2
10x
= x − 40x + 400
6x + 6 ( x + 6)
0
= x 2 − 50x + 400
x 2 − 50x + 400
=0
6x + 9x + 36 = x2 − x 15x + 36 = x2 − x x 2 − 16x − 36 =0 (x − 18)(x + 2) =0 x = 18 or x = −2 ✓
= x2 − x
2
(x − 40)(x − 10) = 0 x = 40 or x = 10 (rej) ✓
3
y|x=−2 = (−2) + 6
(rej ∵ −x > 0)
2
=3✓ 12(ii) log 3 6 + log 3 (x + y) = log 3 (x 2 − x) ⇒ x + y > 0 x2 − x > 0 ∴ On top of x = −2, y = 3, the solution includes 3
x = 18, y|x=18 = (18) + 6 = 33 ✓ 2
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
187
A math 360 sol (unofficial)
Ex 7.3
13(i) log 2 (x 3 + 1) − 2 log 2 x = log 2 (x 2 − x + 1) − 2 log 2 (x 3 + 1) − log 2 x 2 = log 2 (x 2 − x + 1) − log 2 22 log 2 ( ⇒
x3 +1 x2
)
= log 2 (
x3 +1
=
x2 (x+1)(x2 −x+1)
=
x2 x+1
=
x2
22
)
x = 2 − 2√2 or (rej ∵ x > 0)
+ log a2 x
x
1 x
loga ( ) 1 x
x2 −x+1
loga ( )
22 x2 −x+1
1 2
+ log a x
+
+ log a x
+
1
7
x 1 2
4
loga x loga a2 loga x 2
+ log a4 x = c + +
loga x loga a4 loga x 4
1 4
log a ( ) x
7
1 2
7
= log a ac
x
4±√16+16 2
=
4±√32 2
=
4±4√2 2
x = 2 + 2√2 ✓
(x 3
7
log a [(x −1 )2 x 4 ]
= log a ac
7
log a [(x −2 )x 4 ]
= log a ac
1
2
(x 2
13(ii) log 2 + 1) − log 2 x = log 2 − x + 1) − 2 3 2 log 2 (x + 1) − 2 log 2 x = log 2 (x − x + 1) − 2 ⇒ x = 2 ± 2√2 ✓
log a (x −4 )
= log a ac
1
⇒ x −4 x 15
= log a ac
+ log a x 4 = log a ac
log a [( ) x 4 ] =
= log a ac
= log a ac
2 log a ( ) + log a x
4
−(−4)±√(−4)2 −4(1)(−4) 2(1)
1
log √a ( ) + log a x loga √a
= x2 =0
4x + 4 x 2 − 4x − 4 x=
x2 −x+1
14
= ac = a−4c ✓ 2 log a b + 4 log b a = 9 2 log a b + 4 (
1 loga b
)=9
sub u = log a b: 2u +
4
=9
u
2u2 − 9u + 4 = 0 (2u − 1)(u − 4) = 0 u=
1 2
sub u = log a b: log a b = b b
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
1
u=4 sub u = log a b: log a b = 4
2 1 2
=a = √a ✓
b = a4 (rej ∵ a > b > 1)
188
A math 360 sol (unofficial)
Ex 7.4 3(ii)
Ex 7.4 1(a)
1(b)
4x
= 9(5x )
4 x
( ) 5
5x = 9 lg 5x = lg 9 x lg 5 = lg 9
lg ( ) = lg 9 5
4
x lg ( ) = lg 9 5
lg 9
x
=
x
≈ 1.37 ✓
4e2x
lg 5
= 21
2x
=9
4 x
4(a)
21
e
=
2x
= ln
x
= ln
x
≈ 0.829 ✓
4 21
1
4 21
2
4
lg 9
x
=
x
≈ −0.985 ✓
2x . 3x 6x lg 6x x lg 6
= 10 = 10 = lg 10 =1
x
=
lg
4 5
1 lg 6
≈ 1.29 ✓ 1(c)
4 − 72x −72x 72x lg 72x 2x lg 7
=1 = −3 =3 = lg 3 = lg 3
x
=
x
≈ 0.282 ✓
4(b)
2x+1 = 3x (2x )(21 ) = 3x 2x
=
3x 2 x
( )
lg 3
3
2 lg 7
=
2 x
lg ( )
2
3(i)
3x+1 − 12 3x+1 lg 3x+1 (x + 1) lg 3
=0 = 12 = lg 12 = lg 12
x+1
=
x
=
x
≈ 1.26 ✓
lg 3
2
x lg ( ) = lg 3
x
=
1 2 1 2
1 2 2 lg( ) 3
lg
≈ 1.71 ✓
lg 12 lg 3 lg 12
2 1
= lg
3
2
1(d)
1
4(c) −1
3x+1 . 2x−2 = 21 x x −2 (3 )(3) (2 )(2 ) = 21 32
(3x )(2x )
= (3)(2−2 )
y = 5e
6x lg 6x x lg 6
= 28 = lg 28 = lg 28
y = 12: 5e0.2x = 12
x
=
0.2x
=
0.2x
= ln
x
= 5 ln
x
≈ 4.38 ✓
4
4x 5x 4 x
lg 6
≈ 1.86 ✓
12
e0.2x
x
lg 28
5 12 5
5(i)
9x − 4 = 3x+1 (32 )x − 4 = (3x )(3) (3x )2 − 3(3x ) − 4 = 0 ✓
5(ii)
(3x − 4)(3x + 1) = 0 3x = 4 or 3x = −1 (rej) lg 3x = lg 4 x lg 3 = lg 4
12 5
x)
= 9(5 =9
( ) =9✓ 5
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
lg 4
x
=
x
≈ 1.26 ✓
lg 3
189
A math 360 sol (unofficial) 6(i)
6(ii)
7(a)
Ex 7.4 3
8x + 11(2x )
= 4x+2 − 20
(23 )x + 11(2x ) (2x )3 + 11(2x ) (2x )3 + 11(2x ) (2x )3 − 8(2x )2 + 11(2x ) + 20 sub u = 2x u3 − 8u2 + 11u + 20 (u + 1)(u2 + + 20)
= (22 )x+2 − 20 = (22x )(23 ) − 20 = 8(2x )2 − 20 =0
(u + 1)(u2 − 9u + 20) = 0 (u + 1)(u − 5)(u − 4) = 0 u = −1 or u = 5 or sub u = 2x sub u = 2x x 2 = −1 2x = 5 (rej ∵ 2x > 0) x lg 2 = lg 5
3
=0✓
u =4 sub u = 2x 2x = 22 ⇒ x =2✓
7(d)
=
x
≈ 2.32 ✓
1 2
lg 2
sub y = ex : ex = −
1 2
(NA ∵ ex > 0) ex x
e
2y − 7√y + 3 1
y=
1 4
sub y = ex ex =
8(a)
1 4 1
x
= ln
x
≈ −1.39 ✓
4
x 3 = e6x−1 ln x 3 = ln e6x−1 3 ln x = 6x − 1 ln x = 2x −
12 ex
sub y = ex y
=7−
12
a=2✓
y
b=− ✓
y2 = 7y − 12 2 y − 7y + 12 = 0 (y − 3)(y − 4)= 0 y = 3 or y=4 x sub y = e sub y = ex x e =3 ex = 4 x = ln 3 x = ln 4 x ≈ 1.10 ✓ x ≈ 1.39 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
=0 √y = 3 y=9 sub y = ex ex = 9 x = ln 9 x ≈ 2.20 ✓
√y = 2 or
= 7 − 12e−x =7−
2ex = 7√ex − 3
(2√y − 1)(√y − 3) = 0
y=2 sub y = ex : ex = 2 x = ln 2 x ≈ 0.693 ✓
or
y=2 sub y = ex ex = 2 x = ln 2 x ≈ 0.693 ✓
1
lg 5
x
e3x + 2ex = 3e2x (ex )3 + 2ex = 3(ex )2 x sub y = e y 3 + 2y = 3y 2 y 3 − 3y 2 + 2y = 0 y(y 2 − 3y + 2) = 0 y(y − 1)(y − 2) = 0 y=0 or y = 1 or x sub y = e sub y = ex x e = 0 (NA) ex = 1 x =0✓
2ex = 7(ex )2 − 3 sub y = ex 2y = 7√y − 3
2e2x − 3ex =2 x )2 x 2(e − 3e =2 x sub y = e 2y 2 − 3y =2 2y 2 − 3y − 2 = 0 (2y + 1)(y − 2) = 0 y=−
7(b)
7(c)
1 3
1 3
8(b)
xe−x ln xe−x ln x + ln e−x ln x + (−x) ln x
= 2.46 = ln 2.46 = ln 2.46 = ln 2.46 = x + ln 2.46
a=1✓ b = ln 2.46 ≈ 0.9 ✓
sleightofmath.com
190
A math 360 sol (unofficial) 8(c)
Ex 7.4
(xex )2 x 2 e2x x2 ln x 2 2 ln x 2 ln x
= 30e−x = 30e−x = 30e−3x = ln(30e−3x ) = ln 30 + ln e−3x = ln 30 + (−3x)
ln x
= − x + ln 30
3
1
2
2
9(d)
3x × 102x
= 4 × 20x−2
(3)x (102 )x = 4 (20)x (20)−2 (3)x (102 )
x
= 4(20)−2
(20)x
[
3
a=− ✓ 2
1
b = ln 30 2
(3)(102 ) (20)
x
]
= =
lg(15)x
= lg
x lg 15
= lg
x
5x−1 × 3x+2 = 10 (5x )(5−1 ) × (3x )(32 ) = 10 =
15x
=
x lg 15
= lg =
=
100 1 100 1 100
1 100
lg
lg 15
≈ −1.70 ✓
10 (5−1 )(32 ) 50
(5x )(3x )
x
1
(15)x
≈ 1.70 ✓ 9(a)
4 202
9 50 9
50 9
lg
lg 15
≈ 0.633 ✓ 9(b)
22x × 5x+1 =7 2 x x (2 ) × (5) (5) = 7 (4)x × (5)x
=
x
7 5 7
20
=
x lg 20
= lg
x
=
5 7 5
lg
7 5
lg 20
≈ 0.112 ✓ 9(c)
4(32x ) 4(32 )x (32 )
= ex = ex
x
ex 9 x
( ) e
9 x
= =
1 4 1 4
ln ( )
= ln
x ln
= ln
x
e 9
e
=
1 4 1 4
1 4 9 ln e
ln
≈ −1.16 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
191
A math 360 sol (unofficial) 10
Ex 7.4
1st eqn 4x+3
= 32(2x+y )
(22 )x+3
= (25 )(2x+y )
22x+6
= 25+x+y
⇒ 2x + 6
=5+x+y
x
=y−1
−(1)
2nd eqn 9x + 3y = 10
−(2)
sub (1) into (2): 9y−1 + 3y = 10 (32 )y−1 32y−2
+3y
= 10
+3y
= 10
(32y )(3−2 ) +3y 1
(3y )2 ( ) +3y
= 10
9
1 9
(3y )2
= 10
+3y −10 = 0
sub u = 3y 1 2 u 9
+ u − 10
=0
u2 + 9u − 90
=0
(u + 15)(u − 6)
=0
u = −15 or
u
=6
3y = −15
3y
=6
(rej)
lg 3y = lg 6 y lg 3 = lg 6 lg 6
y
=
y
≈ 1.631 ✓
lg 3
x|y=1.631 ≈ (1.631) − 1 ≈ 0.631 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
192
A math 360 sol (unofficial)
Ex 7.5
Ex 7.5 1(a)
y = log 2 x ∵ base = 2 > 1, graph slopes up
y O
2(ii)
pH = − lg(7.8 × 10−6 ) ≈ 5.11 ✓ ∴ Blue
3(i)
T = 85(0.96)x T|x=0 = 85(0.96)0 = 85°C ✓
3(ii)
T|x=15 = 85(0.96)15 ≈ 46.1 ✓
3(iii)
T = 30 85(0.96)x = 30
y = log 6 x ∵ base = 6 > 1, graph slopes up y O
x
1
✓ 1(c)
pH = −lg(5.6 × 10−7 ) ≈ 6.25 ✓ ∴ Pink
x
1
✓ 1(b)
2(i)
y = log 0.2 x ∵ 0 < base 0.2 < 1, graph slopes down y O
x
1
✓ 1(d)
6
(0.96)x
=
x lg 0.96
= lg
x
=
x
≈ 25.5 ✓
17 6 17
lg
6 17
lg 0.96
4(i)
N = 100(1.65)t N|t=0 = 100(1.65)0 = 100 ✓
4(ii)
N|t=4 = 100(1.65)4 ≈ 741 ✓
4(iii)
N 100(1.65)t (1.65)t t lg(1.65)
= 400 = 400 =4 = lg 4
t
=
t
≈ 2.77 ✓
y = log 1 x 4 1
∵ 0 < base < 1, graph slopes down 4
y O
1
x ✓
1(e)
y = lg x ∵ base = 10 > 1, graph slopes up y O
1
x
5(i)
R = 100e−0.000427 9t R|t=10 000 = 100e−0.0004279(10 000) = 100(1 − e−4.279 ) ≈ 1.39g ✓
5(ii)
R
✓ 1(f)
y = ln x ∵ base = e > 1, graph slopes up
y
lg 4 lg(1.65)
1
= (100) 2
100e(−0.0004279)t = 50 O
1
x ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
1
e−(0.0004279)t
=
−0.0004279t
= ln
t
≈ 1620 yrs ✓
2 1 2
193
A math 360 sol (unofficial) 6(i)
6(ii)
Ex 7.5
I = 0.87T I|T=1.5 = (0.87)1.5 ≈ 0.811 ✓
9(ii)
I = 0.5 T 0.87 = 0.5 T lg 0.87 = lg 0.5
≈
ln(t + 1)
≈ ln e 6
⇒t+1
≈ e6
t t
≈ e6 − 1 ≈ 7.72
6
13
lg 0.5
13
=
T
≈ 4.98 mm ✓
lg 0.87
∴t= 8✓
y
O
13
ln(t + 1)
13
T
7(i)
S ≈ 62 75 − 6 ln(t + 1) ≈ 62 6 ln(t + 1) ≈ 13
𝑦 = ln 𝑥 𝑦 = lg 𝑥 x
1
9(iii)
S = 75 − 6 ln(t + 1) 6 ln(t + 1) = 75 − S 1
ln(t + 1) = (75 − S)
✓
6
1
(75−S)
7(ii) (a)
Range of values of x: ⇒x>1✓
lg x > 0
Range of values of x: ⇒0
lg x ≤ 0
7(ii) (c)
Range of values of x: ⇒x>1✓
ln x > lg x
8(ii)
1
10(i)
A = 5000(1.04)t A|t=5 = 5000(1.04)5 ≈ $6083 ✓
>
t
𝐴 5000
t 9(i)
1500 1+1499e−0.85(6) 1500 1+1499e−5.1
≥ 0.4(1500) 1500
1+1499e−0.85t 1500 5 3
≥ 1 + 1499e−0.85t ≤ 1499e−0.85t
2 3
≥ e−0.85t
2998
ln ( t
3 2998
)
3 ) 2998
ln(
(1.04)𝑡
−0.85
5000
)✓
S = 75 − 6 ln(t + 1) 0 ≤ t ≤ 12 S|t=4 = 75 − 6 ln(4 + 1) = 75 − 6 ln(5) = 75 − 6 ln 5 ≈ 65.3 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
≥ 600 ≥ 1 + 1499e−0.85t
600
lg 1.04
A
−1✓
1+1499e−0.85t
10(ii) y
2
= log1.04 (
(75−S)
1500
y=
lg 1.6
= 5000(1.04) =
= e6
(75−S)
≈ 148 ✓
> 11.98
A
t
=
∴ t = 12 ✓ 8(iii)
= e6
y|t=6 =
A > 8000 t 5000(1.04) > 8000 (1.04)t > 1.6 t lg(1.04) > lg(1.6) t
⇒t+1
1
7(ii) (b)
8(i)
ln(t + 1) = ln e6
≥ −0.85t ≤t
8.13
≤t
t ∴t= 9✓
≥ 8.13
194
A math 360 sol (unofficial) 11
t = −2.35 ln (
Ex 7.5
T−24.5 12.4
13(ii)
)
3.5 = Ce
t|T=28.8 = −2.35 ln (
28.8−24.5 12.4
)
3.5
− 12.4
)
2h 58min before 7:29am ⇒ 4: 31am [verified]
log 4 x
=
29 60
4.3
[shown] ✓ 35
k = ln ( ) 43
1
13(iii) T = T0 + Ce−kt T0 = 24.5, C = 12.4, k ≈ 0.426: T = 24.5 + 12.4e−0.426t
2 1 2
x x
3.5
k ≈ 0.426 ✓ t = 0, T = 36.9°C (assumption of normal body temperature of 36.9°C at death in Q11) 36.9 = 24.5 + Ce−0.426k(0) 36.9 = 24.5 + C C = 12.4 ✓
≈ 2.97h ≈ 2h 58min
=1
29 60
=e
e−60k =
7: 29am: T = 28.0°C t|T=28.0 = −2.35 ln (
Ce−kt1
29
2h 29min before 7:00am ⇒ 4: 31am ✓
=4 =2✓
T−24.5
ln (
y
𝑦 = 2 log 4 𝑥 𝑦=1 x
1 2
t 14(i)
✓
12(iii) 2 log x 4 ≤ 1 ⇒0
= e−0.426t
12.4 T−24.5
12(ii) y = 2 log 4 x
O
29 ) 60
− k
4.3
28.0−24.5
−k(t1 +
Ce
=
4.3 3.5
≈ 2.49h ≈ 2h29min
2 log 4 x
−(2)
(2) ÷ (1):
7: 00am: T = 28.8°C
12(i)
29 60
−k(t1 + )
14(ii)
29 60
−k(t1 + )
28.0 = 24.5 + Ce
)
= −0.426t ≈ −2.35 ln (
T−24.5 12.4
)✓
C1 : y = 2 ln x [x > 0] C2 : y = ln x 2 [x 2 > 0] 2 C3 : y = (ln x) [x > 0] All different. C1 ≠ C2 because of the different domain C1 ≠ C3 Evident by algebriac observation ✓ C2 ≠ C3 Evident by algebraic observation
T = T0 + Ce−kt 7: 00am ⇒ T = 28.8°C, T0 , 24.5°C, t = t1 28.8 = 24.5 + Ce−kt1 4.3 = Ce−kt1 −(1) 7: 29am ⇒ T = 28.0°C, T0 , 24.5°C, t = t1 +
12.4
y
29 60
✓
C3 : y = (ln x)2 C2 : y = ln x 2
C1 : y = 2 ln x 𝑥 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
195
A math 360 sol (unofficial)
Rev Ex 7 A2(b) 2 log 5 x
Rev Ex 7 A1(a) log x 27 = 1.5 x1.5 = 27 3
= 33
x2
= (33 ) = 32 =9✓
x x x
A1(b) log 2 x log 8 x log 2 x ( log 2 x (
log2 x
3
) = 12
1 64
A1(c) log 3 (x − 2) log 3 (x − 2) log 3 (x − 2) ⇒x−2
2 log 5 x
=5−(
log5 x log5 52 log5 x 2 log5 x
)
)
)
2
=5−( ) u
2
x
✓ =3 − log 3 (x + 4) 3 = log 3 3 − log 3 (x + 4) = log 3 ( =
= 52 = 25 ✓
x
1 2
=5
= √5 ✓
33
)
A3(a) log 3 (x − 19) x − 19 x x x lg x
x+4
=4 = 34 = 34 + 19 = 81 + 19 = 100 = lg 102 =2✓
33 x+4
A3(b) lg(x + 2) + 7 lg 2
(x − 2)(x + 4) = 33 x 2 + 2x − 8 = 27 2 x + 2x − 35 = 0 (x + 7)(x − 5) = 0 x = −7 or x = 5 ✓ (rej ∵ x − 2 > 0) A2(a) log 3 xy − log 3 (x − 1) log 3 xy − log 3 (x − 1) xy log 3 ⇒
=5−(
= 12
= 2±6
x = 64 or
2 log 5 x
log5 25
2u2 = 5u − 2 2 2u − 5u + 2 = 0 (2u − 1)(u − 2) = 0 1 u =2 u = or 2 log 5 x = 2 1 log 5 x =
(log 2 x)2 = 36 log 2 x = ±6 x
=5−(
2u
) = 12
log2 23
2 log 5 x
sub u = log 5 x:
= 12
log2 8 log2 x
(log2 x)2
2 3
= 5 − log x 25
x−1 xy
x−1
xy y
© Daniel & Samuel A-math tuition 📞9133 9982
= log 3 9
+ lg(2x + 1)
lg(x + 2) + lg 27
= log 3 32 + lg(2x + 1)
lg[(x + 2)27 ]
=2
+ lg(2x + 1)
lg[(x + 2)27 ]
= lg 102
+ lg(2x + 1)
lg[128(x + 2)]
= lg[100(2x + 1)]
⇒ 128(x + 2)
= 100(2x + 1)
= log 3 6x − 1 = log 3 6x 2 − log 3 3 = log 3 2x 2
32(x + 2)
= 25(2x + 1)
32x + 64
= 50x + 25
= 2x 2
−18x
= −39
= 2x 2 (x − 1) = 2x(x − 1) ✓
x
=
2
A3(c) e2x + ex − 6 = 0 (ex )2 + ex − 6 = 0 sub u = ex : u2 + u − 6 =0 (u + 3)(u − 2) = 0 u = −3 sub u = ex ex = −3 (NA ∵ ex > 0)
sleightofmath.com
13 6
✓
u=2 ex = 2 sub u = ex : x = ln 2 x ≈ 0.693 ✓ 196
A math 360 sol (unofficial) A4(i)
Rev Ex 7 A5(ii) P > 90 000 0.07n 12 000e > 90 000
log 2 x = a = 2a
x
log 8 y = b = 8b
y
x 2 y = (2a )2 (8b ) = 22a+3b ✓ x
=
2a 8b
=
2a 23b
A6
= 2a−3b ✓
=
x
5−3b 2
2a−3b = 2−1 ⇒ a − 3b = −1
5−3b 2
>
n
> 28.78
0.07
log b (xy 2 ) =m log b x + log b y 2 = m log b x +2 log b y = m −(1)
=
2n−m 5
[shown]✓ −(3)
sub (3) into (1): (
2n−m
) + 2 log b y = m
5
2 log b y
7
= ✓ 9
=m+
2 log b y
=
a|b=7 = ✓
log b y
=
Let P be the population of a town after n years from the beginning of 1990 P = 12000e0.07n
log b
4
A5(i)
n
log b x
5 − 3b − 6b = −2 9b =7
9
2
15 2
−(2)
) − 3b = −1
b
ln
15
sub (2) into (1): log b x +2(n − 3 log b x) = m log b x +2n − 6 log b x = m −5 log b x = m − 2n
sub (1) into (2): (
> ln
−(1)
= 0.5
y
0.07n
2
log b (x 3 y) =n log b x 3 + log b y = n 3 log b x + log b y = n log b y = n − 3 log b x −(2)
A4(ii) x 2 y = 32 2a+3b 2 = 25 ⇒ 2a + 3b = 5 a
>
∴ 1990 + ⌊28.78⌋ = 2018 ✓
= 22a (33b )
y
15
e0.07n
3
1990 ⇒ n = 0 2005 ⇒ n = 2005 − 1990 = 15
y x
m−2n 5
6m−2n 5 3m−n 5
✓
= log b y − log b x =
3m−n
=[ =
−
2n−m
5 5 (3m−n)−(2n−m) 5
4m−3n 5
]
✓
1
log b √xy = log b xy P|n=15
2 1
= (log b x + log b y)
0.07(15)
= 12000e ≈ 34 292 ✓
2 1 2n−m
= (
2 5 1 2m+n
= [ =
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
2 5 2m+n 10
+
3m−n 5
)
]
✓
197
A math 360 sol (unofficial)
Rev Ex 7 B1(c) log 2 x 2 − log 2 (2x + 5) = 2
A7 y = 2 lg x (i)(a) y|x=4 = 2 lg 4 ≈ 1.20 ✓
log 2 ( ⇒
A7 y = 1.5 (i)(b) 2 lg x = 1.5 lg x = 0.75 log10 x = 0.75
A7 (ii)
x2
= 22
2x+5
=4
2x+5
x2
= 8x + 20
x 2 − 8x − 20
=0
(x − 10)(x + 2) = 0 x = 10 or x = −2 ✓ B1(d) log 2 x
y = 2 lg x y x
1
✓ A7 (iii)
4
x√10 = √10x 1 2
x (10 ) = 10
= log 2 22
)
2x+5
x2
= 100.75 ≈ 5.62 ✓
x x
x2
B2(i)
x 4
= 4 log x 2 1
log 2 x
= 4(
log 2 𝑥
= ±2
x
2±2 = 4 or
log2 x
)
1 4
log 2 x = p log 4 y = q
x 1
= 104−2
x
x
1
4 1
2
lg x
= −
2 lg x
= x−1
log 2 xy = log 2 x + log 2 y = log 2 x + = log 2 x +
2
= log 2 x +
1
∴y= x−1✓ 2
B1(a) log 9 (3𝑥+1 ) 9x
= 3x+1 2
32x = 3x+1 ⇒ 2x 2 =x+1 2 2x − x − 1 =0 (2x + 1)(x − 1) = 0
= = =
2
=
43x + log 2 2 43x −3 43x (22 )3x 26x ⇒ 6x x
=5 =5 =5 =8 = 23 = 23 =3
log2 x
− log 4 y
log2 4 p log2 22 p 2 p
− log 4 y − log 4 y −q ✓
2
B2(iii) log 4y = log2 4y = log2 [4(22q )] x log2 x
=
log2 [22 (22q )]
B2(iv) log 2 x = p
p
p
=
log2 (22+2q ) p
=
2+2q p
✓
log 4 y = q
y = 4q y = 22q x 2 y = (2p )2 (22q ) = 22p+2q ✓ x
1
= ✓
© Daniel & Samuel A-math tuition 📞9133 9982
1 2
y
1
8 −3
1
log4 4 2 log4 y
B2(ii) log 4 x = log 4 x − log 4 y
x = − or x = 1 ✓ B1(b) 43x + log (1) 2
log4 2 log4 y
= log 2 x +2 log 4 y =p +2q ✓
= x2
2
log4 y
2
sleightofmath.com
= 2p
198
A math 360 sol (unofficial)
Rev Ex 7
B3(a) 2x = 128(4y ) 2x = 27 (22y ) 2x = 27+2y ⇒ x = 7 + 2y −(1) ln(4x + y) = ln 40 − 2 ln 2 ln(4x + y) = ln 40 − ln 22 ln(4x + y) = ln 10 ⇒ 4x + y = 10 −(2)
B4(i)
ln 2 = a ln 5 = b 1
3
ln √10e = ln 10e 3 1
= (ln 10 + ln e) 3 1
= [ln(2 × 5) + ln e] 3 1
= [ln 2 + ln 5 +1) 3 1
= (a + b +1)
sub (1) into (2): 4(7 + 2y) + y = 10 (28 + 8y) + y = 10 28 + 9y = 10 9y = −18 y = −2
3 1
= (a + b + 1) ✓ 3
B4(ii) ln x = b−2a = =
x|y=−2 = 7 + 2(−2)
=
=3✓
2 (ln 5)−2(ln 2) 2 ln 5−ln 22 2 ln 5−ln 4 1
2 5
2
4
= ln B3 lg(1 + 2x) − lg x 2 = 1 − lg(2 + 5x) 2 (b)(i) lg(1 + 2x) − lg x = lg 10 − lg(2 + 5x) lg ⇒
1+2x
= lg
x2 1+2x
= lg
x2
5
= ln √
4
10
⇒x =
2+5x 10
√5 ✓ 2
2+5x
(2x + 1)(5x + 2) = 10x 2 10x 2 + 9x + 2 = 10x 2 9x + 2 =0 2
=− ✓
x
9
B3 3y+2 = 5y y 2 (b)(ii) (3) (3 ) = (5)y (3)y
=
(5)y 3 y
( ) 5
=
3 y
lg ( ) 5
1 32 1 9
= lg
3
y lg ( ) = lg 5
1 9 1 9
1 9 3 lg 5
lg
y
=
y
≈ 4.30 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
199
A math 360 sol (unofficial) B5
Rev Ex 7
y = ln(2x + e2 ) At (0, h), h = ln[2(0) + e2 ] h = ln e2 h =2✓
B6(b) log 3 5 + log 3 (4 + x) = log 3 (10 − x) + 2 log 4 2 1
log 3 5 + log 3 (4 + x) = log 3 (10 − x) + 2 log 4 42 1
log 3 5 + log 3 (4 + x) = log 3 (10 − x) + 2 ( ) 2
y = ln(2x + e2 ) At (k, 0), 0 = ln[2(k) + e2 ] 0 = log 𝑒 (2𝑘 + 𝑒 2 ) 0
k
=
1−e2 2
✓
1
y = − eax 2
At (h, k) i.e. (2, 1−e2 2 2
= log 3 (10 − x) + 1 = log 3 (10 − x) + log 3 3 = log 3 [3(10 − x)] = 3(10 − x) = 30 − 3x = 10
x
= ✓
5 4
2
e = 2k + e 1 = 2k + e2 1 − e2 = 2k
1
log 3 5 + log 3 (4 + x) log 3 5 + log 3 (4 + x) log 3 [5(4 + x)] ⇒ 5(4 + x) 20 + 5x 8x
1−e2 2
).
1
= − ea(2)
B6(c) 102x+1 +7(10x ) = 26 x 2 x (10 ) (10) +7(10 ) = 26 x )2 x) 10(10 +7(10 −26 = 0 sub u = 10x : 10u2 +7u −26 =0 (10u − 13)(u + 2) =0 13 u = −2 u= or 10 10x = −2 (rej) 13 x 10 = 10
2
1
x
2
2 1 2 e 2 1 ln ( e2 ) 2 1 1 2
sub x = lg a:
e2a
=
2a
=
a
= ln ( e ) 2 1
2 1
2 1
2
= lg
13
1
− e2 = − e2a
lg a = lg a
=
13 10
10
13 10
✓
= (ln + ln e2 ) = (ln 2−1 + 2) 2 1
= (− ln 2 + 2) 2
1
= 1 − ln 2 ✓ 2
B6 m = 32e−0.02t (a)(i) m|t=20 = 32e−0.02(20) ≈ 21.5 ✓ 1 B6 m = m|t=0 2 (a)(ii) 1 −0.02t 32e = [32e−0.02(0) ] 2
32e−0.02t = 16 1
e−0.02t
=
−0.02t
= ln
t
= −50 ln
t
≈ 34.7 ✓
2 1 2
© Daniel & Samuel A-math tuition 📞9133 9982
1 2
sleightofmath.com
200
A math 360 sol (unofficial) B7(i)
x 0.2 0.4 0.6 0.8 1.0 1.2 y -1.61 -0.92 -0.51 -0.22 0.00 0.18
Rev Ex 7 B7(ii) xe2x
= √e3 3
xe2x
= e2
ln(xe2x )
=
ln x + 2x = ln x B7(iii)
3 2
3 2 3
= −2x + ✓
y = −2x +
2
3 2
B7(iv) Intersection pt (0.84,0.16) ⇒ x = 0.84 ✓ There is only 1 intersection (and thus only 1 solution) as both curves would not turn around. ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
201
A math 360 sol (unofficial) 1(b)
Ex 8.1 1(a)
Ex 8.1
Method 1 (No action) xy = 3x −5 Y = 3X −5 ⇒m=3✓ ⇒ c = −5 ✓
x
Y = X −2 ⇒m=1✓ ⇒ c = −2 ✓ Method 2 (Divide by 𝐱 𝟐 ) y = x 2 −2x
Method 2 (Divide by x) xy = 3x −5 −
y x2 y
5
y
=3
y
= −5 ( ) + 3
x
xy 1
x
Y = −2X +1 ⇒ m = −2 ✓ ⇒c=1✓
xy
x
Method 3 (Divide by y) y = x 2 −2x 1 =
y 3
xy
x2 y
= −1 =
= −2 ( ) + 1
5
y 3
−
x2
1
y
5y 5 3 1 1 5 y 5 3 1
Y = X−
x2
−
y
=1 +
2x y 2x y
x
= 2 ( ) +1 y
Y = 2X +1 ⇒m=2✓ ⇒c=1✓
= ( )− 5
x
1
3
1 = −
2
−
x2
Method 3 (Divide by 𝐱𝐲) xy = 3x −5
xy 1
=1
1
Y = −5X +3 ⇒ m = −5 ✓ ⇒c=3✓
5
Method 1 (Divide by x) y = x 2 −2x y = x −2
5
3
⇒m= ✓ 5
1
1(c)
⇒c=− ✓
Method 1 (Multiply denominator) y
5
=
3 x−2
xy − 2y = 3 xy = 2y +3 Y = 2X +3 ⇒m=2✓ ⇒c=3✓ Method 2 (Swap y and 𝐱 − 𝟐) y
=
x − 2=
3 x−2 3 y 3
x
=
+2
x
= 3 ( ) +2
y 1 y
Y = 3X ⇒m=3✓ ⇒c=2✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
+2
202
A math 360 sol (unofficial) 1(d)
Ex 8.1
Method 1 (Multiply x) 5
3y = 2x
−
3xy= 2x 2
−5
2
xy = x 2
−
3 2
xy = (x 2 ) − 3 2
Y = X− 3
2(a)
x
y 2 = 2x + 3 Y = 2X + 3 𝑦2
5 3 5
3
3
𝑥
𝑂
5
✓
3
2
⇒m= ✓ 3
2(b)
5
⇒c=− ✓ 3
xy = 2y 2 − 5 Y = 2X − 5 𝑥𝑦
Method 2 (Divide by x) 3y
= 2x
−
y
3( )= 2
−
x
y x y
=
2
−
3 5
1
x
= − ( 2)
+
Y
=− X
+
3 x 5
3 5
5
x2 5 3x2 2
✓ 3(a)
3 2 3
Method 1 (Divide by x) xy 2 = 2x +5y y 2 y =2 +5 x
⇒m=− ✓
y
3
2
y
= 5 ( ) +2 x
Y = 5X +2 ✓
Log both sides y = 10 × 2x lg y = lg(10 × 2x ) = lg 10 + lg 2x =1 +x lg 2 = lg 2 (x) +1 ✓ Y = (lg 2)X +1 ⇒ m = lg 2 ✓ ⇒c=1✓
Method 2 (Divide by y) xy 2 = 2x +5y x
xy = 2 ( ) +5 y
+5 ✓
Y = 2X 3(b)
Method 1 (Divide by x) 3xy= 5y −2x y
3y = 5 ( ) −2 y
1(f)
2
⇒c= ✓ 3
1(e)
𝑦2
𝑂 -5
x 5
Log both sides y = 5x 7 lg y = lg(5x 7 ) = lg 5 + lg x 7 = lg 5 +7 lg x = 7 lg x + lg 5 Y = 7X + lg 5 ⇒m=7✓ ⇒ c = lg 5 ✓
x 5 y 3 x 5
3 2
− ✓
Y = X 3
3
Method 2 (Divide by y) 3xy= 5y −2x x
−2 ( )
3x = 5 5
y
2 x
− ( )
x
=
x
=− ( ) +
3
3 y 2 x
5
3 y 2
3 5
Y =− X 3
© Daniel & Samuel A-math tuition 📞9133 9982
2
= ( ) −
sleightofmath.com
+ ✓ 3
203
A math 360 sol (unofficial) 4(i)
Ex 8.1
3
y
y
5 Non-linear eqn: (c)(ii)
= 5x 2 3 2
lg y = lg (5x ) lg y = lg 5 + lg x
1
= − (x + y) +2
x
2
y
3 2
y x
3
lg y = lg 5 + lg x 2
1
lg 5 𝑂 5(a) (i)
3 lg x + lg 5 2 lg 𝑥
(0,1) (4,9)
Gradient:
m=
Y-intercept:
c=1
1−9 0−4
−8
=
2
1
1
x
2
1
−4
2+x 2x
2
) =
y 5 Points: (d)(i) Gradient:
✓
Points:
= − x +2
2
y( lg y =
2
1
+ y
2
lg 𝑦
1
2
y ( + ) = − x +2
3
lg y = lg x + lg 5 [shown] ✓ 4(ii)
1
= − x − y +2
x
2 x(4−x) x+2
✓
(0, −2) (4,1) m=
Y − intercept: Linear eqn:
=2
=
4−x
(−2)−(1) (0)−(4)
=
−3 −4
=
3 4
c = −2 Y = mX +c 3
= ( ) X + (−2) 4
3
= X −2 ✓ 4
Linear eqn:
5(a) (ii)
Non-linear eqn:
Y = mX + c = 2X + 1 ✓
Y − intercept: Linear eqn:
5 Non-linear eqn: (b)(ii) 5 Points: (c)(i) Gradient: Y-intercept: Linear eqn:
x
A(−4,5) (0,1) (5)−(1)
m = (−4)−(0) =
4 −4
1
y = −x 3 + ✓
Point:
(1,3) or (2,2)
Gradient:
m=
Linear eqn:
Y − Y1 = m (X − X1 ) Y − (3) = (−1)[X − (1)] Y − 3 = −X +1 Y = −X +4
x
0−4
c=2 Y = mX
2 −4
3−2 1−2
=
lg y = lg (
(0,2) (4,0) =
−2x ✓
1
= −1
−1
Non-linear eqn: lg y = − lg x +4 lg y = − lg x + lg 104
xy = −x 3 + 1
2−0
4 3 2 x 4
= −1
c=1 Y = mX +c = (−1)X + 1 = −X +1 ✓
m=
3
= x −2
y=
y = 2x 2 + 1 ✓ 6(a)
5 Points: (b)(i) Gradient:
y
5 Non-linear eqn: (d)(ii)
=−
⇒y =
1 2
6(b)
+c
104
x 10 000 x
Point:
(1,3) or (3,4)
Gradient:
m=
Linear eqn:
Y − Y1
1
3−4 1−3
=
−1 −2
)
✓
=
1 2
= (− ) X +(2) 2
1
=− X 2
+2 ✓
= m (X − X1 ) 1
Y − (3) = ( ) [X − (1)] 2
Non-linear eqn:
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
1
1
2 1
2 5
2 1
2 5
Y−3
= X−
Y
= X+
x+y x
= x+
x+y
=
y
=
2 2 1 2 5 x + x 2 2 1 2 3 x + x 2 2
✓
204
A math 360 sol (unofficial) 7(i)
Ex 8.1
Method 1 (non-linear to linear) Non-linear eqn: y = pqx ln y = ln(pqx ) = ln p + ln qx = ln p +(x ln q) = (ln q)x + ln p
8(i)
Points:
(1,8) or (4,2)
Gradient:
m = (1)−(4) =
Linear eqn:
Y − Y1 Y − (8) Y−8 Y (y√x)
= m (X − X1 ) = (−2)[X − (1)] = −2X +2 = −2X +10 = −2(x) + 10
y
= −2√x +
(8)−(2)
Non-linear eqn:
Linear eqn: Y = (ln q)X + ln p 8(ii)
y|x=16 = −2√16 +
Y-intercept = 2 ln p =2 p = e2 ≈ 7.4 ✓
= −2(4) + =− 8(iii)
Gradient = − ln q
=−
7(i)
2 3 2
m=−
10
√16 10 4
✓
C(9, −8) lies on graph of y√x against x
y√x = −8 y(√9) = −8 3y = −8 y
3
8
=− ✓ 3
2
9(i)
3
Y = − X +2 2
Non-linear eqn:
Points:
(−1, −3) (0,0) (1,3)
Gradient:
m = (−1)−(0) =
y-intercept:
c=0
Linear eqn:
Y = mX + c = (3)X + (0) = 3X
Non-linear eqn:
y − x = 3x 3 y = 3x 3 + x ✓
3
ln y = − x + 2 2
3 2
− x+2 3
= e2 (e−2x ) 2
✓
Equate Y(y√x):
Linear eqn: Y = mX +c
=e
√x
3
Method 2 (linear to non-linear) Point: (0,2) Y-intercept: c = 2
y
10
Equate X(x): x=9
=e 2 ≈ 0.2 ✓
Gradient:
2
= −2
3
−
q
11
6 −3
3
= (ee 2 ) (e−2 )
x
9(ii)
(−3)−(0)
−3
=3
−1
y|x=2 = 3(2)3 + (2) = 24 + 2 = 26 ✓
= pqx [given] ⇒ p = e2 ≈ 7.4 ✓ 3
⇒ q = e−2 ≈ 0.2 ✓ 7(ii)
y = pqx = 7.4(0.2)x ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
205
A math 360 sol (unofficial) 9(iii)
Ex 8.1
m + 2n = 18 m = 18 − 2n
11(b) y = ab1−x lg y = lg(ab1−x ) = lg a = lg a = lg a = − lg b (x) lg y = − lg b (x)
−(1)
n2 − m = 17 sub (1) into (2): n2 − (18 − 2n) = 17 n2 + 2n − 18 = 17 2 n + 2n − 35 =0 (n − 5)(n + 7) = 0 n=5 or m|n=5 = 18 − 2(5) =8 ⇒ C(8,5)
−(2)
n = −7 m|n=−7 = 18 − 2(−7) = 32 ⇒ C(32, −7) (rej ∵ graph slopes up)
11(c) aey = b2x ln(aey ) = ln(b2x ) ln a + ln ey = (2x) ln b ln a + y = 2x ln b y = 2x ln b − ln a y = 2 ln b (x) − ln a ✓ 12
Equate X (x 3 ) − coordinate: x3 = 8 x =2✓ Equate Y (y − x) − coordinate: y−x =5 y − (2)= 5 y =7✓ 10(i)
Gradient:
m=
Linear eqn:
Y − Y1 = m(X − X1 ) Y − (10) = 3 [X − (3)] Y − 10 = 3X − 9 Y = 3X + 1
Non-linear eqn:
y
1
y|x= 1 = 3 ( ) √2
√2
= = = = 11(a) x
=
y−b =
3 √2 3
×
√2 3√2
√2
2 3√2+1 2
−18 −6
=3
1 x
= 3x + x 2 ✓ 1
+( )
2
√2
+ √2
=
= 3( ) + 1
x2
y 10(ii)
⇒m=q✓ ⇒ c = lg p ✓
(3,10) or (9,28) (3)−(9)
y = p(x + 1)q lg y = lg[p(x + 1)q ] = lg p + lg(x + 1)q = q lg(x + 1) + lg p = q lg(x + 1) + lg p Plot lg y against lg(x + 1) ✓
Point:
(10)−(28)
+ lg b1−x +[(1 − x) lg b] + lg b − lg b (x) + lg a + lg b + lg ab ✓
+ +
1 2 1 2 1 2
✓
a y−b a x a
y
= +b
y
= a( ) + b ✓
x
1 x
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
206
A math 360 sol (unofficial) 13(i)
Method 1 (non-linear to linear) Non-linear eqn: ax y =
Ex 8.1 14(i)
x−b
yx − yb = ax yx = yb +ax y y = (b) +a x
1
Point:
A(3,1) or B (8,3 ) 2
Gradient:
mAB =
Linear eqn:
Y − Y1
Linear eqn: Y = bX +a
Non-linear eqn:
=
1 2
= m (X − X1 ) 3
2 1
2 1
2
2
Y−1
= X−
Y
= X− 1 1
1
2 x 1
2
xy
= ( )−
2xy
= − 1 (shown) ✓ x
2
1
4y
=−
y
=− ✓
2 1 8
−(1)
x
y=x
1
2(2)y = − 1
14(iii) 2xy = 1 − 1 2
−(2)
sub (2) into (1):
Linear eqn: Y = mX +c = 3X +2
1
2x(x 2 )
= −1
2x 3
= −1
x 1 x
2x 4 =1−x 4 2x + x − 1 = 0
Non − linear eqn: y
= 3 ( ) +2 x
y−
3y
let f(x) ≡ 2x 4 + x − 1 f(−1) = 2(−1)4 + (1) − 1 =0 ∴ x = −1 ✓
=2
x 3
y (1 − ) = 2 x
y(
−5
1
14(ii) when x = 2,
Y-intercept = 2 a = 2✓
y
5 2
2
x
Method 2 (linear to non-linear) Gradient: m = 3 Y-intercept: c = 2
−
1
y
Gradient = 3 b =3
(3)−(8)
=
Y − (1) = ( ) [X − (3)]
= (b) +a
y
1 2
(1)−(3 )
x−3
)
x
y
=2 = =
2x x−3 ax x−b
⇒ a=2✓ ⇒ b=3✓ 13(ii) y =
2x x−3
x=y
−(1) −(2)
sub (2) into (1): (x)
=
2x x−3
x 2 − 3x = 2x x 2 − 5x = 0 x(x − 5) = 0 ∴ x = 0 or x = 5 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
207
A math 360 sol (unofficial) 15
Ex 8.1
He connected the dots with a straight which is not necessarily the correct shape as verified by the graphing calculator
𝑦 𝑦 = 𝑥 7 − 14𝑥 5 + 49𝑥 3 − 35𝑥
𝑂
𝑥
y|x=−4 = −5044 ≠ −4 (−4, −4) does not lie on graph ✓ y|x=4 = 5044 ≠ 4 (4,4) does not lie on graph ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
208
A math 360 sol (unofficial)
Ex 8.2
Ex 8.2 1(i)
Linearization y = ax 2 + b x2 y
1(ii)
1 4 9 16 25 6.2 5.6 4.6 3.2 1.4
Gradient & Y-intercept (X1 , Y1 ) = (0,6.4) (X 2 , Y2 ) = (20,2.4) Gradient ≈
(6.4)−(2.4) (0)−(20) 1
≈− ✓
a
5
Y − intercept ≈ 6.4 b ≈ 6.4 ✓
2(i)
Linearization 1 y
= ax + b x 1 y
2(ii)
1
2
3
4
5
0.40 0.90 1.41 1.89 2.38
Gradient & Y-intercept (X1 , Y1 ) = (0, −0.1) (X 2 , Y2 ) = (4.5,2.15) Gradient ≈ a
(−0.1)−(2.15) (0)−(4.5)
≈ 0.50 ✓
Y − intercept ≈ −0.1 b ≈ −0.1 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
209
A math 360 sol (unofficial) 3(i)
Ex 8.2
Linearization y = ax 2 + x − b y − x = ax 2 − b 1 4 9 16 25 x2 y − x 40.5 36 28.5 18 4.5
3(ii)
Gradient & Y-intercept (X1 , Y1 ) = (0,42) (X 2 , Y2 ) = (20,12) Gradient ≈
(42)−(12) (0)−(20)
≈ −1.5 ✓
a
Y − intercept ≈ 42 −b ≈ 42 b ≈ −42 ✓ 4(i)
Linearization a
+
N a
t
=4 =−
N 1
=−
N 1
b
+4
t b at b 1
+
=− ( ) +
N
a
1 t 1 N
4(ii)
b
t
4 a 4 a
1.00 0.50 0.30 0.25 0.20 0.75 0.99 1.09 1.12 1.15
Gradient & Y-intercept (X1 , Y1 ) = (0,1.25) (X 2 , Y2 ) = (0.88,0,80) Gradient ≈ −
b a
(1.25)−(0.80) (0)−(0.88)
≈ −0.51
−(1)
Y − intercept ≈ 1.25 4
≈ 1.25
a
≈ 3.2 ✓
a
−(2)
sub (2) into (1): −b 3.2
b
≈ −0.51 ≈ 1.6 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
210
A math 360 sol (unofficial) 5(i)
Ex 8.2
Linearization xy = h(x + k) xy = hx + hk hk
y
=h+
y
= hk ( ) + h
x 1 x
1 x
5.00 2.50 1.67 1.25 1.00
y 5.25 3.38 2.75 2.44 2.23 5(ii) Gradient & Y-intercept (X1 , Y1 ) = (0,1.5) (X 2 , Y2 ) = (4,4.5) Gradient ≈ hk
(1.5)−(4.5) (0)−(4)
≈ 0.75
Y − intercept ≈ 1.5 h ≈ 1.5 ✓
−(1)
−(2)
sub (2) into (1): (1.5)k ≈ 0.75 k ≈ 0.5 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
211
A math 360 sol (unofficial) 6(i)
Ex 8.2
Linearization y
= ax +
b x
xy = ax 2 + b x 2 0.25 1.00 2.25 4.00 xy 7.3 6.8 6 4.8 Scale (optional) Y1 = mX1 + c c = Y1 − mX1 (7.3)−(4.8)
≈ (7.3) − [(0.25)−(4.00)] (0.25) ≈ 7.47 Domain = [0,4] X-interval =
(4)−(0) 10
= 0.4 ⇒ 0.25
X − scale: 1 cm to 0.25 units Range
= [4.8,7.47]
Y-interval = 6(ii)
(7.47)−(4.8) 12
≈ 0.23 ⇒ 0.2
Y-scale: 1 cm to 0.2 units Gradient & Y-intercept (X1 , Y1 ) = (0,7.5) (X 2 , Y2 ) = (3,5.48) Gradient = a
(7.5)−(5.48) (0)−(3)
≈ −0.67 ✓
Y − intercept ≈ 7.5 b ≈ 7.5 ✓ 6(iii) Substitution y ≈ −0.67x +
7.5 x
y|x=1.7 ≈ −0.67(1.7) +
7.5 1.7
≈ 3.3 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
212
A math 360 sol (unofficial) 7(i)
Ex 8.2
Linearization y = ax 2 + bx y = ax + b x
x y x
7(ii)
1
2
3
4
1.6 3.6 5.6 7.6
Gradient & Y-intercept (X1 , Y1 ) = (0, −0.4) (X 2 , Y2 ) = (3.7,7) Gradient ≈
(−0.4)−(7) (0)−(3.7)
≈2✓
a
Y − intercept ≈ −0.4 b ≈ −0.4 ✓ 7(iii)
Intersection 𝑦 Put 𝑎 = 2, 𝑏 = −0.4 into = 𝑎𝑥 + 𝑏, 𝑦 𝑥
𝑥
= 2𝑥 − 0.4
2𝑥 2 − 0.4𝑥 = 10 2𝑥 − 0.4 𝑦
= =
𝑥
x y x
2.0
2.5
10 𝑥 10 𝑥
3.0
3.5
4 .0
5.00 4.00 3.33 2.86 2.50
Intersection Pt (2.35,4.3) ⇒ X ≈ 2.35 𝑥 ≈ 2.35 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
213
A math 360 sol (unofficial) 8(i)
Ex 8.2
Linearization P
=
En R
ln P = ln
En R
ln P = ln E n − ln R ln P = n ln E − ln R ✓ ln E 1.61 2.30 2.89 3.00 3.22 3.40 ln P 0.92 2.30 3.48 3.69 4.14 4.50 Scale (optional) Y1 = mX1 + c c = Y1 − mX1 (0.92)−(4.50)
≈ (0.92) − [(1.61)−(3.40)] (1.61) ≈ −2.3 Domain = [0,3.4] X-interval =
(3.4)−(0) 10
= 0.34 ⇒ 0.25
X − scale: 1 cm to 0.25 units Range
= [−2.3,4.5]
Y-interval = 8(ii)
(4.5)−(−2.3) 12
≈ 0.57 ⇒ 0.5
Y-scale: 1 cm to 0.5 units The graph produces a straight line ⇒ true ✓
8(iii) Gradient & Y-intercept (X1 , Y1 ) = (0, −2.3) (X 2 , Y2 ) = (3.25,4.2) Gradient ≈ n
(−2.3)−(4.2) (0)−(3.25)
≈2✓
Y − intercept ≈ −2.3 − ln R ≈ −2.3 R ≈ 10.0 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
214
A math 360 sol (unofficial) 9(i)
Linearization f = kλn lg f = lg[kλn ] = lg k + lg λn = lg k +n lg λ = n(lg λ) + lg k lg λ 2.40 2.67 2.81 3.08 3.18 lg f 3.08 2.81 2.67 2.40 2.30
9(ii)
Gradient & Y-intercept (X1 , Y1 ) = (0, 5.48) (X 2 , Y2 ) = (3,2.48) Gradient = n
Ex 8.2
(5.48)−(2.48) (0)−(3)
≈ −1 ✓
Y − intercept = 5.48 lg k = 5.48 k ≈ 301 995 ✓ 9(iii) Intersection kλn = 10−2.5n 𝑓 = 10−2.5𝑛 lg 𝑓 = −2.5𝑛 𝑌 = −2.5𝑛 𝑌 = 2.5 ∵ 𝑛 = −1 Intersection Pt (2.97,2.5) ⇒ X = 2.97 lg λ = 2.97 λ ≈ 933 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
215
A math 360 sol (unofficial) 10(i)
Ex 8.2
Linearization y
= Cx +
D x
xy = Cx 2 + D x 2 0.04 0.16 0.36 0.64 xy 1.55 1.69 1.93 2.27 10(ii) Gradient & Y-intercept (X1 , Y1 ) = (0,1.5) (X 2 , Y2 ) = (0.6,2.22) Gradient ≈ C
(1.5)−(2.22) (0)−(0.6)
≈ 1.2 ✓
Y − intercept ≈ 1.5 D ≈ 1.5 ✓ 10(ii) Intersection Cx 2 + D = 2 𝑌 =2 Intersection Pt (0.42, 2): X ≈ 0.42 x 2 ≈ 0.42 x ≈ ±0.65 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
216
A math 360 sol (unofficial) 11(i)
Ex 8.2
Linearization y−x = kx n lg(y − x) = lg(kx n ) = lg k + lg x n = lg k + n lg x = n lg x + lg k lg x 0.30 0.48 0.60 0.70 0.78 lg(y − x) 1.00 1.26 1.45 1.59 1.71 Scale (optional) Y1 = mX1 + c c = Y1 − mX1 (1.00)−(1.71)
≈ (1.00) − [(0.30)−(0.78)] (0.30) ≈ 0.56 Domain = [0,0.78] X-interval =
0.78−0 10
= 0.078 ⇒ 0.05
X-scale: 1 cm to 0.05 units = [0.56,1.71]
Range
Y-interval =
(1.71)−(0.56) 12
≈ 0.096 ⇒
0.05 Y-scale: 1 cm to 0.05 units 11(ii) Gradient & Y-intercept (X1 , Y1 ) = (0,0.55) (X 2 , Y2 ) = (0.68,1.56) Gradient = n
(0.55)−(1.56) (0)−(0.68)
≈ 1.5 ✓
Y − intercept ≈ 0.55 lg k ≈ 0.55 k ≈ 3.5 ✓ 11(iii) Substitution 𝑦 − 𝑥 = 3.5𝑥 1.5 −(1) 𝑦 = 𝑥 + 4.5 −(2) 𝑠𝑢𝑏 (2) 𝑖𝑛𝑡𝑜 (1): (𝑥 + 4.5) − 𝑥 = 3.5𝑥 1.5 4.5 = 3.5𝑥 1.5 9 7
𝑥
= 𝑥 1.5 ≈ 1.18
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
217
A math 360 sol (unofficial) 12(i)
Ex 8.2
Linearization y = Ae−bx ln y = ln[Ae−bx ] = ln A + ln e−bx = ln A −bx = −bx + ln A x 1 2 3 4 5 6 ln y 2.59 2.29 1.99 1.69 1.39 1.10 Scale (optional) Y1 = mX1 + c c = Y1 − mX1 ≈ (2.59) − [
(2.59)−(1.10) (1)−(6)
] (1)
≈ 2.89 Domain = [0,6] X-interval =
(6)−(0) 10
= 0.6 ⇒ 0.5
X-scale: 1 cm to 0.5 units = [1.10,2.89]
Range
Y-interval =
(2.89)−(1.10) 12
≈ 0.15 ⇒ 0.1
Y-scale: 1 cm to 0.1 units 12(ii) Gradient & Y-intercept (X1 , Y1 ) = (0,2.88) (X 2 , Y2 ) = (5.8,1.16) Gradient ≈ −b b
(2.88)−(1.16) (0.2)−(5.8)
≈ −0.307 ≈ 0.3 ✓
Y − intercept ≈ 2.88 ln A ≈ 2.88 A ≈ 18 ✓ 12(iii) Substitution y = (18)e−(0.3)x = 18e−0.3x At y = 6: 6 = 18e−0.3x 1
= e−0.3x
3 1
ln = −0.3x 3
x
=
ln
1 3
−0.3
≈ 3.66 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
218
A math 360 sol (unofficial)
Ex 8.2
13(i) Linearization y=a+
b x
1
= b( ) + a 𝑥
Plot y against 1 x
1 x
2.50 0.59 0.50 0.39 0.31 0.25 0.20
Y -0.5 0.8 1.5 1.6 1.7 1.75 1.8 Scale (optional) Y1 = mX1 + c c = Y1 − mX1 (−0.5)−(1.8)
≈ (−0.5) − [(2.50)−(0.20)] (2.50) ≈2 Domain = [0,2.5] X-interval =
(2.5)−(0) (10)
= 0.25 ⇒ 0.25
X-scale: 1 cm to 0.25 units Range
= [−0.5,2]
Y-interval =
(2)−(−0.5) 12
≈ 0.21 ⇒ 0.2
Y-scale: 1 cm to 0.2 units 13 Correction (ii)(a) Abnormal reading: y = 0.8 (2nd data) ✓ Correct reading:y ≈ 1.4 ✓ 13 Gradient & Y-intercept (ii)(b) (X1 , Y1 ) = (0,2) (X 2 , Y2 ) = (2,0) (2)−(0)
gradient ≈ (0)−(2) b
≈ −1 ✓
Y − intercept = 2.0 a ≈2✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
219
A math 360 sol (unofficial) 14(i)
Ex 8.2
Linearization T = kx n ln T = ln(kx n ) = ln k + ln x n = ln k +n ln x = n ln x + ln k ln x ln T
4.06 -1.43
4.68 -0.48
5.43 0.63
6.66 2.47
7.26 3.38
Scale (optional) Y1 = mX1 + c c = Y1 − mX1 (−1.43)−(3.38)
≈ (−1.43) − [ (4.06)−(7.26) ] (4.06) ≈ −7.53 Domain = [0,7.26] X-interval =
(7.26)−(0) 10
≈ 0.73 ⇒ 0.5
X-scale: 1 cm to 0.5 units Range
= [−7.53,3.38]
Y-interval =
(3.38)−(−7.53) 12
≈ 0.91 ⇒ 0.5
Y-scale: 1 cm to 0.5 units 14(ii) Gradient & Y-intercept (X1 , Y1 ) = (0, −7.5) (X 2 , Y2 ) = (5,0) Gradient ≈ n
(−7.5)−(0) (0)−(5)
≈ 1.5 ✓
Y − intercept ≈ −7.5 ln k ≈ −7.5 k ≈ 5.5 × 10−4 ✓ 14(iii) Substitution Put 𝑛 − 1.5, 𝑘 ≈ 5.5 × 10−4 𝑖𝑛𝑡𝑜 𝑇 = 𝑘𝑥 𝑛 , T = (5.5 × 10−4 )(x)1.5 149.6 × 106 km = 149.6 million km T|149.6 = (5.5 × 10−4 )(149.6)1.5 ≈1✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
220
A math 360 sol (unofficial)
Ex 8.2
15(i) The graph shows an upward sloping curve instead of a line.
15(ii) Linearization Plot P against ln t P = a ln t + b [P] = a[ln t] + b ln t 0.00 0.69 1.61 2.30 2.71 3.00 3.40 P 30 42 50 65 73 77 85 Scale (optional) c = 30 Domain = [0,3.4] X-interval =
(3.4)−(0) 10
= 0.34 ⇒ 0.25
X-scale: 1 cm to 0.25 units Range
= [30,85]
Y-interval =
(85)−(30) 12
≈ 4.58 ⇒ 2.5
Y-scale: 1 cm to 2.5 units 15(ii) Gradient & Y-intercept (X1 , Y1 ) = (0.9, 44) (X 2 , Y2 ) = (3.2, 80) (44)−(80)
Gradient = (0.9)−(3.2) a
≈ 15.7 ✓
Y − intercept ≈ 30 b ≈ 30 ✓ 15(iii) Substitution P = 15.7 ln t + 30 P = 95: (95) = 15.7 ln t + 30 15.7 ln t = 65 ln t ≈ 4.15 t ≈ 63.6s ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
221
A math 360 sol (unofficial) 16(i)
Ex 8.2
Quadratic eqn y = ax 2 + bx y = ax + b x
Plot
y x
against x
x 2 3 4 5 6 7 y 9 11 13 15 17 19 x
Exponential eqn y = kh−x lg y = lg k + lg h−x = −x lg h + lg k = − lg h (x) + lg k Plot
y x
x lg y
against x 2 3 4 5 6 7 1.26 1.52 1.72 1.88 2.01 2.12
By inspection, Quadratic equation fits better ✓ 16(ii) Gradient & Y-intercept (X1 , Y1 ) = (0,5) (X 2 , Y2 ) = (6.5,18) (5)−(18)
Gradient ≈ (0)−(6.5) a
≈2✓
Y − intercept = 5 b =5✓ 16(iii) Substitution y = 2x 2 + 5x y|x=4.5 = 2(4.5)2 + 5(4.5) = 63 ✓ 16(iv) No. x = 1 is outside the data range and thus the computed value is not reliable. ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
222
A math 360 sol (unofficial) 17
Ex 8.2
Quadratic Equation It is the only one among the 3 that has a turning point to fit the data given that increases then decreases. ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
223
A math 360 sol (unofficial)
Rev Ex 8 A2
Rev Ex 8 A1(a) Points:
m=
Y-intercept: Linear eqn: Non-linear eqn:
a
(0,5) (6,1)
Gradient:
5−1 0−6
=
4
=−
−6
2 3
b
=
y
=
a
2
b
b
=− X+
3
Gradient = 0.75 a − = 0.75
) =5
y
=− ( )+
Y
2xy
=5 3
b x
Linear eqn:
=5− 2x
2 b 2
3 2 3
y (1 +
a 1
b x a 1
= (− ) +
y
= − xy + 5
3
x
2
y
y+
a
=− +2
y 1
= mX + c =− X+5
2xy
y
y 1
Y
y
b
+ =2
x b
c=5 Y
Method 1 (linear) Non-linear eqn:
b
a
5 2 1+ x 3
15 3+2x
= −0.75b
Y − intercept = −0.5
✓
2
= −0.5
b
A1(b) Points: Gradient:
A(−1,1) or B(2,7) mAB =
Linear eqn:
Y − Y1 Y − (1) Y−1 Y Non-linear eqn: (lg y) lg y lg y ⇒y
1−7 (−1)−2
=
−6 (−3)
−(1)
= −4 ✓
b =2
−(2)
sub (2) into (1): a|b=−4 = −0.75(−4) =3✓
= m(X − X1 ) = 2[X − (−1)] = 2X + 2 = 2X + 3 = 2(lg x) + 3 = lg x 2 + lg 103 = lg 1000x 2 = 1000 x 2 ✓
Method 2 (non-linear) Gradient: m = 0.75 Y − intercept: c = −0.5 Linear eqn: Y = mX +c 0.75X −0.5 Non-linear eqn: 1
1
( )
= 0.75 ( ) −0.5
y
x
1
=
y
− 3 x a x
0.75
− +
x 4 y b y
+
1 y
0.75 x
−0.5
= −0.5 =2 =2
⇒ a=3✓ ⇒ b = −4 ✓ A3
y = √ax + b y 2 = ax + b Plot y 2 against x gradient = a ✓ y 2 − intercept = b ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
224
A math 360 sol (unofficial)
Rev Ex 8
A4(i) Linearization y = Ae−bt ln y = ln(Ae−bt ) = ln A + ln e−bt = ln A + [(−bt) ln e] = −bt + ln A = −bt + ln A t 1 2 3 4 5 ln y 2.50 1.95 1.39 0.83 0.26 A4(ii) Gradient & Y-intercept (X1 , Y1 ) = (0, 3.06) (X 2 , Y2 ) = (4.3, 0.65) Gradient = −b b
(3.06)−(0.65) (0)−(4.3)
≈ −0.56 ≈ 0.56 ✓
Y − intercept ≈ 3.06 ln A ≈ 3.06 A ≈ 21.3 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
225
A math 360 sol (unofficial) A5(i)
1 u 1 v
Rev Ex 8
0.050 0.040 0.033 0.025 0.020 0.050 0.059 0.067 0.077 0.080
A5(ii) Linearization 1 u 1 u
1
1
v
f
+ =
=−
1 v
+
1 f
Scale (optional) Y1 = mX1 + c c = Y1 − mX1 (0.05)−(0.08)
≈ (0.05) − [(0.05)−(0.02)] (0.05) ≈ 0.1 Domain = [0,0.05] X-interval =
(0.05)−(0) 10
= 0.005 ⇒ 0.005
X-scale: 1 cm to 0.005 units Range
= [0.05,0.1]
Y-interval =
(0.1)−(0.05) 12
≈ 0.0042 ⇒
0.0025 Y-scale: 1 cm to 0.0025 units 2 cm to 0.005 units Gradient & Y-intercept Y − intercept = 0.10 1 f
f
= 0.10 ≈ 10 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
226
A math 360 sol (unofficial) A6(i)
Rev Ex 8
Linearization xm yn lg(x m y n ) lg x m + lg y n m lg x + n lg y n lg y
= 200 = lg 200 = lg 200 = lg 200 = −m lg x + lg 200
lg y
=−
m n
lg x +
lg 200 n
lg x 0.00 0.48 0.70 0.86 lg y 1.15 0.43 0.10 -0.12 Scale (optional) c = 1.15 Domain = [0,0.86] X-interval =
(0.86)−(0) 10
= 0.086 ⇒ 0.05
X-scale: 1 cm to 0.05 units Range
= [−0.12,1.15]
Y-interval =
(1.15)−(−0.12) 12
≈ 0.11 ⇒ 0.1
Y-scale: 1 cm to 0.1 units A6(ii) Gradient & Y-intercept (X1 , Y1 ) = (0.1,1.0) (X 2 , Y2 ) = (0.78,0) (1.0)−(0)
Gradient = (0.1)−(0.78) −
m n
≈ −1.47
−(1)
Y − intercept = 1.15 lg 200 n
= 1.15 ≈2✓
n
−(2)
sub (2) into (1): m − ≈ −1.47 2
m ≈3✓ A6(iii) Substitution x 3 y 2 = 200 y = 10: x 3 (10)2 = 200 x3 =2 x 1.26 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
227
A math 360 sol (unofficial) B1(i)
Rev Ex 8
Method 1 (linear) Non-linear eqn: y 1 y 1 y
= =
B1(i)
h
Method 2 (non-linear) Points: A(10,1) B(0, −4) C(r, −2) Gradient:
2x+k 2x+k
(1)−(−4) (10)−(0)
=
1 2
Y − intercept: c = −4
h 2
k
h
h
= ( )x +
Linear eqn: Y = mX +c 1
Linear eqn: 2
k
h
h
Y = X+
m =
= X −4 2
Non-linear eqn: 1
At A(10,1): 2
1 = (10) 1 =
h 20+k
+
k h
At B(0, −4): k
h k
h
−4
= (0) +
−4
=
y
=
y
=
y
=
2 x
2 x−8
−4
2 2 x−8 4 2x−16 h 2x+k
⇒ h=4✓ ⇒ k = −16 ✓
h
−4h = k
=
y
−(1)
2
=
y 1
h
h = 20 + k
1
= (x) −4
y 1
−(2)
sub (1) into (2): −4(20 + k) = k −80 − 4k =k −80 = 5k k = −16 ✓
B1(ii) C(r, −2) lies on Y = 1 X − 4.
Put k = −16 into (1): h = 20 + (−16) = 4 ✓
B2(a) y =
2
1
(−2) = (r) −4 2
1 2
r
=4✓
r
x y
=2
x px+q
= px + q ✓
B2(b) y = pq−x lg y = lg(pq−x ) = lg p + lg q−x = lg p +(−x) lg q = − lg q (x) + lg p ✓
B2(c) ey = px 2 − qx ey x
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
= px − q ✓
228
A math 360 sol (unofficial) B3(i)
Rev Ex 8
Linearization axy − b = a(x 2 + bx) axy − b = ax 2 + abx axy − ax 2 = abx + b a(xy − x 2 ) = abx + b xy − x 2
= bx
+
x 1 2 3.00 xy − x Scale (optional) Y1 = mX1 + c c = Y1 − mX1
b a
2 1.00
3 -0.99
4 -3.00
(3)−(−3)
≈ (3) − [ (1)−(4) ] (1) ≈5 Domain = [0,4] (4)−(0)
X-intercept =
10
= 0.4 ⇒ 0.25
X-scale: 1 cm to 0.25 units 2 cm to 0.5 units Range
= [−3,5] (5)−(−3)
Y-intercept =
12
≈ 0.67 ⇒ 0.5
Y-scale: 1 cm to 0.5 units B3 Graphical Reading (ii)(a) x = 1.5 ⇒ X = 1.5 Pt (1.5,2.0) Y xy − x 2 (1.5)y − (1.5)2 y
=2 =2 =2 ≈ 2.83
B3(ii) Gradient & Y-intercept (X1 , Y1 ) = (0,5) (b) (X 2 , Y2 ) = (3.5, −2) (5)−(−2)
Gradient = (0)−(3.5) ≈ −2 ✓
b
−(1)
Y − intercept = 5 b
=5
a
−(2)
sub (1) into (2): (−2) a
a
=5 = −0.4 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
229
A math 360 sol (unofficial) B4(i)
Rev Ex 8
Linearization y = Ka−x lg y = lg(Ka−x ) = lg K + (lg a−x ) = lg K + (−x) lg a = − lg a (x) + lg K ✓ x 1 2 3 4 5 6 7 lg y 1.19 0.99 0.79 0.48 0.38 0.18 -0.05
B4 Graphical reading (ii)(a) Flawed reading ⇒ y = 3.0 (4th data) Correct reading Y ≈ 0.59 lg y ≈ 0.59 y ≈ 3.89 ✓ B4 Gradient & Y-intercept (ii)(b) (X1 , Y1 ) = (0,1.4) (X 2 , Y2 ) = (6.9,0) (0)−(1.4)
Gradient = (6.9)−(0) − lg a a
= −0.2 ≈ 1.58 ✓
Scale (optional) Y1 = mX1 + c c = Y1 − mX1 ≈ (1.19) − [
Y − intercept = 1.4 lg K = 1.4 K = 101.4 = 25.1 ✓
(1.19)−(−0.05) (1)−(7)
] (1)
≈ 1.38 Domain = [0,7] X-interval =
(7)−(0) 10
= 0.7 ⇒ 0.5
X-scale: 1 cm to 0.5 units B4 Graphical Reading (ii)(c) y = 10 lg y = 1 Y =1
Range
= [−0.05,1.38]
Y-interval =
(1.38)−(−0.05) 12
≈ 0.12 ⇒ 0.1
Y-scale: 1 cm to 0.1 unit
Point (2,1) ⇒X =2 x =2✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
230
A math 360 sol (unofficial) B5(i)
Rev Ex 8
Linearization y = ln(ax 2 + b) ey = ax 2 + b x2 ey
0.04 0.16 0.36 0.64 1.00 1.38 1.62 2.02 2.58 3.30
B5(ii) Gradient & Y-intercept (X1 , Y1 ) = (0,1.3) (X 2 , Y2 ) = (0.9,3.1) Gradient ≈ a
(1.3)−(3.1) (0)−(0.9)
≈2✓
Y − intercept ≈ 1.3 b ≈ 1.3 ✓ B5 Graphical Reading (iii)(a) y = ln 3 ey = 3 Y =3 Pt (0.85,3) X = 0.85 x ≈ ±0.92 ✓ B5 Graphical Reading (iii)(b) x = 0.1 x 2 = 0.01 X = 0.01 Pt (0.01,1.32) Y ≈ 1.32 y ≈ 0.28 ✓
Scale (optional) Y1 = mX1 + c c = Y1 − mX1 ≈ (1.38) − [ ≈ 1.3 Domain
(0.04)−(1)
] (0.04)
= [0,1]
X-interval =
(1)−(0) 10
= 0.1 ⇒ 0.1
X-scale:
1 cm to 0.1 units
Range
= [1.3,3.3]
Y-interval = Y-scale:
© Daniel & Samuel A-math tuition 📞9133 9982
(1.38)−(3.30)
(3.3)−(1.3) 12
≈ 0.17 ⇒ 0.1
1 cm to 0.1 units
sleightofmath.com
231
A math 360 sol (unofficial)
Rev Ex 8
B6(i) Linearization P = kc t lg p = lg(kc t ) = lg k + lg c t = lg k +t lg c = lg c (t) + lg k t 1 2 3 4 5 lg P 1.14 1.40 1.67 1.93 2.20 Scale (optional) Y1 = mX1 + c c = Y1 − mX1 ≈ (1.14) − [
(1.14)−(2.20)
] (1)
(1)−(5)
≈ 0.88 = [0,5]
Domain
X-interval =
(5)−(0) 10
= 0.5 ⇒ 0.5
X-scale:
1 cm to 0.5 units
Range
= [0.88,2.2]
Y-interval = Y-scale:
(2.2)−(0.88) 12
≈ 0.11 ⇒ 0.1
1 cm to 0.1 units
B6(ii) Gradient & Y-intercept (x1 , y1 ) = (0,0.87) (x2 , y2 ) = (3.5, 1.8) Gradient = lg c c
(0.87)−(1.8) (0)−(3.5)
= 0.27 ≈ 1.86 ✓
Y − intercept = 0.87 lg k = 0.87 k ≈ 7.41 ✓ B6(iii) Substitution P = (7.41)(1.86)t P|t=10 = (7.41)(1.86)10 ≈ 3.7 × 103 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
232
A math 360 sol (unofficial)
Ex 9.1 1(c)
Ex 9.1 1(a)
1(b)
x -5 -4 -3 -2 -1 0 y ±3.16 ±2.83 ±2.45 ±2.00 ±1.41 0
y 2 = 4x for 0 ≤ x ≤ 5 x 0 1 2 3 y 0 ±2 ±2.83 ±3.46 Line of symmetry: y = 0
y 2 = −2x for − 5 ≤ x ≤ 0
4 ±4
5 ±4.47
Line of symmetry: y = 0
y 2 = 0.5x for 0 ≤ x ≤ 10 x y
0 1 2 3 4 0 ±0.71 ±1.00 ±1.22 ±1.41
5 6 7 8 9 10 ±1.58 ±1.73 ±1.87 ±2.00 ±2.12 ±2.24 Line of symmetry: y = 0
2(i)
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
(2,4) lies on y 2 = 4ax, (4)2 = 4a(2) 16 = 8a a =2✓
233
A math 360 sol (unofficial) 2(ii)
Ex 9.1
y 2 = 4(2)x = 8x
4(i)
Points A & B At A & B, y = 2x + 4 meets y = x 2 − 4, 2x + 4 = x2 − 4 x 2 − 2x − 8 =0 (x + 2)(x − 4) = 0 x = −2 or x = 4 y|x=−2 = 2(−2) + 4 y|x=4 = 2(4) + 4 =0 = 12 ⇒ A(−2,0) ✓ ⇒ B(4,12) ✓
4(ii)
Length of AB
x 0 1 2 3 4 5 y 0 ±2.83 ±4 ±4.90 ±5.66 ±6.32
|AB| = √[(−2) − 4]2 + (0 − 12)2 = √36 + 144 = √180 = √36 × 5 = 6√5 ✓ 5(i)
Line & Curve y 2 = 2x − 1 y = mx
−(1) −(2)
sub (2) into (1): (mx)2 = 2x − 1 2 2 m x − 2x + 1 = 0
3
Discriminant For line & curve to meet at one point: b2 − 4ac =0 (−2)2 − 4m2 (1) = 0 4 − 4m2 =0 2 m −1 =0 (m + 1)(m − 1) = 0 m = −1 or m = 1 ✓
2y = x + 3 y
1
3
2
2
= x+
−(1)
y 2 = 2x + 3 −(2) sub (1) into (2): 1
3 2
2
2 3
9
2 1
4 3
2
4
( x+ ) 1 2 x 4 1 2 x 4 2
= 2x + 3
+ x+ − x−
= 2x + 3
5(ii)
=0
x − 2x − 3 = 0 (x + 1)(x − 3) = 0 x = −1 or x = 3 1
3
2
2
y|x=−1 = (−1) + =1 ⇒ (−1,1) ✓
© Daniel & Samuel A-math tuition 📞9133 9982
1
3
2
2
y|x=3 = (3) + =3 ⇒ (3,3) ✓
sleightofmath.com
Point (𝐚𝐭 𝐦 = −𝟏) y 2 = 2x − 1 −(1) y = −x −(2)
Point (𝐚𝐭 𝐦 = 𝟏) y 2 = 2x − 1 −(1) y=x −(2)
sub (2) into (1): (−x)2 = 2x − 1 2 x − 2x + 1 = 0 (x − 1)2 =0 x=1 y|x=1 = −1 ⇒ (1, −1)
sub (2) into (1): x2 = 2x − 1 2 x − 2x + 1 = 0 x 2 − 2x + 1 = 0 (x − 1)2 =0 x=1 y|x=1 = 1 ⇒ (1, −1)
234
A math 360 sol (unofficial) 6(i)
y2 = x + 4
Ex 9.1 7(i)
x -4 -3 -2 -1 0 y 0 ±1 ±1.41 ±1.73 ±2
x 5 6 7 8 y ±5.48 ±6.00 ±6.48 ±6.93
x 1 2 3 4 5 6 y ±2.24 ±2.45 ±2.65 ±2.83 ±3 ±3.16
6(ii)
6(iii)
4x 2 − 13x = −5 2 4x − 12x + 9 = x + 4 (2x − 3)2 =x+4
y 2 = 6x x 0 1 2 3 4 y 0 ±2.45 ±3.46 ±4.24 ±4.90
7(ii)
y>3 ⇒ x > 1.5 ✓
7(iii)
4x 2 − 10x + 1 = 0 4x 2 − 4x + 1 = 6x (2x − 1)2 = 6x 2 (2x − 1) = y2 ⇒y = ±(2x − 1) Draw y = 2x − 1:
2
4x − 13x = −5 (2x − 3)2 = x + 4 (2x − 3)2 = y 2 y = ±(2x − 3) Draw y = 2x − 3 or y = −2x + 3 ✓ x = 0.45 or 2.8
⇒ x = 0.1 or 2.4
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
235
A math 360 sol (unofficial) 8(i)
Ex 9.1
Points A and B
10(i) 2
At A and B, y = x + meets y = 2x − 1: x
x+
2
= 2x − 1
x
x−1−
2
=0
x
x2 − x − 2 =0 (x + 1)(x − 2) = 0 x = −1 or y|x=−1 = 2(−1) − 1 = −3 ⇒ B(−1, −3) ✓ 8(ii)
x=2 y|x=2 = 2(2) − 1 =3 ⇒ A(2,3) ✓
Points A and B At A and B, y 2 = 3x meets y = 6 − x (6 − x)2 = 3x 2 x − 12x + 36 = 3x x 2 − 15x + 36 = 0 (x − 3)(x − 12) = 0 x=3 or x = 12 y|x=3 = 6 − (3) y|x=12 = 6 − (12) =3 = −6 ⇒ A(3,3) ✓ ⇒ B(12, −6) ✓
10(ii) Area of triangle OMB 1
Area of triangle PAB P(5,0) A(2,3) B(−1, −3)
Area of △ OMB = (Area of △ OAB) 2 1 1
0 12 3 0 | 0 −6 3 0 = [0 + 36 + 0 − 0 − (−18) − 0] = ⋅ | 2 2 1
Area of △ PAB 1 5 = | 2 0
2 3
−1 −3
5 | 0
4 1
= (54) 4
1
1
= [15 + (−6) + 0 − 0 − (−3) − (−15)]
= 13 unit 2 ✓
2
2
1
= [9 − (−18)]
11(i)
2
= 9(i)
27 2
unit 2 ✓
Points A & B 1
At A & B, y = meets y = 2x + 1: x
1
= 2x + 1
x
1 = 2x 2 + x 2x 2 + x − 1 =0 (x + 1)(2x − 1) = 0 x = −1
1
or x =
y|x=−1 =
1 (−1)
2
y|x=1 = 2
= −1 ⇒ B(−1, −1) ✓ 9(ii)
1
Points A & B At A & B, y 2 = 12 − 2x meets y = 2 − x (2 − x)2 = 12 − 2x 2 x − 4x + 4 = 12 − 2x 2 x − 2x − 8 =0 (x + 2)(x − 4) = 0 x = −2 or x=4 y|x=−2 = 2 − (−2) y|x=4 = 2 − (4) =4 = −2 ⇒ A(−2,4) ✓ ⇒ B(4, −2) ✓
11(ii) ⊥ bisector of AB
1 ( ) 2
AB⊥ ≡ ⊥ bisector of AB
=2 1
⇒ A ( , 2) ✓ 2
Point:
Point M At M, y = 2x + 1 cuts y-axis (x = 0): y|x=0 = 1 ⇒ M(0,1)
MAB = (
(−2)+4 4+(−2)
Gradient: mAB⊥ = − =−
,
2 1
mAB 1 6 ) −6
(
) = (1,1)
2
=−
1 (4)−(−2) ((−2)−(4))
=1
Ratio 𝐀𝐌: 𝐌𝐁 1
AB⊥ :
Recall A ( , 2) M(0,1) B(−1, −1) 2
By similar triangles (using x-coordinates) 1
AM: MB = ( − 0) : [0 − (−1)]
y − y1 = m (x − x1 ) y − 1 = (1)(x − 1) y−1 =x−1 y=x✓
2
=
1 2
=1
:1 :2✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
236
A math 360 sol (unofficial) 12(i)
Ex 9.1
Points A & B At A & B, y = x 2 + x − 2 meets y = 2x x2 + x − 2 = 2x 2 x −x−2 =0 (x + 1)(x − 2) = 0 x = −1 or x = 2 y|x=−1 = 2(−1) y|x=2 = 2(2) = −2 =4 ⇒ B(−1, −2) ✓ ⇒ A(2,4) ✓
13(i)
A(2, −4) lies on y = x + k: −4 = 2 + k k = −6 Point B At B, y = x − 6 meets y 2 = 8x (x − 6)2 = 8x 2 x − 12x + 36 = 8x x 2 − 20x + 36 = 0 (x − 2)(x − 18) = 0 x = 2 or x = 18 (taken) y|x=18 = (18) − 6 = 12
12(ii) Length of AB |AB| = √[(−1) − 2]2 + [(−2) − 4]2 = √9 + 36 = √45
13(ii) ⊥ bisector of AB
= √9 × 5 = 3√5 units ✓
Recall A(2, −4) B(18,12)
12(iii) ⊥ 𝐝𝐢𝐬𝐭𝐚𝐧𝐜𝐞 𝐟𝐫𝐨𝐦 𝐂 𝐭𝐨 𝐀𝐁 Recall A(2,4) B(−1, −2) C(−3,4) |AB| = 3√5
AB⊥ ≡ ⊥ bisector of AB Point:
F ≡ Foot of ⊥ from C to AB |CF| ≡ ⊥ distance from C to AB
MAB = (
2+18 (−4)+12 2
Gradient: mAB⊥ = − Equating Area of △ ABC: 1 2 1 2
=−
(base)(height) = △ area by shoelace formula |AB||CF|
|AB||CF| 3√5 |CF| 3√5 |CF| |CF|
−3 −1 2 | 4 −2 4 2 −3 −1 2 | =| 4 4 −2 4 8 + 6 + (−4) ] =[ −(−12) − (−4) − (−4) 1
= | 2
2 4
AB⊥ :
,
1 mAB 1 −16 ( ) −16
2
=−
) = (10,4) 1
(−4)−(12) ( (2)−(18) )
= −1
y − y1 = mAB⊥ (x − x1 ) y − (4)= (−1) [x − (10)] y − 4 = −x + 10 y = −x + 14 ✓
= 30 = = =
30 3√5 10 √5 10√5 5
= 2√5 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
237
A math 360 sol (unofficial) 14(i)
Ex 9.1
Points A & B At A & B, y 2 = 2x − 3 meets 2x + 3y = 7 y 2 = 2x − 3 −(1)
14(iii) ⊥ distance from P to AB F ≡ Foot of ⊥ from P to AB |PF| = ⊥ distance from P to AB
2x + 3y = 7 3y = −2x + 7 y
Area of △ PAB = 1
2
7
3
3
=− x+
2 1
−(2)
sub (2) into (1): (− x + ) 3 4 2 x − 9 4 2 x − 9 2
= 2x − 3
3
28 9 46 9
x+ x+
|AB||PF|
2 1 5√13
7 2
2
(base)(height) =
49
2
2
) |PF|
=
|PF|
= 2x − 3
9 76
(
=
= =
=0
9
2x − 23x + 38 = 0 (x − 2)(2x − 19) = 0 x=2
or 2
7
3
3
y|x=2 = − (2) +
x=
15 19 2 2 19
7
3
3
y|x=19 = − ( ) + 2
=1
= −4
⇒ A(2,1)
⇒ B ( , −4)
2
35 2 35 2 35 2 35 2 14 √13 14 13
units
√13 units ✓
Point B B(b1 , b2 ) lies on y 2 = 2x: (b2 )2 = 2b1 1
= (b2 )2
b1
2
1
⇒ B ( (b2 )2 , b2 ) 2
19 2
Midpoint of AB 1
Length of AB
A(2,6) B ( (b2 )2 , b2 ) 2
19 2
|AB| = √(2 −
2
) + [1 −
1
2+ (b2 )2 6+b2 2
(−4)]2
MAB = (
325
=√
=
4
5√13 2
,
2
)
= (x, y)
4
52 ×13
=√
2
⇒x=
1 2
2+ (b2 )2 2
[shown] ✓ ⇒y =
14(ii) Area of triangle PAB
6+b2 2
2y = 6 + b2 b2 = 2y − 6 −(2) sub (2) into (1):
19
P(6,3) A(2,1) B ( , −4) 2
19
1 6 2 6 2 | Area of △ PAB = | 2 3 1 −4 3 1 57 19 = [6 + (−8) + −6− − 2
2
2
(−24)]
1 2
2+ (2y−6)2
x
=
x
= 1 + (2y − 6)2
x
= 1 + (4y 2 − 24y + 36)
2 1 4 1 4
x = 1 + (y 2 − 6y + 9) x = y 2 − 6y + 10 0 = y 2 − 6y − x + 10 y 2 − 6y − x + 10 = 0 ✓
1
= (35) 2
1
= 17 unit 2 ✓ 2
© Daniel & Samuel A-math tuition 📞9133 9982
−(1)
sleightofmath.com
238
A math 360 sol (unofficial) 16(i)
Ex 9.1
Point P P(a, b) lies in y 2 = 8x: b2 = 8a b = √8a or b = −√8a (rej ∵ b > 0)
17(ii) Line AC Point:
⇒ P(a, √8a)
A(0,2at) or C(at 2 , −2at)
Gradient:
mAC =
AC:
y − y1
(2at)−(−2at)
=
(0)−(at2 )
4at −at2
=−
4 t
= m(x − x1 ) 4
y − (2at) = − [x − (0)] Length of PF P(a, √8a) F(2,0)
y 2
PF = √(a − 2)2
+ (√8a)
2
4
(− x + 2at) t 16 2 x − t2 16 2 x − t2 2
= √(a2 − 4a + 4) + 8a =
= − x + 2at t
Another point of intersection At point where AC meets y 2 = 4ax
+ (√8a − 0)
= √(a − 2)2 √a2
t 4
+ 4a + 4 2)2
= √(a + = a + 2 units ✓ 16(ii) Length of PQ PQ = (x − coordinate of P) −(x − coordinate of Q) =a −(−2) =a+2 ⇒ PF = PQ [shown] ✓ 16(iii) Area of triangle PQF P(a, √8a) PQ = a + 2
2
= 4ax
16ax + 4a2 t 2
= 4ax
20ax + 4a2 t 2
=0
16x − 20at 2 x + 4a2 t 4 = 0 4x 2 − 5at 2 x + a2 t 4 =0 (4x − at 2 )(x − at 2 ) =0 x= y|
at2
or
4
at2 x= 4
4 at2
=− ( t
4
x = at 2 (taken)
) + 2at
= −at + 2at = at Another point of intersection (
at2 4
, at) ✓
1
Area of △ PQF = (base)(height) 2 1
= (PQ) (y − coordinate of P) 2 1
= (a + 2)(√8a) 2 1
= (a + 2)(√4 × 2a) 2 1
= (a + 2)2√2a 2
= (a + 2)√2a ✓ 17(i)
𝑦
D(at 2 , 2at) 𝑦 2 = 4𝑎𝑥
A(0,2at) 𝑂 B(0, −2at)
M
𝑥
C(at 2 , −2at)
A(0,2at), B(0, −2at) & C(at 2 , −2at) ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
239
A math 360 sol (unofficial)
Ex 9.1
17(iii) A(0,2at)
18(i)
2
2
M
1
1
l2 : y = √x ∴ l1 ≠ l2 ✓
2 2 1 C(at , −2at) ⃗⃗⃗⃗⃗⃗ = OA ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ OM +AM 2 ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ = OA + AC
⃗⃗⃗⃗⃗ − OA ⃗⃗⃗⃗⃗ ) + (OC 3 2
⃗⃗⃗⃗⃗ = OA
3
x
3
⃗⃗⃗⃗⃗ + OC 3 2
𝑦2 = 𝑥
2
0 ) + ( at ) 3 −2at 2at
2
=(
𝑦 = √𝑥
2
3 2
⃗⃗⃗⃗⃗ = OA = (
3
at 2 2
− at
✓ 19(i)
)
3
2
2
3
= √(2.2)2 + 12
3
= √5.84 ≈ 2.416609195
Method 2 Let M be (xm , ym )
MC
=
Distance in km = (2.416609195)(93 × 106 )(1.609) ≈ 361 × 106 ≈ 3.61 × 108 ✓
2 1
⇒ x − coordinates xm −xa =2 xc −xm x1 −0
⇒ y − coordinates ym −ya =2 yc −ym y1 −2at
=2
at2 −x1
−2at−y1
=2
3x1
= 2at 2 − 2x1 y1 − 2at = −4at − 2y1 2 3y1 = −2at = 2at
x1
= at 2
x1
2
2
3 2
S(−0.1,0) C(−2.3,1) |SC| = √[(−0.1) − (−2.3)]2 + [(0) − (1)]2
2
⇒ M ( at , − at) ✓
AM
y
⃗⃗⃗⃗⃗ − OA ⃗⃗⃗⃗⃗ + OC
1 3 1
18(ii)
2+1 2
⃗⃗⃗⃗⃗ = OA
l1 : y 2 = x y = ±√x
2
y1
= − at 3
2
⇒ M ( at , − at) ✓ 3
3
17(iv) Line (through M and ⊥ 𝐭𝐨 𝐀𝐂) A(0,2at) B(0, −2at) C(at 2 , −2at) D(at 2 , 2at) 2
2
3
3
Point:
M ( at 2 , − at)
Gradient:
m =− =−
Line:
1
=−
mAC 1 (
4at ) −at2
1 (2at)−(−2at) ( ) (0)−(at2 )
=−
1 −
4 t
=
t 4
= m(x − x1 )
y − y1 2
t
3
4 t
2
1
4 t
6 1
2
4
6
3
y − (− at) = [x − ( at 2 )] 2
3
y + at
= x − at 3
y
= x − at 3 − at ✓
3
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
240
A math 360 sol (unofficial)
Ex 9.1
19(ii) S(−0.1,0) C(c1 , c2 ) C(c1 , c2 ) lies on x = −2.3y 2 c1 = −2.3(c2 )2 ⇒ C(−2.3(c2 )2 , c2 ) |SC| = √[(−0.1) − (−2.3(c2 )2 )]2 + (c2 )2 = √[2.3(c2 )2 − 0.1]2 + (c2 )2 = √[5.29(c2 )4 − 0.46(c2 )2 + 0.01] + (c2 )2 = √5.29(c2 )4 + (0.54)(c2 )2 + 0.01 f(c2 ) = √5.29(c2 )4 + (0.54)(c2 )2 + 0.01 f′(c2 )=
21.16(c2 )3 +(1.08)(c2 ) 2√5.29(c2 )4 +(0.54)(c2 )2 +0.01
Minimum |SC| ⇒ f ′ (c2 ) =0 21.16(c2 )3 +(1.08)(c2 ) 2√5.29(c2 )4 +(0.54)(c2 )2 +0.01 21.16(c2 )3 + (1.08)(c2 ) c2 (21.16c 2 + 1.08)
=0 =0 =0
c2 = 0 Sign Test c2 0− 0 0+ f′(c2 ) sign − 0 + ∴ f(c2 ) is minimum 1 AU = 93 million miles = 93 × 106 miles = 93 × 106 [1.609] km = 93 × 106 [1.609][103 ]m = 93 × 106 [1609] m d = |SC||c
2 =0
≈ √f(0)
× 93 × 106 [1609]
× 93 × 106 [1609]
≈ √[0.01] × 93 × 106 [1609] ≈ 1.49637 × 1010 V=
k √d
=
1.17×1010 √1.49637×1010
© Daniel & Samuel A-math tuition 📞9133 9982
≈ 95645ms −1 ✓
sleightofmath.com
241
A math 360 sol (unofficial)
Ex 9.2 2(a)
Ex 9.2 1(a)
1(b)
Centre (0,1) Radius: r = 4 Circle: (x − a)2 +(y − b)2 = r 2 (x − 0)2 + (y − 1)2 = 42 ✓
Comparing coefficients: 2g = 2 2f = −10 g=1 f = −5
𝑦
Radius: r = √f 2 + g 2 − c = √(−5)2 + 12 − 1 = 4
2 (3, −2)
Method 2 (standard form) x 2 + y 2 + 2x − 10y + 1 x 2 + 2x +y 2 − 10y (x + 1)2 − 12 +(y − 5)2 − 52 (x + 1)2 +(y − 5)2 2 [x − (−1)] +(y − 5)2
Centre: (3, −2) Radius: r = 2 Circle: (x − a)2 + (y − b)2 = r2 (x − 3)2 + [y − (−2)]2 = 22 (x − 3)2 + (y + 2)2 = 22 ✓ 1(c)
2(b) 3
(−3,4) 𝑥
𝑂
Radius: √f 2 + g 2 − c = √(−3)2 + (−2)2 − 4 = 3 Method 2 (standard form) x 2 + y 2 − 4x − 6y + 4 x 2 − 4x +y 2 − 6y (x − 2)2 − 22 +(y − 3)2 − 32 (x − 2)2 +(y − 3)2 (x − 2)2 +(y − 3)2
(−2,2) 𝑥
Centre: (−2,2) Radius: r = 2 Circle: (x − a)2 +(y − b)2 = r 2 [x − (−2)]2 +[y − (2)]2 = 22 (x + 2)2 +(y − 2)2 = 22 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
c=4
Centre: (−g, −f) = (2,3)
𝑦
𝑂
Method 1 (general form) x 2 + y 2 − 4x −6y +4 = 0 x 2 + y 2 + 2gx +2fy +c = 0 Comparing coefficients: 2g = −4 2f = −6 g = −2 f = −3
Centre: (−3,4) Radius: r = 3 Circle: (x − a)2 +(y − b)2 = r 2 2 [x − (−3)] +(y − 4)2 = 32 (x + 3)2 +(y − 4)2 = 32 ✓
2
=0 = −1 = −1 = 25 = 52
Centre: (−1,5) Radius: 5
𝑦
1(d)
c=1
Centre: (−g, −f) = (−1,5)
𝑥
𝑂
Method 1 (general form) x 2 + y 2 + 2x −10y +1 = 0 x 2 + y 2 + 2gx +2fy +c = 0
=0 = −4 = −4 =9 = 32
Centre: (2,3) Radius: 3
sleightofmath.com
242
A math 360 sol (unofficial) 3
Method 1
Ex 9.2 𝑦 A(−8,0) 𝑂 𝑥 B(0, −4) 10
4
r
C(0, −16)
2
= −10 5(i)
centre (−8, −10) radius = 10
=5 = 25 = 20 = 20 ✓
Centre C C(0,0)
1
y
= x−3
−(1)
y − 2x = 0 sub (1) into (2):
−(2)
2
=0
At A(−8,0): (−8)2 + (0)2 + 2g(−8) + 2f(0) + c 64 − 16g + c −(1) At B(0, −4), (0)2 + (−4)2 + 2g(0) + 2f(−4) + c 16 − 8f + c −(2)
1
=0 =0
( x − 3) − 2x = 0 2
3
=0
− x
=3
x
= −2
2
=0 =0
1
y|x=−2 = (−2) − 3 = −4 2
⇒ P(−2, −4) Radius r r = |CP| = √[(−2) − 0]2 + [(−4) − 0]2 = √20 Circle (x − a)2 + (y − b)2
Solving (1), (2) & (3): g = 8, f = 10, c = 64 ∴ x + y + 2(8)x + 2(10)y + 64 x 2 + y 2 + 16x + 20y + 64
− x−3 2 3
At C(0, −16), (0)2 + (−16)2 + 2g(0) + 2f(−16) + c = 0 256 − 32f + c =0 −(3)
© Daniel & Samuel A-math tuition 📞9133 9982
=5
Point P on circle At point P on circle, where x − 2y = 6 meets y − 2x = 0, x − 2y = 6 2y =x−6
Circle: (x − a)2 +(y − b)2 = r2 [x − (−8)]2 +[y − (−10)]2 = 102 (x + 8)2 +(y + 10)2 = 102 ✓
2
−c
√5 − c 5−c −c c
(−4)+(−16)
2
+
g2
√12 + (−2)2 − c = 5
y − coordinate of centre
Method 2 x 2 + y 2 + 2gx + 2fy + c
=5
√f 2
x − coordinate of centre = −8
=
C(2, −1) = (−g, −f) Comparing coefficients: g = −2 f=1
(x − 0)2 + (y − 0)2 x + y2 =0 =0
5(ii)
sleightofmath.com
= r2 2
= (√20) = 20
Check point (2,6) lies on circle (2)2 + (6)2 = 20 40 = 20 [inconsistent] ∴ No, (2,6) does not lie in circle ✓
243
A math 360 sol (unofficial) 6(i)
Ex 9.2
Points A & B At A & B, 12x − 5y = −11 cuts x 2 + y 2 − 6x + 2y − 15 = 0 12x − 5y= −11 5y = 12x + 11 y
12x+11
=
−(1)
5
or
12x+11 2
2
5 144x2 +264x+121
)
5
y|x=1 = 2(1) y|x=3 = 2 ( ) 5
5
=2
=0
−6x + 2 (
) − 6x +
25
3
x=
3
−(2)
12x+11
5 24x+22
6
=
⇒ P(1,2) ✓
2
x +(
Points P & Q At P & Q, x 2 + y 2 + 4x − 6y + 3 = 0 & y = 2x meet x 2 + (2x)2 + 4x − 6(2x) + 3 = 0 x 2 + 4x 2 + 4x − 12x + 3 =0 2 5x − 8x + 3 =0 (x − 1)(5x − 3) =0 x=1
x 2 + y 2 − 6x + 2y − 15 = 0 sub (1) into (2): x 2 + y 2 − 6x + 2y − 15 x +(
7(i)
5
3 6
⇒ Q( , ) ✓ 5 5
) − 15 = 0 − 15 = 0
5
7(ii)
⊥ bisector of PQ 3 6
P(1,2) Q ( , ) 5 5
x2 +
144 2 x 25
264
+
25
x
+
PQ ⊥ ≡ ⊥ bisector of PQ
121 25
Point:
−6x +
24 5
x
+
+
234
x−
25
144
13
⇒ A (− 6(ii)
x=
24 13
12(− )+11
24 13
y−
6 13
,−
13
= ) ✓
⇒ B(
6
,
y
6 13
12( )+11 5
13
29 13 29
8(i)
43
13 43
A (−
13
,−
29
) B(
13
6
,
43
) 2
24 6 29 43 |AB| = √[(− ) − ( )] + [(− ) − ( )] 13
13
2
13
mPQ
,
6 5
2
4 8
)= ( , ) 5 5
1
= − (2)−(6 = − )
5 3 (1)−( ) 5
1 4 ( ) 5 2 ( ) 5
=−
1 2
(x − x1 )
=m
8
1
5
2
4
8 5
5
1
2
2 1
5
=− x+
=− x+2✓ 2
x 2 + y 2 − 2x + 8y − 23 = 0 x 2 + y 2 + 2gx +2fy +c =0
c = −23
Centre: (−g, −f) = (1, −4) Radius: √f 2 + g 2 − c = √(4)2 + (−1)2 − (−23)
= √36 =6✓
© Daniel & Samuel A-math tuition 📞9133 9982
1
Comparing coefficients 2g = −2 2f = 8 g = −1 f=4
13 13
13
2
2+
) ✓
13 13
Length of AB 24
y − y1
3 5
y − ( ) = (− ) [x − ( )]
y|x= 6 =
5
=−
PQ ⊥ :
=0 =0 or
13
=0 =0
25
24
y|x=−24 =
Gradient: m = −
5
169x +234x −144 (13x + 24)(13x − 6) x=−
MPQ = (
22
−15 169 2 x 25 2
1+
= √40 = √4 × 10 = 2√10
sleightofmath.com
244
A math 360 sol (unofficial) 8(ii)
Ex 9.2
Tangent AB
10
P(3, −10) 2√10 AB
⊥ bisector of AB AB⊥ ≡ ⊥ bisector of AB
C(1, −4)
Point:
Point:
P(3, −10)
Gradient: mAB = −
Points on circle A(2,3) B(−1,6)
1 mPC
=−
1 (−10)−(−4)
( (3)−(1) )
=−
1 −6 ) 2
(
1 AB⊥ :
3
y − y1
y−
3
9(i)
1
= x − 11 ✓
y
3 1
⊥ bisector of AB
9(ii)
9(iii)
(−2)+4 2
= 1✓
Centre C At C, y = 6 − 2x meets AB⊥ (x = 1) y|x=1 = 6 − 2(1) =4 ⇒ C(1,4) ✓
2 2
1 (3)−(6)
[(2)−(−1)]
1
= − −3 = 3
= m (x − x1 ) 1
9 2
2
=x−
1 2
=x+4
Radius r r = |AC| = √[2 − (−3)]2 + (3 − 1)2 = √29 Circle (x − a)2
Radius r r = |AC| = √[(−2) − 1]2 + (0 − 4)2 = √25 = 5 Circle (x − a)2 +(y − b)2 = r 2 (x − 1)2 +(y − 4)2 = (5)2 ✓
1 9
)=( , )
Centre C At C, AB⊥ (y = x + 4) meets 2x + 5y = −1 2x + 5(x + 4) = −1 2x + 5x + 20 = −1 7x = −21 x = −3 y|x=−3 = (−3) + 4 =1 ⇒ C(−3,1)
3
Points on circle A(−2,0) B(4,0)
x=
mAB
=−
2
y − (−10) = ( ) [x − (3)]
y
1
2
y − ( ) = (1) [x − ( )]
1
= x−1
y − y1
,
2
9
= mAB (x − x1 )
y + 10
(2)+(−1) (3)+(6)
Gradient: mAB⊥ = −
=
1
AB:
MAB = (
+(y − b)2
= r2
[x − (−3)]2 +(y − 1)2 = (√29) (x + 3)2 +(y − 1)2 = 29 ✓ 11(i)
2
Points A & B At A & B, x 2 + y 2 − 4x + 6y − 12 = 0 cuts x − axis (y = 0). x 2 + (0)2 − 4x + 6(0) − 12 = 0 x 2 − 4x − 12 =0 (x + 2)(x − 6) =0 x = −2 or x = 6 ⇒ A(−2,0) ⇒ B(6,0) Length of AB |AB| = 6 − (−2) = 8 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
245
A math 360 sol (unofficial)
Ex 9.2
11(ii) Centre C x 2 + y 2 − 4x + 6y − 12 = 0 x 2 + y 2 + 2gx + 2fy + c = 0
12(ii)
𝑦 𝑦=𝑥
𝐶 6
Comparing coefficients: 2g = −4 2f = 6 g = −2 f=3
𝐴
𝑦 = −𝑥
= MAD
(2, −3) = ( 2 =
(−2)+(d1 ) (0)+(d2 ) 2
(−2)+(d1 ) 2
,
and
12(i)
2
−3 =
d1 = 6 ⇒ D(6, −6) ✓
Centre C of 𝐂𝟑 At C, AB⊥ (y = −x) cuts circle (x 2 + y 2 = 36) x 2 + (−x)2 = 36 2x 2 = 36 2 x = 18 x = ±√18 = ±√9 × 2 = ±3√2 x = 3√2 or x = −3√2 y|x=3√2 = −3√2 y|x=−3√2 = 3√2
) (0)+(d2 ) 2
d2 = −6
𝑦 𝑦=𝑥 5 5
O
5
⇒ C(3√2, −3√2)
⇒ C(−3√2, 3√2)
𝑥 Radius r of 𝐂𝟑 r = |BC|
5 Centre: A(−5, −5) or B(5,5) Radius: r = 5 C1 : C2 :
𝐶
Circle with centre (𝟎, 𝟎) & radius 6 (x − 0)2 + (y − 0)2 = 62 x2 + y2 = 36
Point D D(d1 , d2 ) C
6
𝑥
⊥ 𝐛𝐢𝐬𝐞𝐜𝐭𝐨𝐫 𝐨𝐟 𝐀𝐁 AB⊥ : y = −x
= (−g − f) = (2, −3)
Centre C
𝐵
O
2
2
= √(5 − 3√2) + [5 − (−3√2)]
[x − (−5)]2 + [y − (−5)]2 = 52 ✓ (x − 5)2 + (y − 5)2 = 52 ✓
= √(25 − 30√2 + 18) + (25 + 30√2 + 18) = √96 Circle 𝐂𝟑 C3 :
[x − (3√2)]
or [x − (3√2)]
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
2 2
+[y − (−3√2)] +[y − (−3√2)]
2 2
2
= (√96) ✓ 2
= (√96) ✓
246
A math 360 sol (unofficial) 13(i)
Ex 9.2
Tangent x + 2y = −5 2y = −x − 5 y
1
5
2
2
=− x−
Normal Point:
14 C(−1,3) P
x + 2y = −5
Normal:
−1 mtan
=
−1 1 2
(− )
=2
y − y1 = mnorm (x − x1 ) [x − (−1)] y − (3)= (2) (x + 1) y−3 =2 y − 3 = 2x + 2 y = 2x + 5
Centre C x 2 + y 2 − 4x − 8y − 5 = 0 x 2 + y 2 + 2gx + 2fy + c = 0
Point P on circle 1
5
2
2
At P, tangent (y = − x − ) meets normal (y = 2x + 5) 1
5
2
2
Comparing coefficients 2g = −4 2f = −8 g = −2 f = −4
− x − = 2x + 5 5 2
x
x
=−
15 2
= −3
Centre C
1
5
2
2
y|x=−3 = − (−3) −
1
Area of △ ABC = | |
13(ii) Centre C(−1,3)
2
Radius r = |CP| = √[(−3) − (−1)]2 + [(−1) − 3]2 = √20
2 −1
5 8
2 4
2 || −1
=
1 16 + 20 + (−2) | | 2 −(−5) − 16 − 8
=
1 |15| 2
= 7.5 units 2 ✓ = r2
[x − (−1)]2 +(y − 3)2 = (√20) (x + 1)2 +(y − 3)2 = 20 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
= (−g, −f) = (2,4)
Area of triangle ABC A(2, −1) B(5,8) C(2,4)
= −1 ⇒ P(−3, −1) ✓
Circle (x − a)2 +(y − b)2
=0 =0 =0
10x 2 −70x + 100 = 0 x 2 −7x +10 =0 (x − 2)(x − 5) =0 x=2 or x = 5 y|x=2 = 3(2) − 7 y|x=5 = 3(5) − 7 = −1 =8 ⇒ A(2, −1) ⇒ B(5,8)
C(−1,3) or P
Gradient: mnorm =
Point A & B At A & B, (y = 3x − 7) cuts (x 2 + y 2 − 4x − 8y − 5 = 0) x 2 + (3x − 7)2 −4x −8(3x − 7) −5 2 2 x + (9x − 42x + 49) −4x −24x + 56 −5 (10x 2 − 42x + 49) −28x + 51
2
sleightofmath.com
247
A math 360 sol (unofficial) 15
Ex 9.2
x 2 + y 2 + 4x +6y −12 = 0 x 2 + y 2 + 2gx +2fy +c = 0 Comparing coefficients 2g = 4 2f = 6 g=2 f=3
16
Line & Circle y = mx − 1 x 2 + y 2 − 4x + 3 = 0
−(1) −(2)
sub (1) into (2): x 2 + (mx − 1)2 −4x + 3 = 0 2 2 2 x +(m x − 2mx + 1) −4x + 3 = 0 (1 + m2 )x 2 + (−2m − 4)x + 4 =0
c = −12
Centre C = (−g, −f) = (−2, −3) Radius r = √f 2 + g 2 − c
Discriminant For two distinct points: b2 − 4ac (−2m − 4)2 − 4(1 + m2 )(4) (4m2 + 16m + 16) − 16(1 + m2 ) (4m2 + 16m + 16) − 16 − 16m2 −12m2 + 16m 3m2 − 4m m(3m − 4)
= √32 + 22 − (−12) = √25 = 5 𝑦
(−3, −1)
𝑂
𝑥
(−2, −3)
+
3
= √[(−2) − (−3)]2 + [(−3) − (−1)]2 =
+
+ 4
0
Distance from centre to point (−3, −1) √12
−
>0 >0 >0 >0 >0 <0 <0
4
0 < m < [shown] ✓
(−2)2
3
= √5 < radius ⇒ point lies inside circle
17
∴ any line passing through (-3,-1) cannot be tangent to circle ✓
Centre x 2 + y 2 + 2x − 2y − 3 = 0 x 2 + y 2 + 2gx + 2fy + c = 0 C(−1,1)
Comparing coefficients: 2g = 2 2f = −2 g=1 f = −1
P(1,2) Tangent
Centre: C(−g, −f) = (−1,1) Tangent Point:
P(1,2) or C(−1,1)
Gradient: mtan = =
−1 mnorm
=
−1 (1)−(2)
[(−1)−(1)]
−1 mCP
=
−1 −1 ) −2
(
= −2
Tangent: y − y1 = mtan (x − x1 ) y − (2)= (−2)[x − (1)] y − 2 = −2x + 2 y = −2x + 4 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
248
A math 360 sol (unofficial) 18(i) P(x, y)
Ex 9.2 19(ii) ⊥ bisector of PQ (𝐏𝐐⊥ ) P(2, −2) Q(6,0)
A(−a, 0) B(a, 0)
Point: PA
= 2PB
√[x − (−a)]2 + (y − 0)2
= 2√(x − a)2 + (y − 0)2
√(x + a)2 + y 2
= 2√(x − a)2 + y 2
(x + a)2 + y 2
= 4[(x − a)2 + y 2 ]
(x 2 + 2ax + a2 ) + y 2
= 4[(x 2 − 2ax + a2 ) + y 2 ]
x 2 + 2ax + a2 + y 2
= 4x 2 − 8ax + 4a2 + 4y 2
−3x 2 + 10ax − 3a2 − 3y 2
=0
x2 −
10 3
ax + a2 + y 2 2
5
Gradient: mPQ⊥ = = PQ ⊥ :
19(iii) 2
5
2
3 5
+ a2 + y 2 = 0
2
(x − a) + y 2
=
3
(x − x1
)2
+ (y − y1
)2
16 2 a 9
= r [shown]
=
−1 1 2
= −2
(x − a)2 + (y − b)2 = r2 (x − 6)2 + [y − (−5)]2 = (5)2 (x − 6)2 + (y + 5)2 = 25 ✓ [wrong answer in textbook]
4 3
Circle 𝐂𝟏 Centre: P(2, −2) Point: Q(6,0) Radius: r = |PQ|
20(i)
= √(2 − 6)2 + [(−2) − 0]2 √(−4)2
+
(x − x1 )2 + (y − y1 )2 = r 2 (x − 2)2 − [y − (−2)]2 = (√20) (x − 2)2 + (y + 2)2 = 20 ✓
x 2 + y 2 − 4x − 4y = 1 y=x+c
−(1) −(2)
sub (2) into (1): x 2 + (x + c)2 −4x − 4(x + c) 2 2 2 x + (x + 2cx + c ) −4x − 4x − 4c (2x 2 + 2cx + c 2 ) −8x − 4c 2 2 (2c 2x + − 8)x + c − 4c − 1
(−2)2
= √20
© Daniel & Samuel A-math tuition 📞9133 9982
𝑥
5
19(iv) C2 :
radius = a ✓
C1 :
−2 −4
−1 (−2)−(0)
[ (2)−(6) ]
Radius of C2 = 5 Centre of C2 =(6, −5) ✓
2
3
=
−1
=
) = (4, −1)
𝐶2
18(ii) centre (5 a, 0) ✓
19(i)
−1
2
y − y1 = mPQ⊥ (x − x1 ) y − (−1) = (−2) [x − (4)] y+1 = −2x + 8 y = −2x + 7 ✓
𝑂
25 2 a 9
,
mPQ
𝑄(6,0)
3
(x − a) −
2
𝑦
2
[(x − a) − ( a) ] + a + y = 0 3
2+6 (−2)+(0)
=0
2
5
MPQ = (
2
x 2 + (c − 4)x +
c2 −4c−1 2
=1 =1 =1 =0 =0
[shown] ✓
sleightofmath.com
249
A math 360 sol (unofficial)
Ex 9.2
20(ii) Sum of roots Roots: x1 & x2
21 b
Sum of roots = x1 + x2 = −
a
=−
(c−4) 1
(2)]2
=4−c
P(9,2) C(2, −1)
By Pythagoras’ Theorem, |PT|2 = |PC|2
Midpoint of PQ
=( =( =( =(
2 x1 +x2 2 x1 +x2 2 4−c 2 4−c 2
2 x1 +x2 +2c
,
2 x1 +x2 +2c
,
2 (4−c)+2c
,
2 4+c
,
2
(x, y) = MPQ ( ⇒x = 2x c
2
4−c 4+c 2
,
2
)
= 72 + 32 = 58 = 45
) ) PT
)
22
)
y=
= √45
Method 1 (graphical inspection) 𝑦 x = (y − k)2 + h
4−c 2
(h, k)
4+c 2
𝑂
𝑥
∴ two y − intercepts
−(2)
Method 2 (solution) x = a(y − k)2 + h
sub (1) into (2) y=
−13 −13
= 3√5
=4−c = 4 − 2x −(1)
⇒y=
2
= √9 × 5
) ✓
20(iii) Curve traced by midpoint
−|CT|2
= [√(9 − 2)2 + [2 − (−1)]2 ] −(√13)
(x1 +c)+(x2 +c)
,
2
= (√13)
T
Q(x2 , y2 ) lies on y = x + c: y2 = x2 + c ⇒ Q(x2 , x2 + c)
x1 +x2
= 13
(−1)]2
[x − + [y − Centre: C(2, −1) Radius: r = √13
Points P & Q P(x1 , y1 ) lies on y = x + c: y1 = x1 + c ⇒ P(x1 , x1 + c)
MPQ = (
Circle (x − 2)2 + (y + 1)2
4+(4−2x) 2 8−2x
At y − axis (x = 0): 0 = a(y − k)2 + h 2 a(y − k) = −h > 0 ∵h<0
2
y = −x + 4 ✓
h
(y − k)2
=−
(y − k)
= ±√−
y
= k ± √−
a
>0
∵a>0
h a h a
∴ two y − intercepts ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
250
A math 360 sol (unofficial) 22
Ex 9.2
Method 3 (discriminant) a(y − k)2 + h =0 a(y 2 − 2ky + k 2 ) +h = 0 ay 2 −2aky +ak 2 + h = 0 i.e. A = a, B = −2ak, C = ak 2 + h
23
9 4
Grad: mAB⊥ = AB⊥ :
−1 mAB
8
4
8
x
= =
31 8 31 18
31
y|x=31 = 2 ( ) 18
18
=
⇒ D(
31
9 31 31 18
,
9
)
31
2
31
= √[(3) − ( )] + [(1) − ( )] 18
=√
7
) = ( , 3)
2
2
9
2465 324
2
−1
=
(1)−(5)
[(3)−(4)]
=−
1
Circle (x − x1 )2 + (y − y1 )2
4
y − y1 = mAB⊥ (x − x1 ) 1
7
4
2
(x −
y − (3)= (− ) [x − ( )] 1
7
4 1
8
y−3 =− x+ y
7
Radius r r = |AD|
3+4 1+5 2
1
x
⊥ 𝐛𝐢𝐬𝐞𝐜𝐭𝐨𝐫 𝐨𝐟 𝐀𝐁 AB⊥ ≡ ⊥ bisector of AB ,
7
4
− x + 3 = 2x
Points A(3,1) B(4,5) C(−1,3)
Point: MAB = (
1
At D, AB⊥ (y = − x + 3 ) meets AC⊥ (y = 2x).
Discriminant B 2 − 4AC = (−2ak)2 − 4(a)(ak 2 + h) = 4a2 k 2 − 4a2 k 2 − 4ah = −4ah >0 ∵ a > 0, h < 0 ∴ two y-intercepts 23
Centre D
=− x+3 4
31 2
) + (y −
18
31 2 9
)
= r2 2
= (√
2465 324
) ✓
7 8
⊥ 𝐛𝐢𝐬𝐞𝐜𝐭𝐨𝐫 𝐨𝐟 𝐀𝐂 AC⊥ ≡ ⊥ bisector of AC Point: MAC = ( Grad: mAC⊥ = AC⊥ :
3+(−1) 1+3 2 −1 mAC
,
=
2
) = (1,2)
−1 (1)−(3) [(3)−(−1)]
=2
y − y2 = mAC⊥ (x − x2 ) y − (2)= (2) (x − 1) y − 2 = 2x − 2 y = 2x
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
251
A math 360 sol (unofficial)
Rev Ex 9 A2
Rev Ex 9 A1(i)
Line AC A(4,4) C(6,0) Point: A(4,4) or C(6,0) (4)−(0)
Gradient: mAC = (4)−(6) =
4 −2
−(1) −(2)
sub (1) into (2): (mx + 1)2 =x 2 2 m x + 2mx + 1 =x 2 2 m x + (2m − 1)x + 1 = 0
= −2
y − y1 = m (x − x1 ) y − (0)= (−2)[x − (6)] y = −2x + 12
AC:
Line & Curve y = mx + 1, m > 0 y2 = x
Point B At B, AC meets y 2 = 4x (−2x + 12)2 = 4x 2 4x − 48x + 144 = 4x 4x 2 − 52x + 144 = 0 x 2 − 13x + 36 =0 (x − 4)(x − 9) =0 x=4 or x = 9 (taken) y|x=9 = −2(9) + 12 = −6 ⇒ B(9, −6) ✓
Discriminant For two distinct points: b2 − 4ac (2m − 1)2 − 4(m2 )(1) (4m2 − 4m + 1) − 4m2 −4m + 1 −4m
>0 >0 >0 >0 > −1
m
<
1 4
Combine inequalities: m > 0 and m <
1 4
1
⇒ 0 < m < [shown] ✓ 4
A1(ii) A(4,4) B(9, −6) C(6,0) |AC| = √(4 − 6)2 + (4 − 0)2 =
√(−2)2
+
A3(i)
𝑦 𝑃(10,18)
42
= √4 + 16
13
= √20 = √4 × 5 = 2√5 units ✓
13
𝑥
Radius: r = 13 Point: (10,18) y − coordinate of centre C = 13
|CB| = √(6 − 9)2 + [0 − (−6)]2 C1 : (x − a)2 + (y − b)2 = r2 2 2 (x − a) + (y − 13) = 132 [(10) − a]2 + [(18) − 13]2 = 169 (10 − a)2 + 52 = 169 2 (10 − a) = 144 a2 − 20a + 100 = 144 2 a − 20 − 44 =0 (a + 2)(a − 22) =0 a = −2 or a = 22 ⇒ C(−2,13) ⇒ C(22,13)
= √(−3)2 + (−6)2 = √9 + 36 = √45 = √9 × 5 = 3√5 ✓ A1(iii) AC: CB
= 2√5: 3√5 = 2: 3 ✓
∴ [x − (−2)]2 + (y − 13)2 = 132 ✓ or (x − 22)2 + (y − 13)2 = 132 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
252
A math 360 sol (unofficial)
Rev Ex 9
A3(ii) Centre: (−2, −13) or (22, −13) Radius: r = 13 [x − (−2)]2 + [y − (−13)]2 = 132 ✓ C2 : or (x − 22)2 + [y − (−13)]2 = 132 ✓
A4(iii) Radius 1
r = |AB| 2
1
= √[(−2) − 6]2 + [4 − (−2)]2 2 1
A4(i)
= √100 = 5 2
Points on circle A(−2,4) B(6, −2)
Circle (x − x1 )2 + (y − y1 )2 = r 2 [x − (2)]2 + [y − (1)]2 = (5)2 (x − 2)2 + (y − 1)2 = 25
Centre C C = MAB = (
(−2)+6 4+(−2) 2
,
) = (2,1) ✓
2
A4(ii) Line DE Point: C(2,1) Gradient: ∵ DE ⊥ AB, mDE = DE:
−1 mAB
Points D & E =
−1 (4)−(−2)
[(−2)−(6)]
=
−1 [
6 ] −8
=
4 3
y − y1 = mDE (x − x1 ) y − (1)=
4 3 4
[x − (2)]
y−1 = x− y
3 4
3 5
3
3
5
3
3
+ [( x − ) − 1]
(x − 2)2
+( x− )
25 2 x 9 25 2 x 9 2
= x− ✓
4
(x − 2)2
− −
100 9 100 9
3 3 16 2 64 +( x − x 9 9 100
x+ x−
= 25 = 25
+
64 9
)= 25 = 25 =0
9
=0 =0 or x = 5
4
5
3
3
y|x=−1 = (−1) − = −3 ⇒ E(−1, −3) ✓
sleightofmath.com
3
9 125
x − 4x − 5 (x + 1)(x − 5) x = −1
© Daniel & Samuel A-math tuition 📞9133 9982
5
3 2
8 2
4
(x 2 − 4x + 4)
8
4
At D & E, circle meets DE (y = x − )
4
5
3
3
y|x=5 = (5) − =5 ⇒ D(5,5) ✓
253
A math 360 sol (unofficial) A5(i)
Rev Ex 9
Circle & Line x 2 + y 2 + 6x − 8y = 0 y = mx −
B1(i) −(1)
1
−(2)
3
sub (2) into (1): 1 2
1
x 2 + (mx − )
+6x − 8 (mx − ) = 0
3
2
x +
(m2 2
3
2
1
8
3 2
9 1
3 8
3
9
x − mx + ) +6x − 8mx +
(1 + m2 )x 2 − mx + (1 + m2 )x 2 + (6 −
26 3
+(6 − 8m)x +
m) x +
3
25
=0 =0 =0
9
Discriminant b2 − 4ac = (6 −
26 3
m)
B1(ii) Length of AB A(−9, −6) B(−4,4)
2
25
− 4(1 + m2 ) ( )
|AB| = √[(−9) − (−4)]2 + [(−6) − 4]2
9
= (36 − 104m + = (36 − 104m +
676 9 676 9
m2 ) −
100
2)
100
m
−
9 9
= √125
(1 + m2 ) −
100 9
= √25 × 5 = 5√5 units ✓
2
m
224
= 64m2 − 104m +
B1(iii) Area of triangle CAB A(−9, −6) B(−4,4) C(−4, −4)
9
For line to intersect circle at two distinct points: b2 − 4ac >0 224
Area of △ CAB
7
4
1 −4 −4 −9 −4 | | 2 −4 4 −6 −4 1 = [(−16) + 24 + 36 − 16 − (−36) − 24] 2 1 = (40) 2
24
3
= 20 unit 2 ✓
64m2 − 104m +
9
>0
=
576m2 − 936m + 224 > 0 72m2 − 117m + 28 >0 (24m − 7)(3m − 4) >0 +
m<
−
7
+
4
24
or m > ✓ 3
A5(ii) For line to be tangent to circle: b2 − 4ac =0 64m2 − 104m + m=
Points A & B At A & B, y 2 = −4x meets y = 2x + 12 (2x + 12)2 = −4x 2 4x + 48x + 144 = −4x 4x 2 + 52x + 144 = 0 x 2 + 13x + 36 =0 (x + 9)(x + 4) =0 x = −9 or x = −4 y|x=−9 = 2(−9) + 12 y|x=−4 = 2(−4) + 12 = −6 =4 ⇒ A(−9, −6) ✓ ⇒ B(−4,4) ✓
7 24
224 9
B1(iv) ⊥ distance from C to AB F ≡ Foot of ⊥ from C to AB |CF| = ⊥ distance from C to AB
=0
Equate area of △ CAB:
4
1
3
2 1
or m = ✓
2
A5(iii) For line to not meet circle: b2 − 4ac <0 64m2 − 104m +
224 9
|AB||CF|
= 20
(5√5)|CF| = 20
CF
=
40 5√5
=
8 √5
=
8√5 5
units ✓
<0
(24m − 7)(3m − 4) < 0 +
7 24
−
+
7
4
24
3
4 3
✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
254
A math 360 sol (unofficial) B2(i)
Line & circle y = mx x 2 + y 2 − 4mx + 3 = 0
Rev Ex 9
−(1) −(2)
B2(iii) Line & Circle ∵ line is parallel to y = x, y=x+c
x 2 + (x + c)2 − 4x + 3 = 0 −(2) sub (1) into (2): x 2 + (x + c)2 −4x + 3 = 0 2 2 2 x + (x + 2cx + c ) −4x + 3 = 0 (2x 2 + 2cx + c 2 ) −4x + 3 = 0 2x 2 + (2c − 4)x + (c 2 + 3) =0
sub (1) into (2): x 2 + (mx)2 − 4mx + 3 = 0 x 2 + m2 x 2 − 4mx + 3 = 0 (1 + m2 )x 2 − 4mx + 3 = 0 Discriminant For no intersection: b2 − 4ac (−4m)2 − 4(1 + m2 )(3) 16m2 − 12(1 + m2 ) 4m2 − 3(1 + m2 ) 4m2 − 3 − 3m2 m2 − 3 (m + √3)(m − √3) +
−
−(1)
<0 <0 <0 <0 <0 <0 <0
Discriminant For line to be tangent to circle: b2 − 4ac =0 2 2 (2c − 4) − 4(2)(c + 3) =0 2 2 (4c − 16c + 16) − 8(c + 3) = 0 (4c 2 − 16c + 16) − 8c 2 − 24 = 0 −4c 2 − 16c − 8 =0 2 c + 4c + 2 =0
+
c=
−√3 √3 −√3 < m < √3 ∵ m is positive integer, m=1✓
=
−(4)±√(4)2 −4(1)(2) 2(1) −4±2√2 2
=
−4±√8 2
= −2 ± √2
Line with 𝐜 = −𝟐 ± √𝟐 y = x + (−2 ± √2) = x − 2 ± √2 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
255
A math 360 sol (unofficial) B3
Rev Ex 9
Method 1 (algebraic) x 2 + y 2 + 2gx + 2fy + c = 0 (13,0): 132 + 2g(13) + c = 0 169 + 26g + c = 0 (27,0): 272 + 2g(27) + c = 0 729 + 54g + c = 0
B3
Method 2 (graphical) ⊥ bisector of PQ PQ ⊥ ≡ ⊥ bisector of PQ PQ ⊥ : x =
−(1)
(13)+(27) 2
= 20
𝑅(0,9) O
⊥ bisector of PR Point:
−(2)
MPR = ( =(
(0,9):
𝑦
02 + 92 + 2f(9) + c = 0 81 + 18f + c = 0 −(3)
Gradient: mPR⊥ = PR ⊥ :
(1) − (2): −560 − 28g = 0 −28g = 560 g = −20
13+0 0+9 2 13 9 2
2
𝑥
)
, ) 2
−1
=
mPR
y − y1
,
𝑄(27,0) 𝑃(13,0)
−1
=
[
−9 ] 13
=
13 9
(x − x1 )
=m
9
−1 (0)−(9)
[(13)−(0)]
13
13
y − ( ) = ( ) [x − ( )] 2
y−
9 2
y
Put g = −20 into (1): 169 + 26(−20) + c =0 c = 351
= =
9 13
169
9 13
18 44
9
2
x− x−
9
Centre C At C, PQ ⊥ (x = 20) meets PR ⊥ (y =
Put g = −20 & c = 351 into (3): 81 + 18f + 351 = 0 f = −24
y|x=20 =
13 9
(20) −
13 9
x−
44 9
)
44 9
= 24 ⇒ C(20,24) Radius r C(20,24) P(13,0) Q(27,0) R(0,9) r = |CP| = √(20 − 13)2 + (24 − 0)2 = √625 = 25 Circle (x − x1 )2 + (y − y1 )2 = r 2 (x − 20)2 + (y − 24)2 = 252 ✓ B4(i)
x 2 + y 2 − 6x − 2y − 15 = 0 x 2 + y 2 + 2gx + 2fy + c = 0 Comparing coefficients: 2g = −6, 2f = −2, g = −3 f = −1 Centre:
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
c = −15
Z(3,1) ✓
256
A math 360 sol (unofficial) B4(ii)
Rev Ex 9 B4(iii)
𝐵
𝐵
𝑀(2,3) 𝐴
𝑍(3,1) 𝐴
AB:
𝑍(3,1)
𝐶
Chord AB Point: M(2,3) Grad: mAB =
−1 mZM
=
−1 (1)−(3)
[(3)−(2)]
=
−1 −2 ) 1
(
=
1 2
Line CD Point: Z(3,1) Gradient: ∵ CD ∥ AB
y − y1 = mAB (x − x1 )
mCD = mAB =
1
y − (3)= [x − (2)] 2 1
1 2
y − y1 = m(x − x1 )
CD:
1
y−3 = x−1 y
𝐷
𝑀
y − (1)= ( ) [x − (3)]
2 1
2
1
= x+2✓
y − 1= x −
2
2
3 2
1
1
2
2
= x− ✓
y
−(1)
Points C & D 1
1
2
2
At C & D, CD (y = x − ) meets circle (x 2 + y 2 − 6x − 2y − 15 = 0) 1 2
1
x2 + ( x − ) 2 1 2 x + ( x2 4 5 2 1
2
1
1
2 1
4
− x+ )
( x − x+ ) 4
5 2 x 4 2
−
2 15 2
x−
4 55
2
=0
−6x − x + 1 − 15
=0
−7x − 14
=0
=0
−(−6)±√(−6)2 −4(1)(−11) 2(1)
y|x=3−2√5
=
6±4√5 2
= 3 ± 2√5
y|x=3+2√5
1
1
2
2
= (3 − 2√5) −
1
2
=0
4
5x − 30x − 55 x 2 − 6x − 11 x=
1
−6x − 2 ( x − ) − 15
1
1
2
2
= (3 + 2√5) −
3 1 3 1 = ( + √5) − = ( − √5) − 2 2 2 2 = 1 + √5 = 1 − √5 ⇒ C(3 − 2√5, 1 − √5) ✓ ⇒ D(3 + 2√5, 1 + √5) ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
257
A math 360 sol (unofficial) B5 Circle & line x 2 + y 2 − 4x − 2y + 1 x 2 − 4x + y 2 − 2y + 1 x 2 − 4x + (y − 1)2 − 12 + 1 x 2 − 4x + (y − 1)2
Rev Ex 9 B5(i) =0 =0 =0 =0
For two distinct points: b2 − 4ac >0 4k(3k + 4) > 0 +
−
−(1)
− 4
+
0
3 4
k < − or k > 0 ✓
kx − y = k + 1 −y = −kx + k + 1 y = kx − k − 1
3
B5(ii) For intersection at one exact point: b2 − 4ac =0 4k(3k + 4) = 0
−(2)
4
sub (2) into (1): x 2 − 4x + [(kx − k − 1) − 1]2 x 2 − 4x +(kx − k − 2)2 x 2 − 4x +[kx − (k + 2)]2 x 2 − 4x +[k 2 x 2 − 2k(k + 2)x + (k + 2)2 ] (1 + k 2 )x 2 +[−4 − 2k(k + 2)]x +(k + 2)2 (1 + k 2 )x 2 +(−4 − 2k 2 − 4k)x +(k + 2)2 (1 + k 2 )x 2 +(−2k 2 − 4k − 4)x +(k + 2)2
k = 0 or k = − ✓ 3
=0 =0 =0 =0 =0 =0 =0
B5(iii) For no points of intersection: b2 − 4ac <0 4k(3k + 4) < 0 + −
− 4 3
+ 0
4
−
Discriminant b2 − 4ac = (−2k 2 − 4k − 4)2 −4(1 + k 2 )(k + 2)2 = (−2)2 (k 2 + 2k + 2)2 −4(k 2 + 1)(k 2 + 4k + 4) = 4(k 2 + 2k + 2)2 −4(k 2 + 1)(k 2 + 4k + 4) k 2 (k 2 + 2k + 2) k 2 (k 2 + 4k + 4) ] = 4 [+2k(k 2 + 2k + 2)] −4 [ +1(k 2 + 4k + 4) 2 +2(k + 2k + 2) = 4(k 4
−4(k
+2k 3 +2k 3 4
= 4(k 4 −4(k 4
+4k
3
+4k 3 +4k 3
= 4k 4 +16k 3 −4k 4 −16k 3 = 12k 2 + 16k = 4k(3k + 4)
+2k 2 +4k 2 +2k 2 +4k 2 +k 2
+4k +4k
+4)
+4k
+4)
+8k 2 +5k 2
+8k +4k
+4) +4)
+32k 2 −20k 2
+32k −16k
+16 −16
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
258
A math 360 sol (unofficial)
Ex 10.1
Ex 10.1 1(i)
1(ii)
AD = CD (S) ∡BDA = ∡BDC (A) BD = BD (S) △ ABD ≅ △ CBD ✓
(D is mid − pt of AC) (BD ⊥ AC) (common side) (SAS congruency)
B
A
D
(corr. ∡s of ≅ △ s)
∡ABD = ∡CBD i. e. BD bisects ∡ABC ✓
B
A
2(i)
(given) AP = QE AP + PQ = QE + PQ AQ = EP✓
D
AQ = EP (S) ∡BAQ = ∡DEA (A) ∡BQA = ∡DPE (A)
D C
(Proven) (Given) (iso.△ CPQ with CP = CQ) (AAS congruency)
△ ABQ ≅ △ EDP ✓ 2(iii)
∡QBA = ∡PDE ✓
(corr. ∡s of ≅ △ s)
C
B
A
2(ii)
C
P
Q
E
B
D C A
P
E
Q
B
D C A
3(i)
△ BOA ~ △ BYT ⇒
AB BO
=
BT BY
✓
(given) (corr. ∡s of ≅ △ s)
P
Q
T
A B
Y
O
3(ii)
(SS)
AB BO
=
BT BY
(A) ∡ABT = ∡OBY △ BAT ~ △ BOY ✓
(proven)
∡ABC = ∡AMN (A) ∡ACB = ∡ANM (A) △ ABC ~ △ AMN ✓
© Daniel & Samuel A-math tuition 📞9133 9982
T
A
(opp. ∡) (SAS similarity)
B
O
4(i)
E
Y
(corr. ∡) (corr. ∡) (AA similarity)
sleightofmath.com
259
A math 360 sol (unofficial) 4(ii)
AC
=
BC
Ex 10.1
AN
(corr. ∡s of ≅ △ s)
MN
A
AC × MN = AN × BC NC × AC = AN × BC ✓ (MN = NC; equal sides of iso.△ MNC with ∡NMC = ∡NCM)
M
N
B
5(i)
∡CAB = ∡BCD (A) ∡ACB = ∡CBD (A) △ ABC ~ △ CDB ✓
(90°) (alt. ∡) (AA similarity)
C
C
A
B 5(ii)
AC
=
CB
CB
D
(corr. ∡s of ≅ △ s)
BD
AC × BD = CB 2 ✓ 6
AC ∥ GF ⇒ AC ∥ GE ✓ GE ∥ BD ∴ AC ∥ BD✓
(BG = GA, BF = FC, mid − pt thm)
C
A
(given) E G
F
D
B
7(i)
DE ∥ BC ✓
AD = DB, AE = EC, mid − pt thm
A
E
D
C
B
7(ii)
1
DE = BC 2 1
= (2x) 2
(AD = DB, AE = EC, mid − pt thm)
A
(BC = 2x)
=x ✓
D
𝑥
E
2𝑥 C
B
8(i)
∡SDM = ∡TCM (A) ∡DMS = ∡CMT (A) DM = CM (S) △ SDM ≅ △ TCM ✓
(given) (opp. ∡) (M is mid-pt of DC) (AAS congruency)
D A S
B
T
M C
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
260
A math 360 sol (unofficial) 8(ii)
9
Ex 10.1
In △ DSB & △ CTA, ∡DSB = ∡CTA(A) DS = CT (S) ∡SDM = ∡TCM 2∡SDB = 2TCA ∡SDB = ∡TCA(A)
(△ SDM ≅ △ TCM) (△ SDM ≅ △ TCM) (△ SDM ≅ △ TCM) (DB bisects ∡SDM & CA bisects ∡TCM)
△ DSB ≅△ CTA ⇒ SB = TA ✓
(AAS congruency) (corr. sides of ≅△ s)
D A S
B
C
Prove: △ ANT ≅ △ ELR
G
A
10
(A) (iso.△ AGE with AG = EG) (given) (given)
E
R I
(S) (SAS congruency)
Z
J
11(i)
T
ZX = ZQ (S) (given) ∡JXZ = ∡FQZ (A) (iso.△ QZX with QZ = XZ) JQ = XF JQ + QX = XF + QX (given) JX = FQ (S) △ JZX ≅ △ FZQ ✓
L
N
AR = ET (given) AR − (TR) = ET − (TR) AT = ER (S) ∡NAT = ∡LER AG = EG NG = LG Subtracting sides, AG − NG = EG − LG AN = EL △ ANT ≅ △ ELR ✓
T
M
(SAS congruency)
Q
F
X
JX = FQ
∡BAE = ∡DAC (A)
(AE bisects ∡BAD)
∡AEB = ∡DEC = ∡DCE = ∡ACD (A)
(opp. ∡) (iso.△ CDE with DE = DC) (common ∡)
△ ABE ~ △ ADC ✓
(AA similarity)
A D
11(ii)
AB AE
=
AD AC
E B
C
(△ ABE ~ △ ADC)
AB × AC = AD × AE ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
261
A math 360 sol (unofficial) 12(i)
∡DEB = ∡FDE (A)
(alt. ∡)
∡BDE = ∡CEF = ∡EFD (A)
(90°) (alt. ∡)
△ BDE ~ △ EFD ✓
(AA similarity)
12(ii) ∡EFD = ∡CEF (A)
13(i)
Ex 10.1 A
B
A
∡FED = ∡DBE = ∡ECF (A)
(△ BDE ~ △ EFD) (iso.△ ABC with AB = AC)
△ EFD ~ △ CEF ✓
(AA similarity)
13(ii) ∡FAC = ∡EBC (A) ∡FCA = ∡ECB (A) △ AFC ~ △ BEC ✓
C
E
(alt. ∡s)
∡AFC = 180° − ∡ACF − ∡CAF 180°) = 180° − (∡BCE) − (∡EAF) = 180° − ∡BCE − (∡EBF) = ∡BEC ✓ 180°)
F
D
F
D
B
C
E
(∡s in △ AFC =
B
(common ∡) (∡EAF = ∡EBF) (∡s in △ BEC =
F
A
C
E
(∡EAF = ∡EBF) (common ∡ ) (AA similarity)
B
F
A
13(iii)
CF
=
CA
CE CB
C
E
(△ AFC ~ △ BEC)
CF × CB = CE × CA ✓
14(i)
In △ DEC & △ ABC, ∡EDC = ∡BAC (A) ∡DCE = ∡ACB (A) △ DEC ~ △ ABC CD CA
= =
A
(right angles) (common ∡) (AA similarity) (corr. sides of ~ △ s)
CE CB 1
D
C
E B
(E is mid-pt of BC)
2
⇒ D is the mid-point of AC ✓ 14(ii) In △ ADE & △ CDE, DA = DC (S) ∡ADE = ∡CDE (A) DE = DE (S) △ ADE ≅ △ CDE ⇒ AE = CE ⇒△ AEC is isosceles ✓ © Daniel & Samuel A-math tuition 📞9133 9982
A
(D is mid-point of AC) (90°) (common side) (SAS congruency) (corr. sides of ≅△ s) (△ with 2 equal ∡s)
D
C
E B
sleightofmath.com
262
A math 360 sol (unofficial) 15(i)
∡DBG = ∡ABC = ∡ACB = ∡DGB ⇒△ DBG is isosceles ⇒ DG = BD = CE ✓
15(ii) DG = EC (S) ∡DFG = ∡EFC (A) ∡DGF = ∡ECF (A) △ DGF ≅ △ ECF ✓
Ex 10.1 A
(iso.△ ABC with AB = AC) (corr. ∡) (△ with 2 equal ∡s) (equal sides of iso.△ DBG) (BD = CE)
D
B
C
F
G
E
(proven) (opp. ∡) (alt. ∡) (AAS congruency)
A
D
B
C
F
G
E
15(iii) DF = FE ✓
(corr. sides of ≅ △ s)
A
D
B
C
F
G
E
16(i)
BP = AC AB = QC
(S) (S)
(Given) (Given)
∡FBP = 90° − ∡FPB = 90° − ∡EPC = ∡ECP ⇒ ∡ABP = ∡QCA (A)
(⊿FBP) (opp. ∡) (⊿ECP)
Q
A F E P
B C
△ ABP ≅ △ QCA ✓ 16(ii) ∡BAP = ∡CQA AP = QA ⇒△ QAP is isosceles ⇒ ∡CQA = ∡APQ ⇒ ∡BAP = ∡APQ ✓
(SAS congruency) (corr. ∡s of ≅ △ s) (corr. sides of ≅ △ s) (△ with 2 equal sides) (equal ∡s of iso.△)
Q
A F E P
B C
16(iii) ∡QAP = ∡FAQ + ∡BAP = ∡FAQ + (∡CQA) (△ ABP ≅ △ QCA) = ∡FAQ + (90° − ∡FAQ) (⊿FAQ) = 90° ⇒ AP ⊥ AQ ✓
Q
A F E P
B C
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
263
A math 360 sol (unofficial) 17(i)
In △ FEC & △ BAC ∡FCE = ∡BCA (A) ∡FEC = ∡BAC (A) △ FEC ~ △ BAC CF CB
= =
CE CA 1
Ex 10.1 B
D
(Common ∡) (corr. ∡) (AA similarity) (corr. sides of ~ △ s)
F
A
C
E
2
⇒ BF: BC = 1: 2 ✓ 17(ii) AB = 2EF
(CE = EA, CF = FB, midpt thm)
B
D
F
In △ DCA & △ FEA, ∡DAC = ∡FAE (A) ∡DCA = ∡FEA (A) △ DCA ~ △ FEA CD EF
=
CD =
AC AE AC AE
(common ∡) (corr. ∡) (AA similarity) (corr. sides of~ △ s)
A
C
E
EF
= 2EF ∴ AB: CD = 1: 1 18(i)
AC = 3EC (Given) AE + EC = 3EC = 2EC = 2(2EF) (F is mid − pt of EC) = 4EF ✓
A
E G B
18(ii) BE ∥ DF
AG AD
=
AG =
AE AF AE AF 4 5
AG GD
A
E G B
F D
C
AD
= AD ⇒
(common ∡) (corr. ∡) (AA similarity) (corr. sides of ~ △)
C
D
(CD = DB, CF = FE, mid − pt thm)
In △ GAE & △ DAF, ∡GAE = ∡DAF (A) ∡AGE = ∡ADF (A) △ GAE ~ △ DAF
F
(AE = 4EF)
=4
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
264
A math 360 sol (unofficial) 19
Ex 10.1
1st pair of similar triangles In △ EFC & △ ABC, ∡EFC = ∡ABC (A) ∡ECF = ∡ACB (A) △ EFC ~ △ ABC
A AC = BC = 1cm
E EF FC
= =
AB BC AB AB
(AB = BC)
=1 EF = FC
B −(1)
C
DF BD = DC = 0.5cm
2nd pair of similar triangles In △ BFE & △ ABD, ∡BFE = ∡ABD (A) (90°) ∡EBF = ∡ABD − ∡ABE = 90° −∡ABE (∡ABD = 90°) = ∡BAD (A) (⊿BAD) △ BFE ~ △ ABD (AA similarity) BF FE
=
AB BD AB
=1 2
BC
AB
=1 2
AB
(corr. sides of ~ △ s) (D is midpoint of BC) (AB = BC)
=2 BF = 2EF
−(2)
Sum of sides BF + FC =1 sub (1) & (2) into (3): (2EF) + (EF) =1 3EF =1 EF
=
−(3)
1 3
20(i)
∡ADB = ∡CDA (A) ∡ABD = 90° − ∡BAD = ∡CAD (A) △ ABD ~ △ CAD ✓
20(ii)
BD AB
=
BD = BD DC AD AB AD AB
= = =
AD
(corr. sides of ~ △ s)
CA AD2 CD AD2 CD2 CD CA AB AC
(90°) (⊿ BAD) (∡BAC = 90°) (AA similarity)
A
B
D
C
−(1) (corr. sides of ~ △ s) −(2)
sub (2) into (1): BD DC
=
AB2 AC2
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
265
A math 360 sol (unofficial)
Ex 10.2
Ex 10.2 1(i)
1(ii)
∡AEB = ∡ECD (A) AE = CE (S) BE = DE (S) △ ABE ≅ △ CDE ✓
(opp. ∡) (AC and BD bisects at E) (AC and BD bisects at E) (SAS congruency)
A
D
E B
ABCD is a parallelogram ✓ (diagonals bisect each other)
C
A
D
E B
2(i)
BF = DE (S) ∡AFB = ∡CED (A) AF = CE (S) △ ABF ≅ △ CDE ✓
(Given) (90°) (Equal sides of square) (SAS congruency)
A
B
2(ii)
AB = CD
(= sides)
BF = ED FC = EA
∡ABD = ∡CDB (A) ∡ADB = ∡CBD (A) BD = DB (S) △ ABD ≅ △ CDB ✓
D
C
△ ABF ≅ △ CDE
(2 pairs of equal opp. sides)
(alt. ∡) (alt. ∡) (common side) (AAS congruency)
A
B
3(ii)
(△ ABD ≅ △ CDB) AB = CD (= sides) (△ ABD ≅ △ CDB) AD = CB (= sides) ⇒ ABCD has 2 pairs of equal sides ✓
4(i)
∡A + ∡B + ∡C + ∡D ∡A + ∡B + (∡A) + (∡B) 2(∡A + ∡B) ∡A + ∡B ✓
4(ii)
∡A = ∡C (= ∡𝐬) (Given) ∡B = ∡D (= ∡𝐬) (Given) ABCD is a parallelogram ✓ (2 pairs of equal opp. ∡s)
© Daniel & Samuel A-math tuition 📞9133 9982
F
E
(given) (equal sides of square AFCE)
Adding sides, BF + FC = ED + EA BC = DA (= sides) ABCD is a parallelogram ✓
3(i)
C
D
C
= 360° (∡s of quad = 360°) = 360° (∡A = ∡C, ∡B = ∡D) = 360° = 180°
sleightofmath.com
266
A math 360 sol (unofficial) 5
Ex 10.2
A
X
D
Y
C
B
In △ ABC & △ CDA, ∡BAC = ∡DCA AC = CA
(A) (S)
(given) (common side)
∡XBA = ∡YDC 180° − ∡XBA = 180° − ∡YDC ∡ABC = ∡CDA (A) ∴△ ABC ≅ △ CDA ⇒ BA = DC (= 𝐬𝐢𝐝𝐞𝐬) ⇒ BC = DA (= 𝐬𝐢𝐝𝐞𝐬) ABCD is a parallelogram ✓
(given) (∡s in a line = 180°) (AAS congruency) (corr. sides of ≅△ s) (corr. sides of ≅△ s) (2 pairs of equal opp. sides)
(∥ 𝐬𝐢𝐝𝐞𝐬) (alt. ∡, ∡BAC = ∡ACD) BA ∥ CD (corr. ∡, BA ∥ CD) ∡XBA = ∡XCD ∡XBA = ∡YDC (given) ⇒ ∡XCD = ∡YDC (∥ 𝐬𝐢𝐝𝐞𝐬) (alt. ∡) ⇒ BC ∥ AD (2 pairs of ∥ sides) ABCD is a parallelogram ✓ 6)
(∥ sides of ▱ABCD)
AD ∥ BC ⇒ DX ∥ BY AD AX = CY
X
(∥ 𝐬𝐢𝐝𝐞𝐬) = CB
AD + (AX) = CB + (CY) DX = BY (= 𝐬𝐢𝐝𝐞𝐬)
A
(Equal opp. sides of ▱ABCD) (given) (AX = CY)
B C
D Y
XBYD is a parallelogram ✓ (1 pair of equal & ∥ opp. sides) 7(i)
BE = DF AB = CD
(S) (S)
∡EBA = ∡FDC (A) △ ABE ≅ △ CDF ✓
7(ii)
(given ) (Equal opp sides of ▱ ABCD) (alt. ∡) (SAS congruency)
A
D F E
B
C
(= 𝐬𝐢𝐝𝐞𝐬) AE = CF (△ ABE ≅ △ CDF) ∡AEB = ∡CFD (△ ABE ≅ △ CDF) 180° − ∡𝐴𝐸𝐵 = 180° − ∡𝐶𝐹𝐷
A
D F E
(∥ 𝐬𝐢𝐝𝐞𝐬) ⇒ AE ∥ CF (alt. ∡) ∴ AECF is a parallelogram ✓ (1 pair of equal & ∥ opp. sides)
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
B
C
267
A math 360 sol (unofficial) 7(iii)
AE = CF = 7cm
Ex 10.2
(△ ABE ≅ △ CDF) (CF = 7cm)
A
D F E
B
8(i)
AC = AC (S) AB = AD (S) BC = DC (S) △ ABC ≅ △ ADC ✓
C
(common side) (equal adj. sides of kite) (equal adj. sides of kite) (SSS congruency)
A
E B
D C
8(ii)
CE = CE (S) ∡BEC = ∡DEC (A) BE = DE (S) △ BCE ≅ △ DCE ✓
(common side) (Diagonals are ⊥) (Longer diagonal bisects shorter diagonal) (SAS congruency)
A
E B
D C
8(iii)
BD ⊥ AC ✓
(Diagonals of kite are ⊥)
A
E B
D C
9?
(incomplete) Diagonals are only equal if ∡x = ∡y = ∡z = 90°
x A
1)
Statements ∡x = ∡z
2) 3) 4) 5)
∡BAD = ∡x ∡ABC = ∡y ∡BCD = ∡z ∡BAD + ∡ABC = 180°
6)
AD ∥ BC
7)
∡ABC + ∡BCD = 180°
8)
AB ∥ DC
© Daniel & Samuel A-math tuition 📞9133 9982
Reasons ∡x + ∡y = ∡y + ∡z ∡x = ∡z opp. ∡ opp. ∡ opp. ∡ ∡BAD + ∡ABC = ∡x + ∡y = 180°
y
D
B
C
z
Supplementary int. ∡s ∡ABC + ∡BCD ∡y + ∡z = 180° Supplementary int. ∡s
sleightofmath.com
268
A math 360 sol (unofficial) 10(i)
EH ∥ BD GF ∥ BD ⇒ EH ∥ GF ✓
Ex 10.2
(AE = ED, AH = HD, Mid − pt thm) (CF = FB, CG = GD, Mid − pt thm)
D H A G E I B
∡EID = 90° ∡EFG = 90° ✓
C
F
(BD ⊥ DF) (corr. ∡)
D H A G E I B
10(ii) EH ∥ GF ∡EFG = 90° 1
(proven) [∥ 𝐬𝐢𝐝𝐞𝐬] (proven) [𝐫𝐢𝐠𝐡𝐭 ∡]
A
(AE = ED, AH = HD, mid − pt thm)
GF = BD
(CF = FB, CG = GD, mid − pt thm)
2
∴ EFGH is a rectangle ✓
In △ EBF & △ ABD, ∡EBF = ∡ABD (A) ∡EFB = ∡ADB (A) △ EFB ~ △ ADB BF
= =
I C
F
(∥ & equal opp. sides & 1 right ∡)
EF ∥ BC
BD
G E
B
[𝐞𝐪. 𝐬𝐢𝐝𝐞𝐬]
⇒ EH = GF
11(i)
D H
EH = BD 2 1
C
F
BE BA 1
(AE = EB, AF = FC, midpt thm)
A F
E
(common ∡) (corr. ∡) (AA similarity) (corr. ∡s of ~ △ s)
D
G
B
C
2
⇒F is midpt of BD ✓ 11(ii) In △ FDG & ∡BDC, ∡FDG = ∡BDC ∡DFG = ∡DBC △ DFG ~ △ DBC DG DC
= =
DF DB 1 2
A
(common ∡) (corr. ∡) (AA similarity) (corr. ∡s of ~ △ s)
E
B
D F G
C
(F is midpt of BD)
⇒ G is midpt of CD ✓ 11(iii) AF = FC (Given) BF = FD (F is midpt of BD) ABCD is a parallelogram ✓ (Diagonals bisect each other)
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
269
A math 360 sol (unofficial) 12(i)
Ex 10.2
In △ BAD & △ CDA, BA = CD (S) AD = DA (S) Draw line through A ∥ to DC ∡ABC = ∡AFB = ∡DCB ⇒ ∡BAD = ∡CDA △ BAD ≅△ CDA
A
(given) (common side)
(A)
(equal ∡s of iso. △ ABF) (corr. ∡) (supple. int. ∡s) (SAS congruency)
D E
B
C A
D E F
B (△ BAD ≅ △ CDA) 12(ii) ∡ADB = ∡DAC ⇒△ ADE is isosceles (△ with 2 equal ∡s) (equal sides of iso.△) ⇒ AE = DE ✓
C
A
D E
B 12(iii) BD = CA BD − (DE) = CA − (AE) BE = CE ⇒△ BEC is isosceles ✓
C
(△ BAD ≅ △ CDA) (AE = DE)
A
D E
(△ with 2 equal sides)
B 13(i)
AE = AD (S) EB = DC (S) ∡AED = ∡ADE ∡AED + 90° = ∡ADE + 90° ∡AEB = ∡ADC (A) △ ABE ≅ △ ACD ✓
13(ii) AE = AD
(S)
(given) (equal opp. sides of rect.) (iso.△ AED) (∡ of rect. ) (SAS congruency)
A
E
D F
C
A
(△ ABE ~ △ ACD)
∡AED = ∡ADE ⇒ ∡AEF = ∡ADG (A)
(iso.△ AED)
△ AEF ≅△ ADG ✓
(AAS congruency)
E
D F
=
2EF 1
C
A
(BF = 2EF)
(1) E
© Daniel & Samuel A-math tuition 📞9133 9982
D F
30° (2) 60°
2
∡EBF = 30° ∡ABC = 60°
G
B
13(iii) sin ∡EBF = EF =
G
B
(given)
∡EAB = ∡DAC ⇒ ∡EAF = ∡DAG (A)
BF EF
C
B
G
60° C
(Complementary ∡)
sleightofmath.com
270
A math 360 sol (unofficial)
Ex 10.2
AB = AC ⇒ iso.△ ABC ⇒ ∡ABC = ∡ACB = 60° ⇒△ ABC is equilateral ✓ 14(i)
AE ∥ XY ✓
(△ ABE ≅ △ ACD) (△ with 2 equal sides) (equal ∡s of iso.△) (△ with 2 ∡s = 60°)
(CX = XA, CY = YE, mid − pt thm)
B
A X C D Y
F E
14(ii) AE ∥ XY XY ∥ BF ⇒ AE ∥ BF ✓
(Proven) (DX = XB, DY = YF,mid-pt thm)
B
A X C D Y
F E
14(iii) AB ∥ DC EF ∥ DC ⇒ AB ∥ DC (∥ 𝐬𝐢𝐝𝐞𝐬) (∥ 𝐬𝐢𝐝𝐞𝐬) AE ∥ BF ∴ BAEF is a parallelogram ✓
(ABCD is a ▱ ) (CDEF is a ▱ )
B
A X
(proven) (∥ opp. sides )
C D Y F E
15
In △ ADE & △ CBF, AE = CF (S) ∡EAD = ∡FCB (A)
given alt. ∡
H
D
JH ∥ GI [= 𝐬𝐢𝐝𝐞𝐬] (given) ED ∥ BF [= 𝐬𝐢𝐝𝐞𝐬] (∥ opp. sides of ▱ EBFD) ⇒ JG ∥ IH HJGI is a parallelogram ✓
F
J
AD = CB (S) (equal opp. sides of ▱ ABCD) △ ADE ≅ △ CBF (SAS congruency) ⇒ DE = BF [= 𝐬𝐢𝐝𝐞𝐬] ⇒ ∡AED = ∡CFB ⇒ ∡DEF = ∡BFE (∡s in a line = 180°) ⇒ DE ∥ BF [∥ 𝐬𝐢𝐝𝐞𝐬] (alt. ∡) EBFD is a parallelogram ✓ (1 pair of equal & ∥ opp. sides)
I
E A
B
G
H
D
(∥ opp. sides)
J
1)
C F
2)
2) E A
© Daniel & Samuel A-math tuition 📞9133 9982
C
sleightofmath.com
1) G
I B
271
A math 360 sol (unofficial)
Ex 10.3
Ex 10.3 1
∡ABC + ∡ABD = 90° + ∡ABD (∡ in semicircle) = 90° + 90° (∡ in semicircle) = 180° i.e. C, B and D lie on a straight line ✓
D B C
A
2
3(i)
∡APB = ∡ABP = 180° − ∡ABC = ∡ADC ⇒ ∡CDP = ∡CPD ⇒△ CDP is isosceles ⇒ CD = CP ✓
(iso △ APB with AB = AP) (∡s in a line = 180°) (∡s in opp segment)
C B P A
(△ with 2 equal ∡s) (equal sides of iso.△)
∡AEF + ∡CDA = ∡AEF + (180° − CBA) = ∡AEF + (ABF) = ∡AEF + (180° − ∡AEF) = 180°
D
(∡s in opp. segment)
C B
(∡s in a line st. line) (∡s in opp. segment)
D F A E
3(ii)
∡AEF + ∡CDA = 180° ⇒ CD ∥ FE ✓
(Proven) (Supplementary int. ∡s)
C B
D F A E
4
PB = PA = PC
(Equal tangents from ext pt) (Equal tangents from ext pt)
P
C B A
5(i)
∡ABC = ∡ACB = ∡BAT
(iso.△ ABC with AB = AC) (alt. segment thm)
C
B O
S
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
A
T
272
A math 360 sol (unofficial) 5(ii)
∡ABC = ∡BAT ⇒ CB ∥ ST ✓
Ex 10.3
(proven) (alt. ∡s)
C
B O
S
6(i)
OA = OD OD = OC
(S) (S)
T
A
(radius) (radius)
B O
∡AOD = ∡OBC = ∡OCB = ∡DOC (A)
(corr. ∡) (iso.△ OCB with OC = OB) (alt. ∡)
C A D
△ AOD ≅ △ DOC ⇒ AD = CD ✓ 6(ii)
E
(SAS congruency) (corr. sides of ≅△ s) B
O C A D
E
∡CDE = 180° − ∡ODC − ∡ODA = 180° − ∡ODC − (∡OCD) = ∡COD ✓ 7(i)
(∡s in a line = 180°) (△ AOD ≅△ DOC) ∡s in △= 180°
∡EDC = ∡DAC + ∡DCA (ext. ∡ = sum of int. opp. ∡s) = ∡DAC + (iso.△ ADC with AD = DC) (∡DAC) = 2∡DAC ✓
E D A C
O
B
7(ii)
∡ABD = ∡ACD = ∡CAD = ∡CBD
(∡s in same segment) (iso.△ ADC with DA = DC) (∡s in same segment)
E D A C
O
B
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
273
A math 360 sol (unofficial) 8(i)
∡APB = 90° = ∡PQA
Ex 10.3
(A)
(∡ in semicircle) (Given)
B P
∡PBA = ∡QAP (A) △ ABP ~ △ PAQ ✓
(alt. segment thm) (AA similarity)
O
Q
A
8(ii)
1)
AP
=
AB
PQ
△ ABP ~ △ PAQ
PA
(AP)2 = AB × QP = √AB × QP ✓
AP 9
∡BFD = ∡BAF + ∡ABF (ext. ∡ = sum of int. opp. ∡s) = ∡BAF + (∡BAF) (iso.△ AFB with FA = FB) = 2∡BAF (alt. segment thm) = 2∡ACB ✓
C
B O
S
10(i)
∡APC = ∡BPA (A) ∡PAC = ∡PBA (A) △ APC ~ △ BPA ✓
(common ∡) (alt. segment thm) (AA similarity)
A
D
F
B
C A
10(ii)
PC AP
=
PA BP
P
(△ APC ~ △ BPA)
BP × CP = AP 2 ✓ 11
In △ BAN & △ BPL, ∡BAN = 90° = ∡BPL (A) ∡BNA
= ∡ALN = ∡BLP (A) ∴△ BAN ~ △ BPL ∡ABN = ∡PBL ⇒ ∡ABL = ∡PBL ✓
12(i)
∡PBL = ∡ABN (A) ∡BPL = 90° = ∡BAN (A) △ BPL ~ △ BAN ✓
B
(tan ⊥ rad) (∡ in semicircle)
P L O
(iso.△ ALN with AN = AL) (opp. ∡) (AA similarity) (corr. ∡ of ~ △ s)
(BN bisects ∡ABP) (∡ in semicircle) (tan ⊥ rad) (AA similarity)
A
Q
N
B P L
O
M A
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
N
Q
274
A math 360 sol (unofficial)
Ex 10.3
12(ii) ∡BPL = 90° = ∡BMA (A) = ∡AMN (A)
(∡ in semicircle) (∡ in semicircle) (∡s in a line = 180°)
B P L
O
13
14(i)
∡PBL = ∡ABM = ∡MAN (A)
(BN bisects ∡ABP) (alt. segment thm)
△ BPL ~ △ AMN ✓
(AA similarity)
M A
PQ + QR + RP = PQ + QT + TR +RP = PQ + (QU) + TR +RP (Equal tangents QT = QU) = PQ + QU + (RS) +RP (Equal tangents TR = RS) = (PQ + QU) +(RS + RP) = PU +PS = PU +PU (Equal tangents PS = PU) = 2PU ✓ ∡BAC = ∡CAP (A)
(common ∡)
∡ABC = ∡CAX = ∡ACP (A)
(alt. segment thm) (alt. ∡)
△ ABC ~ △ ACP ✓
(AA similarity)
R
S
T P Q
U
B
C
P
X
14(ii)
AC AB AC2 AB
=
16(i)
Y
A
(corr. sides of ~ △ s)
AC
= AP
PA = 15
AP
Q
N
AC2 AB
✓
∡PCB = ∡PCA = ∡CAX = ∡PBC ⇒△ PBC is isosceles ⇒ PB = PC ✓ ∡BEC = 90° = ∡DAC
(PC bisects ∡BCA) (alt. ∡) (alt. segment thm) (△ with 2 equal ∡s) (equal sides of iso.△)
B
C X
CE ⊥ AB (A) (∡ in semicircle)
Y
A
C
(∡s in same segment) ∡CBA = ∡CDA ⇒ ∡CBE = ∡CDA (A) (AA similarity) △ EBC ~ △ ADC ✓
© Daniel & Samuel A-math tuition 📞9133 9982
P
O A B
sleightofmath.com
E D
275
A math 360 sol (unofficial)
Ex 10.3
16(ii) area of △ ABC
C
1
= (AB)(CE) 2
EC BC
=
EC =
AC
O
(△ EBC ~ △ ADC)
DC BC×AC
A E
B
DC
D
area of △ ABC 1
= (AB)(CE) 2 1
BC×AC
2 1
DC BC×AC
= (AB) ( = (AB) ( = = 17(i)
1) 2) 3) 4)
5) 5)
6)
2 2r AB×BC×AC 2(2r) AB×BC×AC 4r
) )
(diameter DC = 2r)
✓
AP × BR = PQ2 PQ2 = PC × PA (AP) × BR = PC × (PA) RB = PC AB = AC
given Tangent-secant thm (1,2)
AQ is line of symmetry of iso △ APR [Trigonometric proof] [geometric] 2 2 2 Pythagoras thm AQ = AP − PQ 2 2 [ ] AQ = AP − PC × PA tangent −secant thm = AP[AP − PC] = AP[AC] 2 (4) AQ = AP × AB ✓
17(ii) (work in progress) (S) AQ = AQ (A) ∡AQP = ∡AQR (S) QP = QR △ AQP ≅ △ AQR ✓
P
R
Q
C
B
A
P
(common side) (90°) (AQ is line of symmetry) [Trigonometric proof] SAS(1,2,3) R
17(ii) (R) ∡ABQ = ∡ACQ (H) AQ = AQ (S) AB = AC △ ABQ ≅ △ ACQ ✓
rt ∡ in semicircle common side AQ is line of symmetry [trigonometric proof] RHS(1,2,3)
C
B
A
P
R
© Daniel & Samuel A-math tuition 📞9133 9982
Q
sleightofmath.com
Q
C
B
A
276
A math 360 sol (unofficial) 17(iii) AP = AR AP =1 AR AC = AB AC AB AP AR
=1 =
AC AB
=1
Ex 10.3 AQ is line of symmetry [trigonometric proof] AQ is line of symmetry [trigonometric proof] (1,2)
AP × AB = AR × AC ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
277
A math 360 sol (unofficial) 17
Ex 10.3
C
B
F α
β
A
D
E
Proposition Given AE is tangent to diameter CD AB = EF Then CD is line of symmetry Proof 0 < α < 90° cos α = tan α =
AB AD 2r AD
⇒ AD = ⇒ AD =
AB cos α 2r tan α
Equate AD: AB 2r = cos α tan α (AB) tan α = 2r cos α (AB) sin α = 2r cos 2 α (AB) sin α = 2r[1 − sin2 α] (AB) sin α = 2r − 2r sin2 α 2r sin2 α + (AB) sin α − 2r = 0 (2r)[sin α]2 + (AB)[sin α] − 2r = 0 sin α =
−(AB)±√(AB)2 −4(2r)(−2r) 2(2r)
=
sin α =
−(AB) ± √(AB)2 + 16r 2 4r
−(AB)+√(AB)2 +16r2 4r
or sin α =
−(AB)−√(AB)2 +16r2 4r
<0
[rej ∵ sin α > 0 for 0 < α < 90°] There could only be 1 angle α for a certain fixed length AB Similarly, there could be only 1 angle β for the same fixed length EF ∵ AB = EF ⇒α=β △ CAD ≅ △ CED CD is line of symmetry Alternate proof Increasing function of sine when ∡ is increasing from 0° to 90° and adjacent is increasing
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
278
A math 360 sol (unofficial) 18
Ex 10.3
area of △ ABC = area of △ ABO +△ BCO +△ CAO 1
1
1
2 1
2
2
= (AB)r + (BC)r + (CA)r = r(AB + BC + CA) 2 1
= r(AB + BC + CA) 2 1
= r(perimeter of △ ABC) 2 1
= r(2s) 2
(S is semi-perimeter of △ ABC)
= rs ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
279
A math 360 sol (unofficial)
Rev Ex 10
Rev Ex 10 A1(i)
Prove: △ GHI ≅ △ ABC
H I
HI = BC ∡GHI = ∡ABC
(S) (A)
(Given) (alt. ∡)
AH = GB AH − (AG) = GB − (AG) GH = AB (S) △ GHI ≅ △ ABC ✓ A1(ii) Prove: CA ∥ GI
(Given)
G A C B
(SAS congruency) H I
∡HGI = ∡BAC (△ GHI ≅ △ ABC) ⇒ ∡AGI = ∡GAC (∡s in a line = 180°) (alt. ∡) ⇒ CA ∥ GI ✓
G A C B
A2(i)
Prove: △ APQ ~ △ ABC ∡APQ = ∡ABC (A) ∡PAQ = ∡BAC (A) △ APQ ~ △ ABC ✓
A2(ii) Prove: AQ = AQ AP
=
AQ = ( =( = A3(i)
AB AC
AB AC2
2AB
(Given) (Common ∡) AA similarity
P
Q
C
AC2 2AB
AC AB AC
A
B
(△ APQ ~ △ ABC) ) AP AC
)( ) 2
(AP =
AC 2
)
✓
Prove: △ AEF ~ △ DEG (A) ∡AEF = ∡DEG (A) ∡EAF = ∡EDG △ AEF ~ △ DEG ✓
A F
(opp. ∡) (alt. ∡) (AA similarity)
E B
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
D
G C
280
A math 360 sol (unofficial)
Rev Ex 10
A3(ii) Prove: BF = 4AF
A
(1) DG AF
=
F
DE AE
(4)
1
(AE = AD)
=2
B
In △ FCB & △ GCD, ∡FCB = ∡GCD (A) ∡FBC = ∡GDC (A) △ FCB ~ △ GCD BF
=
G
(2)
3
DG = 2AF
GD
E
C
D
(common ∡) (corr. ∡) (AA similarity)
BC DC
=2 BF = 2DG = 2(2AF) = 4AF ✓ A3(iii) Find: |AB|
(D is midpt of BC) (DG = 2AF) A
1 cm
A4(i)
AB = AF + BF = AF + (4AF) = 5AF = 5cm ✓ Prove: ∠DPC = ∠BQA In △ PDC & △ QBA, PD = QB (S) ∡PDC = ∡QBA (A) DC = BA
(S)
F
BF = 4AF
4 cm
AF = 1cm
B
G C
D A
B Q
P
(given) (equal opp. ∡s of ▱ABCD) (equal opp. sides of ▱ABCD) (SAS congruency)
D
△ PDC ≅ △ QBA ⇒ ∡DPC = ∡BQA ✓ A4(ii) Prove: AQCP is parallelogram ∡DPC = ∡BQA ∡DPC = ∡PCQ ⇒ ∡PCA = ∡BQA PC ∥ QA (∥ 𝐬𝐢𝐝𝐞𝐬) PC = QA (= 𝐬𝐢𝐝𝐞𝐬) AQCP is a parallelogram ✓
© Daniel & Samuel A-math tuition 📞9133 9982
E
C
A
B Q
(proven) (alt. ∡)
P D
C
(corr. ∡) (1 pair of ∥ & eq. sides)
sleightofmath.com
281
A math 360 sol (unofficial) A5(i)
Rev Ex 10
3
Prove: TU = PQ
S
There is only 1 straight line connecting T & U.
T
4
If V is the midpoint of PR, TV ∥ SR (PT = TS, PG = GR, mid − pt thm) VU ∥ PQ (RU = RQ, RG = GP, mid − pt thm)
R
U V Q
P
TU = TV + VU ⇒ TU ∥ SR ∥ PQ (SR ∥ PQ) TU = TV
+VU
1
= ( SR) +VU 2
1
(PT = TS, TV = VR, midpt thm)
1
+ ( PQ) (RV = VR = RU =
= SR 2
2
UQ, midpt thm) 1
1
2
2 1
= ( PW) + PQ 1 1
(equal height of trapezium)
= ( PQ) + PQ 2 2 1
2 1
= PQ
+ PQ
4 3
2
= PQ 4
A5(ii) TU = 3 PQ 4 3
8 = PQ PQ = A6(i)
4 32 3
✓
Prove: CE ∥ DG C
In △ ABD & △ ACD, AB = AC (H) AD = AD (S) ∡ADB = 90° = ∡ADC (R) △ ABD ≅ △ ACD BD = CD CE ∥ DG ✓
(given) (common side) (∡ in semicircle) (∡s in a line = 180°) (RHS congruency) (corr. sides of ≅△ s)
D F A
(BD = CD, BG = GE, mid − pt thm)
A6(ii) Prove: AF = 1 AD
C
2
(A) ∡FAE = ∡DAG (A) ∡AFE = ∡ADG △ FAE ~ △ DAG AF AD
= =
B
G
E
AE AG 1 2 1
(common ∡) (corr. ∡) (AA similarity) (corr. sides of~ △ s)
D F A
E
G
B
(AE = AG)
= AD ✓ 2
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
282
A math 360 sol (unofficial) A7(i)
Rev Ex 10
C D A
O
F
P
B
E
Prove: △ PDF ~ △ POC ∡DPF = ∡OPC
(A) (common ∡)
∡PDF = 180° − ∡CDF (∡s in line = 180°) = ∡CAE (∡s in opp. segments) = 2OAC (OA bisects ∡CAE ∵ arc AC = arc AE) = ∡OAC (iso.△ OCA with 2 sides as radius) + ∡OCA = ∡POC (A) (ext. ∡ = sum of int. opp. ∡s) (AA similarity) △ PDF ~ △ POC ✓ A7(ii) Prove: PD × PC = PF × PO PD
=
PF
PO
(△ PDF ~ △ POC)
PC
PD × PC = PF × PO ✓ A7(iii) Prove: PB × PA = PF × PO In △ PBD & △ PCA, ∡BPD = ∡CPA (A) ∡PDB = 180° − ∡BDC = ∡PAC (A) △ PBD ~ △ PCA ⇒
PB PD
=
D
(common ∡ ) (∡s in a line) (∡s in opp. segments) (AA similarity)
A
O
F
B
P
E
PC PA
PB × PA = PD × PC = PF × PO✓ A8(i)
C
from (ii)
P F D
A
Q O
C
E
B
∡ADQ + ∡QDC + ∡CDF = ∡ADQ + (90°) + ∡CDF = ∡ADQ + 90° + (∡CFD) = ∡ADQ + 90° + (∡OFA) = ∡ADQ + 90° + (∡OAF) = ∡ADQ + 90° + (90° − ∡ADQ) = 180° i.e. A,D and F lie on straight line ✓
© Daniel & Samuel A-math tuition 📞9133 9982
(tan ⊥ rad) (iso.△ CDF with CD = CF) (Common ∡) (iso.△ OAF with OA = OF as radius) (⊿ADQ)
sleightofmath.com
283
A math 360 sol (unofficial)
Rev Ex 10
A8(ii) Prove: AD × AF = AQ × AB [
AD AQ
=
AB AF
] or
AD AB
In △ ADQ & △ ABF, ∡DAQ = ∡BAF (A) △ ADQ = 90° = ∡AFB (𝐀) △ ADQ ~ △ ABF ⇒ B1(i)
AD
=
AQ
=
P F
AQ AF
D
(common ∡) (given) (∡ in semicircle) (AA similarity)
A
Q O
B
E
AB AF
AD × AF = AQ × AB ✓ Prove: ∠ABF = ∠EDF
C
(given) ∡ABD = ∡EDB (given) ∡FBD = ∡FDB Subtracting angles, ∡ABD − ∡FBD = ∡EDB − ∡FDB ∡ABF = ∡EDF ✓ B1(ii) Prove: △ ABF ≅ △ EDF
B
D
A
E
F C
(proven) (iso. △ ACE with CA = CE) (iso. △ DBF with ∡FBD = ∡FDB) (AAS congruency) △ ABF ≅ △ EDF ✓ B1(iii) Prove: F is the mid − point of AE ∡ABF = ∡EDF(A) ∡BAF = ∡DEF(A) BF = DF (S)
B
D
A
E
F C
AF = EF (△ ABF ≅ △ EDF ) ⇒ F is the mid-point of AE ✓
B
D
A
B2(i)
C
E
F
Prove: △ YDC ~ △ XYB ∡YCD = ∡XBY(A) ∡YDC = ∡XYB(A) △ YDC ~ △ XYB ✓
X Y
A
(corr. ∡) (corr. ∡) (AA similarity)
B
D
C
B2(ii) Prove: YC = 2XB YC XB
= = =
DC YB AB YB (2YB)
X A
(△ YDC ~ △ XYB) (DC = AB; equal opp. sides of ▱ABCD) (AB = 2YB)
YB
(1)
Y
B
(2) D
C
=2 ∴ YC = 2XB✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
284
A math 360 sol (unofficial) B3(i)
Rev Ex 10
Prove: CE = GE
A D
In △ CAE & △ GAE, ∡CAE = ∡GAE (A)
(AE bisects ∡BAC)
∡ACB = 90° = ∡ADF = ∡AGE (A)
(given) (AB ⊥ CD) (corr.∡)
F
G B
AE = AE (S) △ CAE ≅ △ GAE ⇒ CE = GE ✓ B3(ii) Prove: CF = CE
B4(i)
C
(Common side) (AAS congruency) (corr. sides of ≅△ s) A
∡CEA = 90° − ∡CAE = 90° − ∡DAF = ∡DFA = ∡CFE ⇒ iso.△ CEF ⇒ CF = CE ✓ Prove: SM = 2TU
(⊿ ACE) (AE bisects ∡BAC) (⊿ AFD) (opp. ∡) (△ with 2 equal ∡s) (equal sides of iso.△)
SM ∥ QT
(PS = SQ, PM = MT, mid − pt thm)
In △ RSM & △ RUT, ∡SRM = ∡URT (A) ∡RSM = ∡RUT (A) △ RSM ~ △ RUT SM RM
=
UT RT
=2 SM = 2TU ✓ B4(ii) Prove: 4TU = QT QT = 2SM = 2(2TU) = 4TU ⇒ 4TU = QT✓
E
D F
G B
C
E
P
common ∡ corr. ∡ (AA similarity) (corr. sides of ~ △ s)
S
(2)
M
(1) U Q
R
(RM = 2RT)
P (PS = SQ, PM = MT, mid − pt thm) (SM = 2TU)
M
S
T U Q
R
B4(iii) Find: area of △ TQR
P
area of △ TQR = (QT)(height) = (4TU)(height) 2
1
= 4 [ (TU)(height)]
M
S
1 2 1
T
QT = 4TU
U Q
𝑥
T R
2
= 4(area of △ UTR) = 4x ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
285
A math 360 sol (unofficial) B5(i)
Rev Ex 10
Prove: BXDY is a parallelogram EX ∥ BY ⇒ XD ∥ BY
(AE = EB, AX = XY, mid − pt thm)
FY ∥ BX ⇒ BX ∥ YD
(CF = FB, CY = YX, mid − pt thm)
A X E Y B
A
(S)
E Y B
C
F
(equal opp. sides of ▱BXDY)
(SAS congruency) △ AXB ≅ △ CYD ✓ B5(iii) Prove: ABCD is a parallelogram AB = CD (= 𝐬𝐢𝐝𝐞𝐬) ∡CAB = ∡ACD ⇒ AB ∥ CD(∥ 𝐬𝐢𝐝𝐞𝐬) ABCD is a ▱ ✓
A
(△ AXB ≅ △ CYD) (△ AXB ≅ △ CYD) (alt. ∡) (1 pair of equal & ∥ opp. sides)
B6
Prove: ∠BCD = 2∠BDA
B7
∡BCD = ∡BCA + ∡DCA = (∡BDA) + ∡DCA (∡s in same segment) = ∡BDA + (∡DBA) (∡s in same segment) = ∡BDA + (∡BDA) (iso.△ ABD with AB = AD) = 2∡BDA ✓ Prove: BC ∥ QR
D X
E Y B
C
F C
D B
A
R ∡QRP = ∡PQC = ∡PBC ⇒ BC ∥ QR ✓
D X
(S) (given)
∡YXB = ∡XYD (alt. ∡) ⇒ ∡AXB = ∡CYD (A) (∡s in a line = 180°) XB = YD
C
F
(∥ opp. sides) BXDY is a ▱ ✓ B5(ii) Prove: △ AXB ~ △ CYD AX = CY
D
C P
(alt. segment thm) (∡s in same segment) (alt. ∡)
B Q
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
286
A math 360 sol (unofficial)
Rev Ex 10
B8(i)
P
P
Q
Q
A
A C
B
B
H
O
C O
R
H R
Prove: PC 2 = PA × PB − AC × BC In △ APQ & △ QPB, ∡APQ = ∡QPB ∡PQA = ∡PBA △ APQ ~ △ QPB PQ AP
=
(common ∡) (alt. segment thm) (AA similarity)
PB QP
PQ2 = PA × PB PC 2 = PH 2 + HC 2 = (PQ2 − QH 2 ) + HC 2 = PQ2 + (HC 2 − QH 2 ) = PQ2 + (HC + QH)(HC − QH) = PQ2 + (CH + HR)(−QC) = PQ2 − QC × RC = PQ2 − AC × BC = PA × PB − AC × BC ✓
B8(ii) Prove: PC 2
1
1
PC
= (
1
2 PA
+
1 PB
(pythagoras ′ thm) (pythagoras ′ thm) [a2 − b2 = (a + b)(a − b)] QH = HR (QC × RC = AC × BC) (PQ2 = PA × PB) (tangent − secant thm) (not in syllabus)
)
= PA × PB − AC × BC = PA × PB − (PC − PA) × (PB − PC) = PA × PB + (PA − PC) × (PB − PC) = PA × PB + (PA)(PB) − (PA + PB)(PC) + PC 2 = 2(PA)(PB) − (PA + PB)(PC) + PC 2
PC(PA + PB) = 2(PA)(PB) PC 1 PC
= =
2(PA)(PB) PA+PB PA+PB 2(PA)(PB) 1 1 1
= (
2 PA
+
PB
)✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
287
A math 360 sol (unofficial)
Ex 11.1 4(b)
Ex 11.1 1(a)
sin 45° cos 30°+sin 60°
1(b)
√2 2 √3 √3 + 2 2
=
=
√2 2
√3
=
√2 2√3
=
√6 6
✓
1st quadrant ✓ α = 390 − 360 = 30° ✓
1
√3
=1 +1 =2✓ π
sin cos = =
π
3 6 √3 √3 ( )( ) 2 2 3 4 5
+ cos + +
4(c)
π 3
2 1
𝑂
2
4
2
π tan 3 π π π sin tan +cos 3 4 6
Method 1 (graphical) 𝑦
1
= ✓ 1(d)
=
√3 (
√3 √3 )(1)+( ) 2 2
=
√3 √3
1 2
=1✓
∵ sin θ =
2
4(d)
Method 1 (graphical) 𝑦 𝑂
2
𝑥 θ = −100°
α
= ✓ 4
= 2(2)
+
1 tan A 1 2
Method 2 (non-graphical) θ = −100 ≡ 260° ✓ 3rd quadrant α = θ − 180 = 260 − 180 = 80° ✓
3rd quadrant ✓ α = 180 − 100 = 80° ✓
+ tan(90° − A)
= 2 tan A +
𝑥 θ = −60°
1
1
2 tan A
α
Method 2 (non-graphical) θ = −60 ≡ 300° ✓ 4th quadrant α = 360 − θ = 360 − 300 = 60° ✓
4th quadrant ✓ α = 60° ✓
sin θ cos(90° − θ) = sin θ sin θ = (sin θ)2 =( )
3
Method 2 (non-graphical) θ = 390 ≡ 30° 1st quadrant ✓ α= θ = 30° ✓
tan 45° + tan 30° tan 60° = (1) + ( ) (√3)
1(c)
Method 1 (graphical) 𝑦 θ = 390° α 𝑥 𝑂
∵ tan A = 2
1
=4 ✓ 2
4(a)
Method 1 (graphical) 𝑦
α
θ = 250° 𝑥 𝑂
3rd quadrant ✓ α = 250 − 180 = 70° ✓
Method 2 (non-graphical) θ = 250° 3rd quadrant ✓ α = θ − 180 = 250 − 180 = 70° ✓
5(a)
α = 20° θ = α, 180 − α, 180 + α, 360 − α = 20°, 160°, 200°, 340° ✓
5(b)
α = 70° θ = α, 180 − α, 180 + α, 360 − α = 70°, 110°, 250°, 290° ✓
5(c)
α = 35° θ = α, 180 − α, 180 + α, 360 − α = 35°, 145°, 225°, 315° ✓
6(a)
α=
π 3
θ = α, π − α, π + α, 2π − α π 2π 4π 5π = , , , ✓ 3
6(b)
α=
3
3
3
π 5
θ = α, π − α, π + α, 2π − α π 4π 6π 9π = , , , ✓ 5
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
5
5
5
288
A math 360 sol (unofficial) 6(c)
7(i)
Ex 11.1
α = 0.3 θ = α, π − α, π + α, 2π − α = 0.3, 2.84, 3.44, 5.98 ✓ R=
2(v0 )2 g
9(i)
Right angle triangle sin A =
√3
By Pythagoras’ Thm,
sin θ cos θ
2
adj = √(√3) − 12
If v0 = 10, g = 10, θ = 30°: 2(10)2
R =
√3 1 A adj
1
10
= √3 − 1 = √2
sin 30° cos 30° 1
√3 2
⇒ cos A =
= 20 ( ) ( ) 2
√2 √3
, tan A =
1 √2
= 5√3 ✓ Trigonometric ratio 7(ii)
If v0 = 7, g = 9.8, θ = 45°: 2(7)2
R = =
√2
sin 45° cos 45°
9.8 98 √2 ( ) 9.8 2 2
√2 ( ) 2
= 9(ii)
= 10 ( ) 4
1 2
5 A 𝑜𝑝𝑝 3
3 5
By Pythagoras’ Thm, √52
opp =
−
32
2
4
5
3
= √2 ✓ 10(i)
𝑦
π
+ tan ( − A) 2
4
1
3
4 3
4
3
= + = + 3
√3
3
4
= tan A +
8(ii)
sin(90° − A)tan 60° = cos A (√3) = (√ )
Trigonometric ratio
=2
9(iii)
=4
⇒ sin A = , tan A =
tan A
1
√2
= ✓
Right angle triangle cos A =
1
√2
tan A sin 45° = ( ) ( )
=5✓ 8(i)
√3 2 √3 √2 ✓ 2
cos A cos 30° = ( ) ( )
1
α
A = 230° 𝑥 𝑂
tan A
α = 230 − 180 = 50° ✓
4
1 12
✓
4 sin A
For 0° < B < 360° B = α, 180 − α, 180 + α, 360 − α = 50°, 130°, 230°, 310° ✓
π
+ cos ( − A) 2
= 4 sin A + sin A = 5 sin A
10(ii)
𝑦
4
= 5( )
𝑂
5
=4✓
α
𝑥 A = 320°
α = 360 − 320 = 40° ✓ For 0° < B < 360° B = α, 180 − α, 180 + α, 360 − α = 40°, 140°, 220°, 320° ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
289
A math 360 sol (unofficial) 11(i)
Ex 11.1
Right angle triangle opp sin A = k =
1
12
A 𝑘 adj
hyp
Right angle triangle cos 35° = k By Pythagoras’ Thm,
By Pythagoras’ Thm,
opp = √1 − k 2
adj = √1 − k 2
tan 35° = Trigonometric ratio cos A = √1 − k 2 ✓
=
1
= √1 − k 2 ( ) √3
1−k2
11(iii)
3
π 2 cos 6
tan(90°−A)
✓
=
√3 2( ) 2 1 tan A
= (√3) tan A = √3 ( = k√
k
√1−k2 k
Trigonometric ratio tan 35° + tan 45° + tan 55°
11(ii) sin(90° − A)tan 30° = cos A tan 30°
=√
1 opp 35° k
) 2
√1−k2 k
+1
=1
+
=1
+
=1
+
=1
+
=1
+
+ tan(90° − 35°)
√1−k2
+
k √1−k2
+√
1−k2 k
k √1−k2 k 1−k2 +k2 k√1−k2 1 k√1−k2
1 tan 35° 1
+
k √1−k2
✓
√1−k 3
1−k2
© Daniel & Samuel A-math tuition 📞9133 9982
✓
sleightofmath.com
290
A math 360 sol (unofficial)
Ex 11.2 3(a)
Ex 11.2
cos 330° = cos 30° =
1
Coordinates x = −1
√3 2
S
A 330°
✓
T C α = 360 − 330 = 30°
y = −√3 3(b)
2
sin 225° = − sin 45°
r = √(−1)2 + (−√3) = 2
=
√2 − 2
cos 240° = tan 240° = sec 240° = csc 240° = cot 240° = 2(a)
y r x r y x
=
T C α = 360 − 225 = 45°
(−√3)
= =
(2) (−1) (2)
1 sin 240° 1 tan 240°
√3 2
✓ 3(c)
1
= = =
sin 230° < 0 ✓
cos 350° > 0 ✓
tan 340° < 0 ✓
sin 160° > 0 ✓
cos
3π 4
1 1 2
(− ) 1 √3 (− ) 2
1 (√3)
= −2 ✓ =− =
S
S
S
S
2 √3
1 √3
𝑦
9π 8
6
T
𝑦
𝑦
S
S
5π 6
3(e)
cos(−150°) = − cos 30°
=
π 6
✓ =
3(f)
A 350° 𝑥 C A 340° 𝑥 C
3
π
) = tan ( ) 3
sin θ = −0.2 ⇒ 3rd or 4th quadrant α ≈ 11.5°
S A T C
2π
−
3 2π 3
S
A
α T
α C
tan θ = −3 ⇒ 2nd or 4th quadrant α ≈ 71.6
S α
A
0° < θ < 360°
T
0° < θ < 360°
=
π 3
θ = 180 + α, 360 − α ≈ 191.5°, 348.5° ✓
4(b)
A
3π
C
2π
✓
S A −150° T C α = 180 − 150 = 30°
α=π− 4(a)
A 160° 𝑥 C
tan (−
√3 − 2
= √3 ✓
𝑥
α C
θ = 180 − α, 360 − α ≈ 108.4°, 288.4° ✓
𝑦
>0✓
C
tan(−45°) = − tan 45° S A = −1 ✓ −45° T C α = 45°
𝑦
<0✓
A
5π
3(d)
✓
A 230° 𝑥 C
𝑦
T tan
S
6
α=π−
4
2(f)
π
= √3 ✓
T 2(e)
= sin 2
T 2(d)
6
= ✓
T 2(c)
5π
1
T 2(b)
sin
2
(−1)
cos 240°
=−
=− ✓
(−√3)
1
A 225°
✓
Trigonometric ratio sin 240° =
S
A 9π 8
T © Daniel & Samuel A-math tuition 📞9133 9982
𝑥
C sleightofmath.com
291
A math 360 sol (unofficial) 4(c)
cos θ =
Ex 11.2
1
5(a)
√2
⇒ 1st or 4th quadrant π α= 4
S T
A α α C
tan A = −
8 15
< 0 ⇒ 2nd or 4th quadrant
90° < A < 180° ⇒ 2nd quadrant ∴ 2nd quadrant
0 < θ < 2π θ = α, 2π − α π 7π = , ✓ 4
Quadrant
Coordinates tan A = −
4
8 15
=
y
r A
8
x
−15 4(d)
cos θ = −0.7 ⇒ 2nd or 3rd quadrant α ≈ 0.795
S α α T
x = −15, y = 8,
A
r = √82 + (15)2 = 17
C
Trigonometric ratio
0 < θ < 2π θ = π − α, π + α ≈ 2.35,3.94 ✓ 4(e)
tan2 θ = 3 tan θ = ±√3 ⇒ 1st, 2nd, 3rd or 4th quadrant α = 60°
5(b) S α α T
A α α C
(17) 8
r
17
=−
15 17
✓
2 √5
< 0 ⇒ 3rd or 4th quadrant
90° < B < 270° ⇒ 2nd or 3rd quadrant ∴ 3rd quadrant Coordinates sin B = −
2 √5
=
r
3 sin θ = 2 2
sin θ
=
sin θ
= ±√
3 2
S α α T
A α α C
B
x
y
−2
y = −2, r = √5,
2
✓
Quadrant sin B = −
θ = α, 180 − α, 180 + α, 360 − α = 60°, 120°, 240°, 300° ✓
2
(−15)
r y
sin A = =
0° < θ < 360°
4(f)
x
cos A = =
√5
2
x = −√(√5) − (−2)2 = −√5 − 4 = −1
3
Trigonometric ratio
⇒ 1st, 2nd, 3rd or 4th quadrant α ≈ 0.955
x
cos B = = r
0 < θ < 2π
cot B =
θ = α, π − α, π + α, 2π − α = 0.955 2.19, 4.10, 5.33 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
1 tan B
−1 √5
=
✓ 1 y x
=
1 (−2) (−1)
1
= ✓ 2
292
A math 360 sol (unofficial) 6
Ex 11.2
Quadrant
8(i)
1
cos A = > 0
Coordinates sin 20° = k =
2
⇒ 1st or 4th quadrant
y r
1
y = k, r = 1,
cos A & sin A have same sign ⇒ 1st or 3rd quadrant
k
20° x
x = √1 − k 2
∴ 1st quadrant Trigonometric ratio sin 200° = − sin 20° = −k ✓
Coordinates 1
x
2
r
cos A = =
2
A 𝑦 8(ii)
1
x = 1, r = 2, y = √22 − 12 = √3
8(iii)
Trigonometric ratio y
sin(−A) = − sin A = − = r
y
tan A = = x
7(i)
√3 1
√3 − 2
8(iv)
✓
5 12
9(a)
<0
=
12
y x
9(b) −5
r
+
(−5)2
y
5
r
13
⇒ sin A = = −
= 13 x
12
r
13
, cos A = =
cos(−A) = cos A =
7(iii) 7(iv)
12
=
y x
=−
1
=
cos(90°−70°)
k √1−k2 1 cos 20°
✓ =
1 √1−k2
100 + 71 sec x = 0 71 sec x = −100 sec x
=−
cos x
=−
13
π
5
2
13
π
1
2
tan A
=
© Daniel & Samuel A-math tuition 📞9133 9982
71 71
1 5 12
(− )
5
S α α T
100
A
C
= 180 − α, 180 + α ≈ 135.2°, 224.8° ✓
5 cot x + 3 = 2 + 3 cot x 2 cot x = −1 =−
1 2
0° < x < 360°
✓
cos ( − A) = sin A = −
100
x = 180 − α, 360 − α = 116.6°, 296.6° ✓
tan(−A) = − tan A = − (−
tan ( − A) =
1 sin 70°
tan x = −2 α ≈ 63.4° ⇒ 2nd or 4th quadrant
Trigonometric ratio
7(ii)
csc 70° =
cot x
y = −5, x = 12, r=
tan(−20°) = − tan 20° = −
x
Coordinates
√122
= √1 − k 2 ✓
0° < x < 360°
∴ 4th quadrant
12
1
α ≈ 44.8° ⇒ 2nd or 3rd quadrant
tan A & cos A have opp. signs ⇒ 3rd or 4th quadrant
5
r
✓ [typo in book]
⇒ 2nd or 4th quadrant
tan A = −
√1−k2
= √3 ✓
Quadrant tan A = −
x
cos 20° = =
) =
12
5 12
S α T
A α C
✓
✓ =−
12 5
✓
sleightofmath.com
293
A math 360 sol (unofficial) 9(c)
Ex 11.2 10(a) 2 sin x − √3 = 0
5 cos x = √3 sin 60° √3 2
5 cos x = √3 ( ) 5 cos x = cos x
=
sin x
3
α=
2 3 10
S
0° < x < 360°
T
A α α C
2 sin(−x) = 0.3 −2 sin x = 0.3 sin x = −0.15 α ≈ 8.6° ⇒ 3rd or 4th quadrant
S
A
α T
α C
3
0 < x < 2π
α ≈ 72.5° ⇒ 1st or 4th quadrant
0° < x < 360°
x = α, π − α π 2π = , ✓ 3
10(b)
3
cos x−1 0.5−cos x
=2
cos x − 1 = 1 − 2 cos x 3 cos x = 2 cos x S
A
α T
α C
2
=
3
α ≈ 0.841 ⇒ 1st or 4th quadrant 0 < x < 2π
x = 180 + α, 360 − α ≈ 188.6°, 351.4° ✓ 9(e)
π
√3 2
⇒ 1st or 2nd quadrant
x = α, 360 − α = 72.5°, 287.5° ✓ 9(d)
=
S T
A α α C
x = α, 2π − α ≈ 0.841,5.44 ✓
2 cos x = sec x 2 cos x = cos 2 x = cos x
1
10(c)
cos x 1
=7
4 = 7 − 14 tan2 x 14 tan2 x = 3
2
=±
4 1−2 tan2 x
1 √2
α = 45° ⇒ 1st, 2nd, 3rd or 4th quadrant
S α α T
0° < x < 360°
A α α C
3
tan2 x
=
tan x
= ±√
14 3 14
α ≈ 0.434 ⇒ 1st, 2nd, 3rd or 4th quadrant
x = α, 180 − α, 180 + α, 360 − α = 45°, 135°, 225 °, 315° ✓
0 < x < 2π 9(f)
3 sin x + 2 = cot 15° 3 sin x = cot 15° − 2 1
sin x
= tan 15°
−2
0° < x < 360° x = α, 180 − α ≈ 35.3°, 144.7° ✓
© Daniel & Samuel A-math tuition 📞9133 9982
A α α C
x = α, π − α, π + α, 2π − α ≈ 0.434, 2.71, 3.58, 5.85 ✓
3
sin x ≈ 0.57735 α ≈ 35.3 ⇒ 1st or 2nd quadrant
S α α T
11(i)
π
π
2
2 π
sin (x − ) = sin [− ( − x)] = − sin ( − x) 2
S
A
α T
α C
= − cos x [shown] ✓
sleightofmath.com
294
A math 360 sol (unofficial)
Ex 11.2
11(ii) √3 sin (x − π) + 3 = √3 cos x 2
13
√3(− cos x) + 3 = √3 cos x 3 − √3 cos x = √3 cos x 2√3 cos x =3 cos x α=
=
π
√3 2
3 sin B + 2 = 0 3 sin B = −2 S
A α α C
6
⇒ 1st or 4th quadrant
T
6
12
6
=− <0 3
⇒ 3rd or 4th quadrant ∵ A & B are in different quadrant, Case 1: A in 1st quadrant, B in 3rd quadrant Case 2: A in 1st quadrant, B in 4th quadrant Case 3: A in 3rd quadrant, B in 4th quadrant Coordinates of A 1st quadrant: y x1 = 1 tan A = 2 = x in 1st or 3rd quadrant y1 = 2
x = α, 2π − α π 11π
2
sin B
0 < x < 2π = ,
Quadrant tan A = 2 > 0 ⇒ 1st or 3rd quadrant
✓
Quadrant tan θ = 7 > 0 ⇒ 1st or 3rd quadrant 0° < θ < 180° ⇒ 1st or 2nd quadrant ⇒ 1st quadrant
r1 = √12 + 22 = √5 r1
Coordinates y tan θ = 7 =
𝑟 θ 1
x
y = 7, x = 1,
2
−1 −2
7
3rd quadrant: x2 = −1 y2 = −2
1 r2
r2 = √12 + 22 = √5 3rd quadrant: y3 = −2 r3 = 3
Coordinates of B
r = √12 + 72
2
y
3
r
sin B = − =
= √50 = √25 × 2 = 5√2
in 3rd or 4th quadrant
x3 = −√32 − (−2)2 = −√5
Value v= =
770 sin 135° sin θ 385√2 7 5√2
=
770 sin 45°
= 385√2 ⋅
y r
5√2 7
=
=
770(
√2 ) 2
x3
7 5√2
385(5)(2) 7
−2 = 550 ✓
x4
4th quadrant: −2 y4 = −2 r4 = 3
3 3
x4 = √32 − (−2)2 = √5 Values Case 1: 3 sin A − tan B y
y
r1 2
x3 −2
√5
−√5
= 3 ( 1) − ( 3) = 3( ) − (
) =
4 √5
✓
Case 2: 3 sin A − tan B y
y
r1 2
x4 −2
8
√5
√5
√5
= 3 ( 1) − ( 4) =3 ( )−( ) =
✓
Case 3: 3 sin A − tan B y
y
r2 −2
x4 −2
4
√5
√5
√5
= 3 ( 2) − ( 4)
=3 ( )−( ) =−
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
✓
295
A math 360 sol (unofficial) 14(i)
Ex 11.2
Coordinates y sin 130° = k =
15(i)
r
1 130°
k x
y = k, r = 1, x = − √1 − k 2
k 1
14(ii) Coordinates y sin 50° = k = r
1 𝑘 50° 𝑥
y = k, r = 1, x = √1 − k 2
1
1
=
y ( ) x
1
=
(
k √1−k2
)
=
√1−k2 k
15(ii)
✓
y = √1 − r=
√k 2
k
k2, x
=
𝑟
= k,
=0
40° √1 − k
=
1
x r
A
α α T C x ≠ 180 + α, 360 − α ≠ 185.7°, 354.3° Combine answers: x = 161.6°, 198.4° ✓
cos(−220°) −( )
1
S
Trigonometric ratio
1
α ≈ 18.4° ⇒ 3rd or 4th quadrant
0° < x < 360°
= √1 − k 2 + k 2 =1
sec(−220°) =
1 √10
10 sin x + 1 ≠ 0
k2
2 k2)
+ (√1 −
3 √10
≠−
sin x ≠− <0 ⇒x= 10 α ≈ 5.7° 161.6°, 198.4° ✓ ⇒ 3rd or 4th quadrant
y x
3+√10 cos x 10 sin x+1
14(iii) Coordinates √1−k2
sin x
Combine answers: x = 161.6° ✓
Trigonometric ratio tan 40° = cot(90° − 40°) tan 50°
=−
√10 sin x + 1 ≠ 0
α ≈ 18.4 ⇒ 2nd or 3rd quadrant 0° < x < 360° 0° < x < 360° S A S A α α α T C α x ≠ 180 + α, 360 − α T C ≠ 198.4°, 341.6° x = 180 − α, 180 + α ≈ 161.6°, 198.4°
sin 50° = sin(180° − 130°) = = k ✓
tan 40° =
=0 √10 sin x + 1 3 + √10 cos x = 0 = −3 √10 cos x cos x
Trigonometric ratio
=
3 + √10 cos x
=
=
1 −
k 1
1 cos(220°) 1
=− ✓ k
=
1 − cos(40°)
16(i) (a)
3 sin x − 2 = 0 sin x
=
2 3
α ≈ 41.8° ⇒ 1st or 2nd quadrant 0° < x < 360° x = α, 180 − α ≈ 41.8°, 138.2° ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
S
A
α T
α C
296
A math 360 sol (unofficial) 16(i) (b)
tan x − 4 = 0 tan x =4 α ≈ 76.0° ⇒ 1st or 3rd quadrant 0° < x < 360° x = α, 180 + α ≈ 76.0°, 256° ✓
© Daniel & Samuel A-math tuition 📞9133 9982
Ex 11.2 16(ii) 3 sin x tan x − 12 sin x −2 tan x + 8 = 0 3 sin x (tan x − 4) −2(tan x − 4) = 0 (tan x − 4)(3 sin x − 2) =0 S
α T
A α
tan x = 4 or sin x =
2 3
⇒ x = 41.8°, 76.0°, 138.2°, 256.0° ✓
C
sleightofmath.com
297
A math 360 sol (unofficial)
Ex 11.3 1(e)
Ex 11.3 1(a)
(sin x − 1)(sin x + 1) = 0 sin x = 1 or sin x = −1 0° ≤ x ≤ 360°
0° ≤ x ≤ 360°
𝑦 1
90° 180° 270° 360°
1(b)
90° 180° 270° 360°
−1
−1
x = 90° ✓
x = 270° ✓
(3 sin x − 1)(tan x + 1) = 0 1 tan x = −1 sin x = or 3 α = 45° α ≈ 19.5° ⇒ 2nd or 4th quadrant ⇒ 1st or 2nd quadrant 0° ≤ x ≤ 360° 0° ≤ x ≤ 360° S A S A α α α α T C T C x = 180 − α, 360 − α x = α, 180 − α = 135°, 315° ✓ = 19.5°, 160° ✓
2(a)
−1 ≤ sin x ≤1 −7 ≤ 7 sin x ≤7 −10 ≤ 7 sin x − 3 ≤ 4
1
90° 180° 270° 360°
𝑥
90° 180° 270° 360° −1
x = 0°, 360° ✓
x = 180° ✓
𝑥
sin x (2 cos x − 3) = 0 3 sin x = 0 or cos x = 2
0° ≤ x ≤ 360°
(no solution)
𝑦 1
90° 180° 270° 360°
𝑥
For y = 7 sin x − 3, min = −10 ⇒ sin x = −1 0° ≤ x ≤ 360° x = 270° ✓
−1
x = 0°, 180°, 360° ✓ 1(d)
A
1(f)
𝑦
−1
S α
−1
0° ≤ x ≤ 360°
1
1(c)
𝑥
(cos x − 1)(cos x + 1) = 0 cos x = 1 or cos x = −1 𝑦
𝑥
α T C x = 0°, 180°, 360° ✓ x = 180 − α, 360 − α ≈ 104.0°, 284.0° ✓ 90° 180° 270° 360°
𝑥
0° ≤ x ≤ 360°
0° ≤ x ≤ 360°
𝑦 1
𝑦
1
sin2 x (tan x + 4) = 0 tan x = −4 sin2 x = 0 or α ≈ 76.0° sin x = 0 ⇒ 2nd or 4th quadrant 0° ≤ x ≤ 360°
tan x (2 cos x − 1) = 0 tan x = 0 or cos x = 1
𝑦 1
90° 180° 270° 360°
𝑥
−1
2
0° ≤ x ≤ 360° 𝑦
α = 60° ⇒ 1st or 4th quadrant
max = 4 ⇒ sin x = 1 x = 90° ✓
0° ≤ x ≤ 360° 90° 180° 270° 360°
𝑥
A α α x = 0°, 180°, 360° T C ✓ x = α, 360 − α = 60°, 300° ✓
© Daniel & Samuel A-math tuition 📞9133 9982
S
sleightofmath.com
298
A math 360 sol (unofficial) 2(b)
−1 −5 −3
Ex 11.3
≤ cos x ≤1 ≤ 5 cos x ≤5 ≤ 5 cos x + 2 ≤ 7
For y = 5 cos x + 2, min = −3 ⇒ cos x = −1 0° ≤ x ≤ 360° x = 180°
𝑦 1
90° 180° 270° 360°
𝑥
−1
max = 7 ⇒ cos x = 1 x = 0°, 360° ✓ 2(c)
−1 ≤ sin x ≤1 −3 ≤ −3 sin x ≤3 1 ≤ 4 − 3 sin x ≤ 7 For y = 4 − 3 sin x, min = 1, ⇒ sin x = 1 0° ≤ x ≤ 360° x = 90° ✓
𝑦 1
90° 180° 270° 360°
𝑥
−1
max = 7 ⇒ sin x = −1 x = 270° ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
299
A math 360 sol (unofficial)
Ex 11.3
3(a) y = 3 cos(2x) + 2 i.e. a = 3, b = 2, c = 2
𝑦 y = 3 cos(2x) + 2 5
Amplitude = |a| = |3| = 3 ✓ Period =
360 b
=
360
= 180° ✓
2
2 𝑂 −1
180°
360°𝑥 ✓ Workings
Domain 0° ≤ x ≤ 360° Axis with y=2±3 Amplitude Shape +cos 360−0
Cycle
180
=2
3(b) y = 5 − sin 2x = − sin 2x + 5 i.e. a = −1, b = 2, c = 5 Amplitude = |a| = |−1| = 1 ✓ Period
=
2π b
=
2π 2
𝑦 6
y = 5 − sin 2x
5 4
=π✓
𝑂
𝜋
𝑥
2𝜋
✓
Workings Domain 0 ≤ x ≤ 2π Axis with y=5±1 Amplitude Shape −sin 2π−0
Cycle
3(c)
π
=2
y = 4 sin 8x i.e. a = 4, b = 8, c = 0 Amplitude = |a| = |4| = 4 ✓ Period
=
360 b
=
360 8
𝑦 4 𝑂
= 45° ✓
y = 4 sin(8x) 45°
-4
90°
𝑥 ✓
Workings
Domain 0° ≤ x ≤ 90° Axis with y=0±4 Amplitude Shape +sin Cycle
90−0 45
=2
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
300
A math 360 sol (unofficial)
Ex 11.3
3(d) y = 6 cos (x) − 4
𝑦
2
𝑥
1
i.e. a = 6, b = , c = −4
2π b
=
2π 1 2
4𝜋
−4 𝑂
Amplitude = |a| = |6| = 6 ✓ =
2
2
2
Period
𝑦 = 6 cos ( ) − 4 𝑥
−10
= 4π ✓
✓
Workings Domain 0 ≤ x ≤ 4π Axis with y = −4 ± 6 Amplitude Shape +cos 4π−0
Cycle
4π
=1
3(e) y = 2 sin(3x) − 1 i.e. a = 2, b = 3, c = −1 Amplitude = |a| = |2| = 2 ✓ Period
=
360 b
=
360 3
= 120° ✓
𝑦 1 −1𝑂
𝑦 = 2 sin(3𝑥) 120° 180° 𝑥
−3
✓
Workings Domain 0° ≤ x ≤ 180° Axis with y = −1 ± 2 Amplitude Shape +sin 180−0
Cycle
3(f)
120
= 1.5
y = 2(2 − cos 5x) = 4 − 2 cos 5x = −2 cos 5x + 4 i.e. a = −2, b = 5, c = 4
𝑦 y = 2(2 − cos 5x) 6 4
Amplitude = |a| = |−2| = 2 ✓ Period
=
360 b
=
360 5
= 72° ✓
2 𝑂
72°
144° 180° 𝑥 ✓
Workings Domain 0° ≤ x ≤ 180° Axis with y=4±2 Amplitude Shape −cos Cycle
180−0 72
© Daniel & Samuel A-math tuition 📞9133 9982
= 2.5
sleightofmath.com
301
A math 360 sol (unofficial)
Ex 11.3
3(g) y = 1 − 2 sin x
𝑦
3
1
1
y = −2 sin ( x) + 1
= −2 sin ( x) + 1 3
i.e. a = −2, b = , c = 1
1
3
=
360 b
=
360 1 3
𝑥
810°
-1 O
Amplitude = |a| = |−2| = 2 ✓ Period
3
3
1
✓
= 1080° ✓ Workings
Domain 0° ≤ x ≤ 810° Axis with 𝑦 =1±2 Amplitude Shape −𝑠𝑖𝑛 810−0 3 Cycle = 1080
4
3(h) y = 1.3 + 1.2 cos 2t = 1.2 cos 2t + 1.3 i.e. a = 1.2, b = 2, c = 1.3
𝑦 y = 1.3 + 1.2 cos 2t 2.5
Amplitude = |a| = |1.2| = 1.2 Period
=
2π
=
b
2π 2
=π
1.3 0.1 𝑂
π
2π
𝑥 ✓
Workings Domain 0 ≤ 𝑡 ≤ 2𝜋 Axis with 𝑦 = 1.3 ± 1.2 Amplitude Shape +𝑐𝑜𝑠 2𝜋−0 Cycle =2 𝜋
4(ii) y|t=4 = 1.2 cos[2(4)] + 1.3 = 1.2 cos 8 + 1.3 = 1.13m ✓ 5(i)
x
y = p cos ( ) + q 2
1
i.e. a = p, b = , c = q 2
Period
=
2π b
=
2π 1 2
= 4π ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
302
A math 360 sol (unofficial)
Ex 11.3
5(ii) q = min+max = (−5)+(3) = −1 ✓ 2
|p| =
2
max−min 2
=
(3)−(−5)
=4
2
p = 4 or p = −4 ✓ 5(iii) p < q ⇒ p = −4, q = −1
𝑦 1
y = −4 cos ( x) − 1 2
3 x
𝑂
y = −4 cos ( ) − 1 2
4𝜋
-1
Amplitude = 4 Period = 4π
𝑥
-5
✓
Workings Domain 0 ≤ x ≤ 4π Axis with y = −1 ± 4 Amplitude Shape −cos 4π−0
Cycle
6(i)
4π
=1
y1 = 4 sin 2x i.e. a = 4, b = 2, c = 0 Amplitude = |a| = |4| = 4 Period
=
360 b
=
360 2
= 180°
y2 = 2 cos x − 1 i.e. a = 2, b = 1, c = −1 Amplitude = |a| = |2| = 2 Period
=
360 b
=
360 1
𝑦 4 1 𝑂 −3 −4
180°
𝑦2 = 2 cos 𝑥 − 1 𝑥 360° 𝑦1 = 4 sin 2𝑥 ✓
= 360°
Workings 𝑦1 = 4 sin 2𝑥 Domain 0° < x ≤ 360° Axis with y=0±4 Amplitude Shape +sin Cycle
360−0 180
=2
𝑦2 = 2 cos 𝑥 − 1 Domain 0° < x ≤ 360° Axis with y = −1 ± 2 Amplitude Shape +cos Cycle
360−0 360
© Daniel & Samuel A-math tuition 📞9133 9982
=1
sleightofmath.com
303
A math 360 sol (unofficial)
Ex 11.3
6(ii) 4 sin(2x) + 1 = 2 cos x 4 sin 2x = 2 cos x − 1 y1 = y2 4 Intersections ⇒ 4 real roots ✓ 7(a) y = 5 tan x i.e. a = 5, b = 1, c = 0 Period
=
180 b
=
180 1
y
= 180° 𝑂
y = 5 tan 𝑥 x 360°
180°
𝑥 = 90°
𝑥 = 270° Workings
Domain 0° ≤ x ≤ 360° Axis with Amplitude Shape +𝑡𝑎𝑛 360−0 Cycle =2 180
7(b)
y = −4 tan 3x i.e. a = −4, b = 3, c = 0 180 180 Period = = = 60° b
y
𝑦 = −4 tan 3𝑥
3
𝑂
60°
𝑥 = 30°
120°
𝑥 = 90°
180°
x
𝑥 = 120°
Workings Domain 0° ≤ x ≤ 180° Axis with Amplitude Shape −𝑡𝑎𝑛 180−0 Cycle =3 60
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
304
A math 360 sol (unofficial) 7(c)
Ex 11.3
y = 3 tan 2x i.e. a = 3, b = 2, c = 0 Period
=
π b
=
𝑦 𝑦 = 3 tan 2𝑥
π 2
𝑂
𝜋 2 𝑥=
𝜋 4
𝑥=
3𝜋 4
𝑥
3𝜋 2
𝜋
𝑥=
5𝜋 4
2𝜋
𝑥=
7𝜋 4 ✓
Workings Domain 0 ≤ x ≤ 2π Axis with Amplitude Shape +tan 2π−0
Cycle
π 2
=4
7(d) y = −1.5 tan 4x i.e. a = −1.5, b = 4, c = 0 Period
=
π b
=
𝑦 𝑦 = −1.5 tan 4𝑥
π 4
𝑂
𝑥=
𝜋 8
π
π
3𝜋
4
2
4
𝑥=
3𝜋 8
𝑥=
5𝜋 8
𝜋
𝑥=
7𝜋 8
𝑥
✓
Workings Domain 0 ≤ x ≤ 2π Axis with Amplitude Shape −𝑡𝑎𝑛 𝜋−0 Cycle =4 𝜋 4
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
305
A math 360 sol (unofficial) 8(a)
Ex 11.3 10(d) A = max−min = (3.5)−(0.5) = 1.5 ✓
1
sin−1 ( ) = α 2
2
= 30° ✓ 8(b) cos −1 (− 1) = 180° − α 2
= 180° − 60° = 120° ✓ 8(c)
tan−1 (−√3) = −α 3
1 √2
b= c=
2π
π 4
1
A = sin−1 (− )
⇒ 4th quadrant
3
B = cos −1 h, h < 0 ⇒ 2nd quadrant C = tan−1 k ⇒ 1st or 4th quadrant A and B cannot be in the same quadrant 9(ii) For A and C to be in the same quadrant, they have to be in the 4th quadrant. ⇒ k<0✓ 10(a) A = max−min = (5)−(−1) = 3 ✓ 2
2
c= 10(b) A =
1
= ✓ =
2 (3.5)+(0.5) 2
=2✓
11(ii) −1 ≤ sin 4t ≤ 1 −20 ≤ 20 sin 4t ≤ 20 ⇒ max = 20 ✓ 20 sin 4t = 20 sin 4t = 1 π ⇒ 4t = t
=
2 π 8
≈ 0.393 ✓ 11(iii) I = 20 sin 4t i.e. a = 20, b = 4, c = 0 Amplitude = |a| = |20| = 20 ✓ =
2π b
=
2π 4
1
= π 2
𝐼
a = −3 360
2π
2
Period
T = 90° ✓
b=
=
T 4π max+min
) = −α =− ✓
9(i)
a = 1.5 ✓
11(i) I = 20 sin 4t i.e. a = 20, b = 4, c = 0 Amplitude = |a| = |20| = 20 ✓
π
=− ✓ 8(d) sin−1 (−
2
T = 4π✓
=
360
T 90 max+min
=
2 max−min
=
2
𝐼 = 20 sin 4𝑡
= 4✓
20
(5)+(−1) 2 1−(−3) 2
=2✓
0 -20
= 2✓
𝜋
𝜋
2
𝑡 ✓
T= π✓ Workings a=2 b= c=
2π
=
2π
T π max+min
Domain 0 ≤ x ≤ 2π Axis with 𝑦 = 0 ± 20 Amplitude Shape +𝑠𝑖𝑛
= 2✓
2
=
(1)+(−3) 2
= −1 ✓
10(c) A = max−min = (4)−(−2) = 3 ✓ 2
Cycle
2
T = 180° ✓
𝜋−0 1 𝜋 2
=2
a = −3 ✓ b= c=
2π
=
360
T 180 max+min 2
=2✓ =
(4)+(−2) 2
© Daniel & Samuel A-math tuition 📞9133 9982
=1✓
sleightofmath.com
306
A math 360 sol (unofficial)
Ex 11.3
12(a) y = |6 sin 3x + 2| i.e. a = 6, b = 3, c = 2
𝑦
Amplitude = |a| = |6| = 6 Period
=
2π b
=
8 4 2 𝑂
2π
y = |6 sin 3x + 2|
𝜋
𝑥
3
✓
Workings Domain 0≤x≤π Axis with 𝑦 =2±6 Amplitude Shape +𝑠𝑖𝑛 𝜋−0 3 Cycle 2𝜋 = 2
3
12(b) y = |4 cos (x) − 1|
𝑦
2
1
i.e. a = 4, b = , c = −1 2
3 𝑥
Amplitude = |a| = |4| = 4 Period
=
2π b
=
2π 1 2
✓
= 4π
Workings Domain 0≤x≤π Axis with 𝑦 = −1 ± 4 Amplitude Shape +𝑐𝑜𝑠 𝜋−0 1 Cycle = 4𝜋
© Daniel & Samuel A-math tuition 📞9133 9982
4
sleightofmath.com
307
A math 360 sol (unofficial)
Ex 11.3
12(c) y = |2 tan 3x| i.e. a = 2, b = 3, c = 0 Period
=
π b
=
y
y = |2 tan 3x|
π 3
𝑂
𝜋 3 𝑥=
𝜋 6
𝑥
2𝜋 3 𝑥=
𝜋 2
𝜋
𝑥=
5𝜋 6
✓
Workings Domain 0≤x≤π Axis with Amplitude Shape +𝑡𝑎𝑛 𝜋−0 Cycle =3 𝜋 3
12(d) y = |5 + 3 sin x| = |3 sin x + 5| i.e. a = 3, b = 1, c = 5
𝑦
8 Amplitude = |a| = |3| = 3 Period
=
2π b
=
2π 1
𝑦 = |5 + 3 sin 𝑥|
5
= 2π
𝜋
𝑥 ✓ Workings
Domain 0≤x≤π Axis with 𝑦 =5±3 Amplitude Shape +𝑠𝑖𝑛 𝜋−0 1 Cycle = 2𝜋
© Daniel & Samuel A-math tuition 📞9133 9982
2
sleightofmath.com
308
A math 360 sol (unofficial)
Ex 11.3
12(e) y = |sin 2x + 1| for 0 ≤ x ≤ π. i.e. a = 1, b = 2, c = 1
𝑦 𝑦 = |sin 2𝑥 + 1|
2 Amplitude = |a| = |1| = 1 Period
=
2π b
=
2π 2
1
=π
O
𝜋
𝑥 ✓
Workings Domain 0≤x≤π Axis with 𝑦 =1±1 Amplitude Shape +𝑠𝑖𝑛 𝜋−0 Cycle =1 𝜋
12(f) y = |1.5 cos 4x − 2| for 0 ≤ x ≤ π. i.e. a = 1.5, b = 4, c = −2 Amplitude = |a| = |1.5| = 1.5 Period
=
2π 4
1
= π 2
y
𝑦 = |1.5 cos 4𝑥 − 2|
3.5 2 0.5 𝑂
1 𝜋 2
𝜋
x
-2 ✓ Workings Domain 0≤x≤π Axis with y = −2 ± 1.5 Amplitude Shape +cos π−0
Cycle
1 π 2
=2
13(i) Amplitude = 4 ⇒a=4 Period 360 b
b
= 120 = 120 =3
c = max − amplitude =2−4 = −2 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
309
A math 360 sol (unofficial) 13(ii) y = 4 sin 3x − 2 13(iii) Amplitude = 4 Period = 120° y = b + c cos ax = 3 − 2 cos 4x = −2 cos 4x + 3 Amplitude = 2 Period
=
360 4
Ex 11.3 y 5 2 1 𝑂 -2
𝑦 = 3 − 2 cos 4𝑥 90°
180°
𝑥
𝑦 = 4 sin 3𝑥 − 2
-6 ✓
= 90° Workings
𝑦 = 4 𝑠𝑖𝑛 3𝑥 − 2 Domain 0° ≤ x ≤ 180° Axis with 𝑦 = −2 ± 4 Amplitude Shape +𝑠𝑖𝑛 180−0 Cycle = 1.5 120
y = b + c cos ax = 3 − 2 cos 4x = −2 cos 4x + 3 Domain 0° ≤ x ≤ 180° Axis with 𝑦 =3±2 Amplitude Shape −𝑐𝑜𝑠 180−0 Cycle =2 90
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
310
A math 360 sol (unofficial)
Ex 11.3
14(i) y = a sin (x) + c
16(i) Vertical component ⇒ r sin θ
b
Amplitude = 4 ⇒ a=4✓ Period 2π 1 b
( )
2πb b 14(ii) c
a=
40
= 20
2 2π
= 4π
b=
= 4π
c = 25
= 4π =2
16(ii)
(𝑟 𝑐𝑜𝑠 𝜃, 𝑟 sin 𝜃)
360
=
π 180
y y = 20 sin
45
= min + amplitude =1+4 =5✓
π 180
t + 25
25 5
1
14(iii) y = 4 sin ( x) + 5
x
𝑂
✓
2
Amplitude = 4 Period = 4π
16(iii) y 20 sin
𝑦 9 5
(𝜋, 9)
sin
(5𝜋, 9)
π 180
π 180
= 40 t + 25 = 40
t
=
3 4
α ≈ 0.848 1
y = 4 sin ( x) + 5 2
1
(3𝜋, 1)
𝑥
𝑂
6𝜋 Workings
0≤ π 180 π 180
t
π 180
t ≤ 2π
t = α, π − α t = 0.848,2.29 = 48.6s, 131. s ✓
Domain 0 ≤ x ≤ 6π Axis with 𝑦 =5±4 Amplitude Shape +𝑠𝑖𝑛 6𝜋−0
Cycle
15
4𝜋
=
3 2
y = a sin bt Period 2π b
b
=4 =4 =
π 2
Max = 0.55 ⇒ a = 0.55 π ∴ y = 0.55 sin t ✓ 2
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
311
A math 360 sol (unofficial) 17
Ex 11.3
y1 = 2 cos 2x i.e. a = 2, b = 2, c = 0
y
Amplitude = |a| = |2| = 2 Period
=
2π b
=
2π 2
=π
y2 = 1 + sin x = sin x + 1 i.e. a = 1, b = 1, c = 1
𝑦1 = 2 cos 2𝑥
2 1 O
𝜋
2𝜋
𝑦2 = sin 𝑥 + 1 x
-2
Amplitude = |a| = |1| = 1 Period
=
2π b
=
2π 1
= 2π
Workings 𝑦1 = 2 𝑐𝑜𝑠 2𝑥 Domain 0 ≤ x ≤ 2π Axis with 𝑦 =0±2 Amplitude Shape +𝑐𝑜𝑠 Cycle
2𝜋−0 𝜋
=2
𝑦2 = 𝑠𝑖𝑛 𝑥 + 1 [0,2𝜋] Domain Axis with 𝑦 =1±1 Amplitude Shape +𝑠𝑖𝑛 Cycle
2𝜋−0 2𝜋
=1
17(i) 2 cos 2x = sin x + 1 y1 = y2 4 intersections ⇒ 4 distinct values of x 17(ii)
y 𝑦 = 2 cos 2𝑥
2 O
𝜋
2𝜋
𝑦 = sin 𝑥 + 1 x
-2 ✓ 7 intersections
⇒ 7 distinct values of x
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
312
A math 360 sol (unofficial)
Ex 11.3
18(i) y1 = sin x i.e. a = 1, b = 1, c = 0 Amplitude = |a| = |1| = 1 Period
=
2π b
=
2π
= 2π
1
y2 = 2 cos x i.e. a = 2, b = 1, c = 0 Amplitude = |a| = |2| = 2 Period
=
2π b
=
2π 1
y 2 1
𝑂 𝜋 -1 2
𝑦2 = 2 cos 𝑥
𝜋
x 2𝜋 𝑦1 = sin 𝑥
-2 ✓
= 2π
18(ii) 2 intersection ⇒ 2 roots ✓ π 2
Workings 𝑦1 = 𝑠𝑖𝑛 𝑥 Domain 0 ≤ 𝑥 ≤ 2𝜋 Axis with 𝑦 =0±1 Amplitude Shape +𝑠𝑖𝑛 Cycle
2𝜋−0 2𝜋
=1
𝑦2 = 2 𝑐𝑜𝑠 𝑥 Domain 0 ≤ 𝑥 ≤ 2𝜋 Axis with 𝑦 =0±2 Amplitude Shape +𝑐𝑜𝑠 Cycle
2𝜋−0 2𝜋
© Daniel & Samuel A-math tuition 📞9133 9982
=1
sleightofmath.com
313
A math 360 sol (unofficial) 19
Ex 11.3
y1 = tan 3x i.e. a = 1, b = 3, c = 0 π π Period = = b
𝑦
𝑥=
𝜋
𝑥=
4
4
3
5
5
y2 = − tan 2x 2
b
=
𝑂
π 2
2 tan 3x
= −5 tan 2x
tan 3x
= − tan 2x
2
2
i.e. a = − , b = 2, c = 0 2 π
𝑦2 = − tan 2𝑥
𝜋
5
Period =
3𝜋
𝜋
2𝜋
3
3
𝜋
𝑥
𝑦1 = tan 3𝑥
5 2
𝑥=
y1 = y2 6 intersections ⇒ 6 solutions ✓
𝜋 6
𝑥=
𝜋 2
𝑥=
5𝜋 6
✓
Workings 𝑦1 = 𝑡𝑎𝑛 3𝑥 Domain 0≤x≤π Axis with Amplitude Shape +𝑡𝑎𝑛 𝜋−0
Cycle
𝜋 3
=3
5
y2 = − tan 2x 2
Domain 0≤x≤π Axis with Amplitude Shape −𝑡𝑎𝑛 Cycle
𝜋−0 𝜋 2
=2
20(a) tan [cos −1 (1)] = tan(α) 2 π = tan ( ) 3 = √3 ✓ 20(b) sin[tan−1 (−1)] = sin(−α) π
= sin (− ) 4
π
= − sin (− ) 4
=
√2 − 2
✓
20(c) cos [sin−1 (− √3)] = cos(−α) 2 π = cos (− ) 3 π = cos 3 1 = ✓ 2
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
314
A math 360 sol (unofficial) 20(d) cos −1 [cos 4π]
Ex 11.3 π
𝑦
= cos −1 (− cos )
3
3
S
1
= cos −1 (− ) 2
=π−α π =π−
π 3
A 𝑂
T
𝑥
C
3
=
2π 3
✓
21(i) y = 3 cos x + 2 i.e. a = 3, b = 1, c = 2 Amplitude = |a| = |3| = 3 Period
=
2π b
=
2π 1
= 2π
21(ii) ∵ x = π is line of symmetry α+β 2
y 𝑦 = 3 cos 𝑥 + 2
5 2
𝑂
-1
𝜋
2𝜋
x
=π
β = 2π − α ✓
Workings Domain 0 ≤ x ≤ 2π Axis with 𝑦 =2±3 Amplitude Shape +𝑐𝑜𝑠
Cycle
2𝜋−0 2𝜋
© Daniel & Samuel A-math tuition 📞9133 9982
=1
sleightofmath.com
315
A math 360 sol (unofficial)
Ex 11.3
22(i) y1 = 2 + cos x = cos x + 2 i.e. a = 1, b = 1, c = 2 Amplitude = |a| = |1| = 1 Period
=
2π
2π
=
b
1
= 2π
y 4 3
𝑦 = 2 + cos 𝑥
1
1
y2 = 4 sin x 2
1
i.e. a = 4, b = , c = 0
O
2
𝜋
1 𝑦 = 4 sin 𝑥 2 x 2𝜋
✓
Amplitude = |a| = |4| = 4 Period
=
2π b
=
2π 1 2
= 4π
Workings 𝑦1 = 2 + 𝑐𝑜𝑠 𝑥 Domain 0 ≤ x ≤ 2π Axis with 𝑦 =2±1 Amplitude Shape +𝑐𝑜𝑠 Cycle
2𝜋−0 2𝜋
=1
1 𝑦2 = 𝑠𝑖𝑛 𝑥 2 Domain 0 ≤ x ≤ 2π Axis with 𝑦 =0±4 Amplitude Shape +𝑠𝑖𝑛 Cycle
2𝜋−0 4𝜋
=
1 2
22(ii) 2 sin 1 x − k cos x = 1 2
−1 − k cos x
1
= −2 sin x 2
1
2 + 2k cos x
= 4 sin x
y1
= y2
2 + cos x
2
1
= 4 sin x 2
Compare coefficient of cos x ⇒ 2k = 1 1
k= ✓ 2
22(iii) ∵ x = π is line of symmetry a+c 2
c
=π = 2π − a ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
316
A math 360 sol (unofficial) 23
Ex 11.3
y1 = −3.1 tan 2x i.e. a = −3.1, b = 2, c = 0 Period
180
=
=
b
180 2
𝑦
= 90°
𝑦1 = −3.1 tan 2𝑥 √2
y2 = √2 cos 4x i.e. a = √2, b = 4, c = 0 Amplitude = |a| = |√2| = √2 Period
=
360
=
b
360 4
𝑂 −√2
90°
𝑦2 = √2 cos 4𝑥 𝑥 180°
= 90° 𝑥 = 45°
𝑥 = 135°
✓
Workings 𝑦1 = −3.1 𝑡𝑎𝑛 2𝑥 Domain 0° ≤ x ≤ 180° Axis with Amplitude Shape −𝑡𝑎𝑛 180−0
Cycle
90
=2
𝑦2 = √2 𝑐𝑜𝑠 4𝑥 Domain 0° ≤ x ≤ 180° Axis with 𝑦 = 0 ± √2 Amplitude Shape +𝑐𝑜𝑠 180−0
Cycle
90
=2
T = 90° 45° < α < 90° √2 cos 4x + 3.1 tan 2x = 0 3.1 tan 2x = −√2 cos 4x −3.1 tan 2x = √2 cos 4x y1 = y2 ∵ Period = 90° ⇒ x = α, α + 90°, α + 180°, α + 270° ✓ 24(a) Let A = cos −1 (− 1) 5
⇒ 2nd quadrant 1
x
5
r
cos A = − =
𝑦 5 −1
x = −1, r = 5 y = √52 − (−1)2 = √24
= 2√6
1
y
5
r
sin [cos −1 (− )] = sin A=
© Daniel & Samuel A-math tuition 📞9133 9982
=
2√6 5
✓
sleightofmath.com
317
A math 360 sol (unofficial)
Ex 11.3
24(b) Let B = sin−1 (− 2)
𝑥
3
⇒ 4th quadrant 2
y
3
r
sin B = − =
3
−2
y = −2, r = 3, x = √32 − (−2)2 = √5 2
y
3
x
tan [sin−1 (− )] = tan B =
=
−2 √5
✓
25(a) y = cos x tan x Familiar y = sin x ✓ 25(b) y = sin2 x y = cos 2 x Complementary shape ✓ 26(a) [check for error] sin−1 (sin x) = x Dgf = Df = ℝ True ✓ 26(b) sin(sin−1 x) = x π π Dgf = Df = [− , ] ≠ ℝ 2 2 False ✓ 26(c) cos −1 (cos x) = x Dgf = Df = ℝ False ✓ 26(d) tan(tan−1 x) = x π π Dgf = Df = (− , ) ≠ ℝ 2 2 False ✓ 26(e) − π < x < π 2 2 −1 (tan tan x) = x π π π π Dgf = Df = (− , ) = (− , ) 2 2 2 2 True ✓ 26(f) If cos x = 0.2 then x = cos −1 0.2 Not necessarily true. ✓ x can assume other values depending on the domain restriction
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
318
A math 360 sol (unofficial)
Rev Ex 11 A2(i) Quadrant
Rev Ex 11
3
tan A = > 0 A1(a) 2 cos x − 1 = 4 cos x 2 cos x = −1 cos x
=−
3
cos B = − < 0 ⇒ 2nd or 3rd quadrant 5
Same quadrant ⇒ 3rd quadrant
1 2
α = 60 ⇒ 2nd or 3rd quadrant
S α α T
0° ≤ x ≤ 360° x = 180 − α, 180 + α = 120°, 240° ✓
Coordinates of A
A
=
sin x α=
x
-3
r = √(−3)2 + (−4)2 = 5 Coordinates of B 3
x2
5
r2
cos B = − = √3 2
S α α T
3
⇒ 1st, 2nd, 3rd, 4th quadrant
-3 y2
5
x2 = −3, r2 = 5
A α α C
y2 = −√52 − (−3)2 = −4 Trigonometric ratio
0 ≤ x ≤ 2π x = α, π − α, π + α, 2π − α π 2π 4π 5π = , , , ✓ 3
-4 r
y = −3, x = −4,
4
=±
3
y
4
C
3
π
3
3
tan A = =
A1(b) 4 sin2 x = 3 sin2 x
⇒ 1st or 3rd quadrant
4
y
−3
r
5
sin A = =
3
✓
A2(ii) tan(−B) = − tan B = − (y2 ) = − (−4) = − 4 ✓ x2
A1(c) (2 sin x + 1)(2 cos x + 5) = 0 sin x = −
1 2
or
cos x = −
5
A2(iii) sec A tan B =
2
(no solution) α = 30° ⇒ 3rd or 4th quadrant 0° ≤ x ≤ 360° S
= =
A
π
1 2
or
x r
( ) 1 −4 5
( ) x2
−4
( ) −3
3
A3(i) y = a cos bx + c
cot x = − tan x = −
3
Amplitude = 3 |a| =3 a = 3 or a = −3 (rej ∵ a is a positive integer)
3 2 2 3
⇒ 1st or 4th quadrant α ≈ 0.588 ⇒ 2nd or 4th quadrant 0 ≤ x ≤ 2π S
A α α T C x = α, 2π − α π 5π = , ✓ 3
tan B
cos A 1 y2
=− ✓
A1(d) (2 cos x − 1)(2 cot x + 3) = 0 α=
3
5
α α T C x = 180 + α, 360 − α = 210°, 330° ✓
cos x =
1
−3
3
© Daniel & Samuel A-math tuition 📞9133 9982
0 ≤ x ≤ 2π
S
Period = 60° 360 b
b
A α
α T C x = π − α, 2π − α = 2.55,5.70 ✓
= 60 =
360 6
=6✓ A3(ii) c (a)
sleightofmath.com
= min + |a| =4 +3 = 7✓
319
A math 360 sol (unofficial) A3(ii) (b)
Rev Ex 11 A4(ii) 3 intersections ⇒ 3 sol ✓
𝑦 𝑦 = 3 cos 6𝑥 + 7 10 7
A5(a) 4 tan−1 1 − cos −1 (− √3) 2
4 𝑂
60°
120°
180°
π
𝑥
= 4( )
−(π − α)
=π
− (π − )
4
✓
=π
Workings
π 6
−
5π
π
6
= ✓
Domain 0° ≤ x ≤ 180° Axis with y=7±3 Amplitude Shape +cos 180−0 Cycle =3
6
A5(b) cos [sin−1 (−
1 √2
)] = cos(−α) π
= cos (− )
60
= cos =
1 √2
π
4
4
✓
A4(ii) y = 5 tan 2x i.e. a = 5, b = 2, c = 0 Period
=
π b
=
π 2
𝑦
𝑦= 𝑂
𝜋 2
3𝜋
𝜋
2
𝑥 𝜋
𝑥 2𝜋 𝑦 = 5 tan 2𝑥 ✓
Workings Domain 0 ≤ x ≤ 2\pi Axis with Amplitude Shape +tan 2π−0 Cycle =4 π 2
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
320
A math 360 sol (unofficial)
Rev Ex 11
A6(i) y1 = cos 2x i.e. a = 1, b = 2, c = 0 Amplitude = |a| = |1| = 1 Period
=
2π b
=
2π 2
=π
y2 = 2 sin x i.e. a = 2, b = 1, c = 0 Amplitude = |a| = |2| = 2 Period
=
2π b
=
2π 1
= 2π
y 2 1
O
𝑦1 = cos 2𝑥
𝜋
-1
2𝜋
x
𝑦2 = 2 sin 𝑥
-2
Workings y1 = cos 2x Domain 0 ≤ x ≤ 2π Axis with y=0±1 Amplitude Shape +cos 2π−0 Cycle =2 π
y2 = 2 sin x Domain 0 ≤ x ≤ 2π Axis with y=0±2 Amplitude Shape +sin 2π−0 Cycle =1 2π
A6(ii) cos 2x = 0.6 for 0 ≤ x ≤ 2π (a) y1 = 0.6 4 intersections ⇒ 4 sol ✓
𝑦 1 O
𝑦1 = cos 2𝑥 𝑦 = 0.6 𝜋
2𝜋
𝑥
-1 A6(ii) cos 2x = 2 sin x for 0 ≤ x ≤ 2π (b) y1 = y2 2 intersections ⇒ 2 sol ✓
𝑦 2 1 O
𝑦1 = cos 2𝑥 𝜋
-1
⇒ 4 sol ✓
𝑥
𝑦2 = 2 sin 𝑥
-2 A6(ii) cos 2x − 2 sin x = 1 for 0 ≤ x ≤ 2π (c) cos 2x = 2 sin x + 1 y1 = 2 sin x + 1
2𝜋
y 3 1 O
𝑦 = 2 sin 𝑥 + 1 𝑦1 = cos 2𝑥 𝜋
2𝜋
x
-1
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
321
A math 360 sol (unofficial)
Rev Ex 11
A6(ii) 2|sec 2x| = |csc x| for 0 ≤ x ≤ 2π 2 1 (d) = |cos 2x| |cos 2x| 2
𝑦
|sin x|
= |sin x| 𝜋
𝑂
|cos 2x| = |2 sin x| |y1 | = |y2 |
𝑦 = 2|sin 𝑥| 𝑦 = |cos 2𝑥| 𝑥 2𝜋
⇒ 4 sol ✓ B1(a) (2 sin2 x + sin x)(tan x − 3 cos 20°) = 0 sin x (2 sin x + 1)(tan x − 2.82) =0 1 sin x = 0 or sin x = − or 2 0° ≤ x ≤ 360° α = 30° 𝑦 ⇒ 3rd or 4th quadrant 1 90° 180° 270° 360°
𝑥
−1
x = 0°, 180°, 360° ✓
© Daniel & Samuel A-math tuition 📞9133 9982
0° ≤ x ≤ 360° S
A
α α T C x = 180 + α, 360 − α = 210°, 330° ✓
tan x = 2.82 α ≈ 70.5° ⇒ 1st or 3rd quadrant 0° ≤ x ≤ 360° S
A α
α T C x = α, 180 + α = 70.5°, 250.5° ✓
sleightofmath.com
322
A math 360 sol (unofficial)
Rev Ex 11
B1(b) |3 tan x − 1| = 2 3 tan x − 1 = 2 3 tan x =3 tan x =1 α = 45° ⇒ 1st or 3rd quadrant 0° ≤ x ≤ 360° S
tan x
3
0 < x < 2π
π
α=
𝑦
A
1
4
−2
𝑟
r = √12 + (−2)2 = √5 Trigonometric ratio
1 tan A
y
−2
2
r
√5
√5
4
=
1 −2
✓
1
=− ✓ 2
B3(iii) sin (π − A) cos 150° 2
(− cos 30°)
= cos A
0 < x < 2π
4
1
y = −2, x = 1
B3(ii) cot A =
√2
S A α α T C x = π − α, π + α 3 5 = π, π ✓
x=π✓
Coordinates y tan A = −2 =
sin(−A) = − sin A = − = − ( ) =
⇒ 2nd or 3rd quadrant 𝑥
B3(i) Quadrant A = tan−1 (−2) ⇒ 4th quadrant
x
α T C x = 180 − α, 360 − α = 161.6°, 341.6° ✓
B1(c) tan x (√2 cos x + 1) = 0 tan x = 0 cos x = −
2
1
α ≈ 18.4° ⇒ 2nd or 4th quadrant
S α
α T C x = α, 180 + α = 45°, 225° ✓
B1(d)
=−
0° ≤ x ≤ 360°
A α
90° 180° 270° 360°
B2(iv) q = −6 p = 2π − 8π = −6π ✓
3 tan x − 1 = −2 3 tan x = −1
= = =
1 √5 1 √5 √5 5
=−
⋅
√5 √5
√15 10
(−
√3 ) 2
(−
√3 ) 2
(−
√3 ) 2
✓
=3
sec x−1
sec x − 1 = sec x
=
cos x
=
2 3 5 3 3 5
α ≈ 0.927 ⇒ 1st or 4th quadrant
S T
A α α C
0 < x < 2π x = α, 2π − α = 0.927,5.36 ✓ B2(i) A = max−min = (2)−(−6) = 4 ✓ 2 2 B2(ii) T = 8π ✓ a = −4 ✓ b= c=
2π
=
2π
T 8π max+min 2
1
= ✓ =
4 2+(−6) 2
= −2 ✓
B2(iii) (6π + 8π, 2) ⇒ (14π, 2) ✓ © Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
323
A math 360 sol (unofficial)
Rev Ex 11
B4(i) y1 = |2 cos x − 1| i.e. a = 2, b = 1, c = −1
B5(ii) y = √3 tan x + 1 i.e. a = √3, b = 1, c = 1 180 180 Period = = = 180° b 1 𝑦
Amplitude = |a| = |2| = 2 Period
=
2π b
=
2π 1
= 2π
𝑦 3 1
𝑦1 = |2 cos 𝑥 − 1| 2𝜋
𝑂
y = √3 tan x + 1
𝑥
y2 = −
2x 3π
1
+1
𝑂
✓
150°
330°
𝑥 = 90°
Workings Domain 0 < x < 2π Axis with y = −1 ± 2 Amplitude Shape +cos 2π−0 Cycle =1
360°
180°
𝑥
𝑥 = 270°
✓
Workings Domain 0° ≤ x ≤ 360° Axis with y=1 Amplitude Shape +tan 360−0 Cycle =2
2π
180
B4(ii) −2x + 3π = 3π|2 cos x − 1| −
2x 3π
+1
= |2 cos x − 1| B5(iii) √3 tan x + 1 ≥ 0
y2 = y1 ⇒ 3 sol ✓
0° ≤ x < 90° or 150° ≤ x < 270° or 330° ≤ x ≤ 360° ✓
B5(i) √3 tan x + 1 = 0 tan x
=−
1 √3
α = 30° ⇒ 2nd or 4th quadrant 0° ≤ x ≤ 360° x = 180 − α, 360 − α = 150°, 330° ✓
© Daniel & Samuel A-math tuition 📞9133 9982
S α T
A α C
sleightofmath.com
324
A math 360 sol (unofficial)
Rev Ex 11
B6(i) y = cos 2x i.e. a = 1, b = 2, c = 0
y
Amplitude = |a| = |1| = 1 Period
=
2π b
=
2π 2
=π
2 1 −1 𝑂 −2
𝜋
2𝜋
3
3
𝑦 = cos 2𝑥 x 𝜋 𝑦 = 2 sin 6𝑥
y = 2 sin 6x i.e. a = 2, b = 6, c = 0 Amplitude = |a| = |2| = 2 Period
=
2π b
=
2π 6
=
π 3
Workings y1 = cos 2x Domain 0≤x≤π Axis with y=0±2 Amplitude Shape +sin π−0 Cycle =3 π 3
y2 = 2 sin 6x Domain 0≤x≤π Axis with y=0±1 Amplitude Shape +cos π−0 Cycle =1 π
B6(ii) cos 2x = 2 sin 6x [Symmetry] π x = is vertical line of symmetry for y = cos 2x 2
π
( , 0) is point of symmetry for y = cos 2x 2
π
⇒x=α+( )✓ 2
Period of collective graph = π ⇒ x = α + (π) ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
325
A math 360 sol (unofficial)
Ex 12.1 2(i)
Ex 12.1 1(a)
sec x cos x =
1 cos x
1(d)
sin x cot x = sin x (
cos x sin x
3rd quadrant: y = −1, r = 3,
)
x
x = −√32 − (−1)2 = −√8 4th quadrant: y2 = −1, r2 = 3,
sin x (1−cos x)(1+cos x)
sec θ =
=
=
sin x 1−cos2 x sin x
=
sin2 x 1
=
sin x
sin θ = −
2(ii)
cos θ = 1 − sin2 θ
=±
sec θ = ±
tan θ =
1
x r
1
2 √1−(−1) 3
=±
1 8 √ 9
1
= ± √8 = ± 3
3 √8
✓
3(a)
3 √8 3 √8
or
1 √8 3
3 √8
✓
=
= sin θ ⋅ sec θ 1
3
3 1
√8
√8
x −1 −√8 1
=(
cos θ
= (− ) ⋅ (±
y −1
or
√8
1 cos x
√8
✓
LHS = sec x
sin θ
=±
or
−√8 3
=±
√1−sin2 θ 1
tan θ = =
cos θ = ±√1 − sin2 θ cos θ
-1
3
2
1
3
1
=±
1
3
cos θ 1
=− Method 1 (non-graphical)
-1
x2
x2 = √32 — 12 = √8 Values
= csc x ✓
2(ii)
r
(sec x + 1)(sec x − 1) = sec 2 x −1 = (tan2 x + 1) −1 = tan2 x ✓
=
2(i)
y
3
⇒ 3rd or 4th quadrant
= cos x ✓ 1(c)
1
sin θ = − = < 0
cos x
=1✓ 1(b)
Method 2 (graphical) Coordinates
sin x ) sin x
sin x cos x
= tan x
)
= RHS [proven] ✓
✓ 3(b)
LHS = cos x tan x = cos x (
sin x cos x
)
= sin x = RHS [proven] ✓ 3(c)
LHS = =
cos2 x+sin2 x 1−cos2 x 1 sin2 x
= csc 2 x = RHS [proven] ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
326
A math 360 sol (unofficial) 3(d)
3(e)
Ex 12.1
LHS = 2 + 3 sin2 x = 2 + 3(1 − cos 2 x) = 2 + (3 − 3 cos 2 x) = 5 − 3 cos 2 x = RHS [proven] ✓
6(ii)
=
1 cos2 x
)
sin2 x cos2 x 2
=
1 sin2 x 1
(
sin x
sin x
5
)
sin θ (
−
7(c)
2+2 cos θ −2+2 cos θ
1 cos2 x
)
LHS
= (1 + =(
)
sin x 1 cos x 1 ) × (1 + ) − + cos x cos x sin x sin x
cos x+sin x−1 cos x
)
×(
sin x+cos x+1 sin x
=
(sin x + cos x)2 − 12 sin x cos x
= 4 cot θ [shown] ✓
=
sin2 x + 2 sin x cos x + cos 2 x − 1 sin x cos x
x = 3 cos θ x cos θ =
=
= sin θ ( =
sin2 θ
)
4 cos θ sin θ
3
y
= 2 tan θ
y
=2
−(1)
sin θ
1 2
−(2)
=2 = RHS [proven] ✓
sub (1) into (2): 1
x
2 xy
3
)
2 sin x cos x + sin2 x + cos 2 x − 1 sin x cos x 2 sin x cos x + (1) −1 = sin x cos x 2 sin x cos x = sin x cos x
cos θ
sin θ = y cos θ
6
= (1 + tan x − sec x) × (1 + cot x + csc x)
)
1−cos2 θ
xy
= tan2 x = RHS [proven] ✓
1−cos θ 1+cos θ 2(1+cos θ)−2(1−cos θ)
= sin θ (
6(i)
2
)
LHS = sin2 x + tan2 x sin2 x = sin2 x (1 + tan2 x) = sin2 x (sec 2 x) = sin2 x (
LHS = (sin θ + cos θ)2 = sin2 θ + 2 sin θ cos θ + cos 2 θ = sin2 θ + cos 2 θ +2 sin θ cos θ =1 +2 sin θ cos θ = RHS [shown] ✓ 2
6
7(b)
= csc x cot x = RHS [proven] ✓ 4
xy 2
LHS = sin4 x − cos 4 x = (sin2 x)2 − (cos 2 x)2 = (sin2 x + cos 2 x) (sin2 x − cos 2 x) (sin2 x − cos 2 x) =1 = sin2 x − cos 2 x = RHS [proven] ✓
) cos x cos x
+ (6 ⋅
7(a)
LHS = (1 + cot 2 x) cos x = (csc 2 x) cos x =(
= 4x 2
= 4(9 cos 2 θ) +36 sin2 θ = 36 cos 2 θ +36 sin2 θ = 36(sin2 θ + cos 2 θ) = 36 ✓
= tan x = RHS [proven] ✓ 3(f)
+x 2 y 2 +(xy)2
= 4(3 cos θ)2 +(6 sin θ)2 ∵ x = 3 cos θ , sin θ =
LHS = sin2 x (1 + tan2 x) = sin2 x (sec 2 x) = sin2 x (
4x 2 = 4x 2
sin θ = y ( ) sin θ =
6
✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
327
A math 360 sol (unofficial) 7(e)
Ex 12.1
LHS =
8(ii)
LHS = csc 2 x + sec 2 x
3 − 6 cos 2 x sin x − cos x
= =
3(sin2 x + cos 2 x) − 6 cos 2 x = sin x − cos x 2
2
=
2
=
3 sin x + 3 cos x − 6 cos x sin x − cos x
=
3 sin2 x − 3 cos 2 x sin x − cos x
1 sin2 x
+
1 cos2 x
cos2 x+sin2 x sin2 x cos2 x 1 sin2 x cos2 x
= csc 2 x sec 2 x = RHS [proven] ✓ 8(iii)
3(sin2 x − cos 2 x) = sin x − cos x 3(sin x + cos x)(sin x − cos x) = sin x − cos x
LHS = (cot x + tan x)2 = (csc x sec x)2 = csc 2 x sec 2 x = csc 2 x + sec 2 x
= 3(sin x + cos x)
= RHS [deduced] ✓
= RHS [proven] ✓ 9 7(f)
LHS 1
= 1−
1
1 1−
1−
1 1− − tan2 x =
cot x)
1 1 − (tan2 x + 1)
1
=
1
1
1−
1 1− 1 − sec 2 x
=
1
=
1−
LHS = (sec x + tan x)(sec x − tan x) +(csc x + cot x)(csc x −
1 1 + cot 2 x
= sec 2 x − tan2 x
+ csc 2 x − cot 2 x
= (tan2 x + 1) − tan2 x
+(cot 2 x + 1) − cot 2 x
=1
+1
=2 1
1 1− csc 2 x 1 1 = = = sec 2 x = RHS 2 1 − sin x cos 2 x
= RHS [proven] ✓ 10
LHS = (sin α + cos β)2 − (sin α + cos β)(sin α − cos β) = (sin α + cos β)[(sin α + cos β) − (sin α − cos β)]
[proven] ✓
= (sin α + cos β)(2 cos β) 8(i)
LHS = cot x + tan x = = =
cos x sin x
+
= 2 cos β (sin α + cos β)
sin x
= RHS [proven] ✓
cos x
cos2 x+sin2 x sin x cos x 1 sin x cos x
= csc x sec x = RHS [proven] ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
328
A math 360 sol (unofficial) 11
Ex 12.1
sin x + sin y = a sin y = a − sin x
13 −(1)
cos x + cos y = a cos y = a − cos x
1−sin x
LHS = √
1+sin x 1−sin x
=√
1+sin x
−(2)
(1)2 + (2)2 : sin2 y + cos 2 y = (a − sin x)2 +(a − cos x)2 2 2 1 = (a − 2a sin x + sin x) +(a2 − 2a cos x + cos 2 x) 1 = 2a2 − 2a(sin x + cos x) + sin2 + cos 2 x 1 = 2a2 − 2a(sin x + cos x) +1 2a(sin x + cos x) = 2a2 sin x + cos x = a ✓ k= 1 k
= = = = =
1−sin x 1−sin x
(1−sin x)2
=√
12(i)
×
1−sin2 x
(1−sin x)2
=√ =
cos2 x
1−sin x cos x
∵ (1 − sin x) > 0 [ ] cos x > 0 for acute x
= sec x − tan x = RHS [proven] ✓ Different restriction results in different output of trigo f(x) ✓
1+sin x cos x
13(i)
cos x 1+sin x cos x 1+sin x
⋅
√
1−sin x 1+sin x
1−sin x 1−sin x
cos x(1−sin x)
=√
1 − sin x 1 − sin x × 1 + sin x 1 − sin x
=√
(1 − sin x)2 1 − sin2 x
=√
(1 − sin x)2 cos 2 x
1−sin2 x cos x(1−sin x) cos2 x 1−sin x cos x
[proven] ✓
12(ii) k + 1 = 1+sin x + 1−sin x k k2 +1 k
=
cos x =
cos x 2
cos x 2k k2 +1
Put cos x = 2k2 k2 +1
2k k2 +1
into k =
= 1 + sin x
= = =
=
✓
− sin x = 1 − sin x
1 − sin x − cos x ∵ x is obtuse, (1 − sin x) > 0, cos x < 0 = − sec x + tan x = tan x − sec x ✓
cos x
1+sin x cos x
, 13(ii) √
2k2 k2 +1
2k2 k2 +1 2k2 k2 +1 k2 −1 k2 +1
={
−1 −
k2 +1
1 − sin x 1 + sin x
14
k2 +1
✓
sec x − tan x , for x in 1st or 4th quadrant ✓ tan x − sec x for x in 2nd or 3rd quadrant
4 sin A cos A +(cos 2 A − 10 sin A cos A + 25 sin2 A) +9 cos 2 A + 6 sin A cos A + sin2 A = 10 cos 2 A + 26 sin2 A = 10 cos 2 A + 26(1 − cos 2 A) = 26 − 16 cos 2 A = p cos 2 A + q ⇒ p = 26 ✓ ⇒ q = −16 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
329
A math 360 sol (unofficial)
Ex 12.2 2(b)
Ex 12.2 1(a)
5 cos x + 2 sin x = 0 2 sin x = −5 cos x tan x
=−
1
5 2
90° 180° 270° 360°
S α
=
3
S α T
0° < x < 360° x = α, 180 + α ≈ 53.1°, 233.1° ✓
A α C
=−
3(b)
5
S α T
0° < x < 360° x = 180 − α, 360 − α = 149.0°, 329.0° ✓
A α C
𝑥
S
A
α α T C x = 180 + α, 360 − α = 191.5°, 348.5° ✓
A
90° 180° 270° 360°
−1
x = 270° ✓
2 tan2 x − 3 tan x − 2 = 0 (2 tan x + 1)(tan x − 2) = 0 1 tan x = − or tan x = 2 2 α ≈ 63.4° α ≈ 26.6° ⇒ 1st or 3rd quadrant ⇒ 2nd or 4th quadrant 0° ≤ x ≤ 360° S α
sin x − sin x tan x = 0 sin x (1 − tan x) = 0 sin x = 0 or tan x = 1 𝑦 α = 45° 1 ⇒ 1st or 3rd quadrant 90° 180° 270° 360°
0° < x < 360°
α α T C x = α, 180 − α = 30°, 150° ✓
3
α ≈ 41.0° ⇒ 2nd or 4th quadrant
α ≈ 11.5° ⇒ 3rd or 4th quadrant
2 sin2 x + sin x − 1 =0 (2 sin x − 1)(sin x + 1) = 0 1 sin x = or sin x = −1 2 0° ≤ x ≤ 360° α = 30° 𝑦 ⇒ 1st or 2nd quadrant 1 0° ≤ x ≤ 360° 𝑥 S
3 cos x + 7 sin x = 2 sin x 5 sin x = −3 cos x tan x
2(a)
3(a)
4
α ≈ 53.1° ⇒ 1st or 3rd quadrant
1(c)
0° < x < 360° x = 180° ✓
α C
3(sin x − cos x) = cos x 3 sin x − 3 cos x = cos x 3 sin x = 4 cos x
𝑥
−1
A
T
0° < x < 360° x = 180 − α, 360 − α ≈ 111.8°, 291.8° ✓
tan x
5
𝑦
α ≈ 68.2° ⇒ 2nd or 4th quadrant
1(b)
tan x + 5 tan x sin x = 0 tan x (1 + 5 sin x) = 0 tan x = 0 or sin x = − 1
A
α T C x = 180 − α, 360 − α = 153.4°, 333.4° ✓
0° ≤ x ≤ 360° S
A α
α T C x = α, 180 + α = 63.4°, 243.4° ✓
0° < x < 360°
−1
0° < x < 360° x = 180° ✓
S
A α
α T C x = α, 180 + α = 45°, 225° ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
330
A math 360 sol (unofficial) 3(c)
Ex 12.2
6 cos 2 x − 5 cos x − 1 =0 (6 cos x + 1)(cos x − 1) = 0 1 cos x = − or cos x = 1
4(a)
4 sin x cos x − 3 sin x = 0 sin x (4 cos x − 3) = 0 3 sin x = 0 or cos x = 4
6
0 ≤ x ≤ 2π
α ≈ 80.4° 0° ≤ x ≤ 360° ⇒ 2nd or 3rd quadrant
α ≈ 0.723 ⇒ 1st or 4th quadrant
𝑦
𝑦
1
0 ≤ x ≤ 2π
1
0° ≤ x ≤ 360° S A α α T C x = 180 − α, 180 + α = 99.6°, 260.4° ✓ 3(d)
90° 180° 270° 360°
𝑥
90° 180° 270° 360°
1 3
−1
x = 0, π, 2π ✓
x = 0°, 360° ✓
4(b)
or sec x = 2
cos x = 3 (no solution)
S
−1
3 sec 2 x − 7 sec x + 2 = 0 (3 sec x − 1)(sec x − 2) = 0 sec x =
𝑥
cos x =
1
3 sin2 x + sin x cos x sin x (3 sin x + cos x) sin x = 0 or 0 ≤ x ≤ 2π 𝑦
2
1
α = 60° ⇒ 1st or 4th quadrant
90° 180° 270° 360°
𝑥
−1
x = 0, π, 2π ✓
0° ≤ x ≤ 360° S
A α α T C x = α, 360 − α = 60°, 300° ✓ 3(e)
𝑥
−1
x = 0°, 180°, 360° ✓
© Daniel & Samuel A-math tuition 📞9133 9982
4(c)
0° ≤ x ≤ 360° S
=0 =0 3 sin x = − cos x tan x = −
1 3
α ≈ 0.322 ⇒ 2nd or 4th quadrant 0 ≤ x ≤ 2π S α
A
α T C x = π − α, 2π − α = 2.82,5.96 ✓
7 sin3 x + sin2 x = 0 sin2 x (7 sin x + 1) = 0 sin x = 0 or sin x = − 1 7 0° ≤ x ≤ 360° α ≈ 8.2° 𝑦 ⇒ 3rd or 4th quadrant 1 90° 180° 270° 360°
A α α T C x = α, 2π − α = 0.723,5.56 ✓
2 csc 2 x − 7 csc x − 4 = 0 (2 csc x + 1)(csc x − 4) = 0 1 csc x = 4 csc x = − or 2
sin x = −2 (no solution)
sin x =
1 4
α ≈ 0.253 ⇒ 1st or 2nd quadrant 0 ≤ x ≤ 2π
A
S
α α T C x = 180 + α, 360 − α ≈ 188.2°, 351.8° ✓
A
α α T C x = α, π − α = 0.253, 2.89 ✓
sleightofmath.com
331
A math 360 sol (unofficial) 4(d)
Ex 12.2
2 cos 2 x − cos x − 1 = 0 (2 cos x + 1)(cos x − 1) = 0 1 cos x = − or cos x = 1 α=
π 3
0 ≤ x ≤ 2π 1
90° 180° 270° 360°
S A α α T C x = π − α, π + α
4(e)
2π 4π 3
,
3
S
A α
α T
C
x − 60° = α, 180 + α = 30, 210 x = 90°, 270° ✓
x = 0, 2π ✓ 5(c)
✓
3 sin 2x + 2 = 0 sin 2x
2
=−
2 3
α ≈ 41.8° ⇒ 3rd or 4th quadrant
2 cos x − 3 cos x sin x = 0 cos x (2 − 3 sin2 x) = 0 cos x = 0 or 3 sin2 x = 2 0 ≤ x ≤ 2π
0° < x < 360° 0° < 2x < 720°
2 3 2
S
A
α T
α C
sin x = ±√
𝑦
3
1
90° 180° 270° 360° −1
π 3π
x= , 2
5(a)
𝑥
−1
sin2 x =
1 √3
0° < x < 360° −60° < x − 60° < 300°
𝑦
0 ≤ x ≤ 2π
tan(x − 60°) =
α = 30° ⇒ 1st or 3rd quadrant
2
⇒ 2nd or 3rd quadrant
=
5(b)
2
✓
𝑥
2x = 180 + α, 360 − α, 540 + α, 720 − α = 221.8°, 318.2°, 581.8°, 678.2° x = 110.9°, 159.1°, 290.9°, 339.1° ✓
α ≈ 0.955 ⇒ 1st, 2nd, 3rd or 4th quad. 0 ≤ x ≤ 2π
S A α α α α T C x = α, π − α, π + α, 2π − α = 0.955,2.19,4.10,5.33 ✓
cos 2x = 0.5 α = 60° ⇒ 1st or 4th quadrant
S
5(d)
S
0° < x < 360° −40° < 2x − 40° < 680°
T
A α α C
2x − 40 = −α, α, 360 − α, 360 + α, 720 − α = −36.9°, 36.9°, 323.1°, 406.9°, 683.1° x ≈ 1.6°, 38.4°, 181.6°, 218.4° ✓
A α α C
T 0° < x < 360° 0° < 2x < 720° 2x = α, 360 − α, 360 + α, 720 − α = 60°, 300°, 420°, 660° x = 30°, 150°, 210°, 330° ✓
cos(2x − 40°) = 0.8 α ≈ 36.9° ⇒ 1st or 4th quadrant
6(a)
10 sin 2x = 3 sin 2x
=
3 10
α ≈ 0.305 ⇒ 1st or 2nd quadrant 0 < x < 2π 0 < 2x < 4π
S
A
α T
α C
2x = α, π − α, 2π + α, 3π − α = 0.305, 2.84, 6.59, 9.12 x = 0.152, 1.42, 3.29, 4.56 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
332
A math 360 sol (unofficial) 6(b)
Ex 12.2
cot 2x = −2 tan 2x = −
7
2
R = 55 64 sin 2θ = 55
α ≈ 0.463 ⇒ 2nd or 4th quadrant
S α
0 < x < 2π 0 < 2x < 4π
sin 2θ
A α C
T
1
3
2
2
tan ( x) =
α ≈ 0.983 ⇒ 1st or 3rd quadrant S 0 < x < 2π
α T
1
0< x<π 2
1 2
x 6(d)
A α
=−
A
α T
α C
3 sin x + 2 cos x = 2(sin x + 3 cos x) 3 sin x + 2 cos x = 2 sin x + 6 cos x sin x = 4 cos x tan x =4 α ≈ 76.0° ⇒ 1st or 3rd quadrant S A α α 0° < x < 360° T C x = α, 180 + α ≈ 76.0°, 256.0° ✓
8(b)
sin x−3 cos x
C
5 4 4 5
S α α T
2x = π − α, π + α, ≈ 2.50, 3.79 x ≈ 1.25, 1.89
© Daniel & Samuel A-math tuition 📞9133 9982
2 sin x+cos x
=2
sin x − 3 cos x = 4 sin x + 2 cos x 3 sin x = −5 cos x
α ≈ 0.644 ⇒ 2nd or 3rd quadrant 0 < x < 2π 0 < 2x < 4π
S
8(a)
4 sec 2x + 5 = 0 cos 2x
64
2θ = α, 180 − α ≈ 59.2°, 120.8° θ ≈ 29.6°, 60.4° ✓
≈ 0.983 ≈ 1.97 ✓
=−
55
0 < θ < 90° 0 < 2θ < 180°
x = α, π + α
sec 2x
=
α ≈ 59.2° ⇒ 1st or 2nd quadrant
2x = π − α, 2π − α, 3π − α, 4π − α = 2.68, 5.81, 8.96, 12.1 x = 1.34,2.91, 4.48, 6.05 ✓ 6(c)
R = 64 sin 2θ
1
tan x
A
=−
5 3
α ≈ 59.0° ⇒ 2nd or 4th quadrant
C
0° < x < 360° x = 180 − α, 360 − α ≈ 121.0°, 301.0° ✓
3π − α, 3π + α 8.78, 10.1 4.39, 5.03 ✓
sleightofmath.com
S α T
A α C
333
A math 360 sol (unofficial) 9(a)
2 sin x
Ex 12.2
= tan x
2 sin x
9(d)
sin x
=
cos x
2 sin x cos x = sin x sin x (2 cos x − 1) = 0 sin x = 0 or cos x = 1 2
0° < x < 360° 𝑦
6 − 2 cos 2 x 6 − 2(1 − sin2 x) 6 − 2 + 2 sin2 x 2 sin2 x − 9 sin x + 4 (2 sin x − 1)(sin x − 4) sin x =
α = 60° ⇒ 1st or 4th quadrant
= 9 sin x = 9 sin x = 9 sin x =0 =0 or sin x = 4
1 2
(no solution) α = 30° ⇒ 1st or 2nd quadrant
1
90° 180° 270° 360°
𝑥
S α
−1
A
S
α T C x = α, 360 − α = 60°, 300° ✓
x = 180° ✓
9(b)
0° < x < 360°
0° < x < 360°
sec 2 x = 4 sec x − 3 2 sec x − 4 sec x + 3 =0 (sec x − 1)(sec x − 3) = 0 sec x = 1 or sec x = 3 1 cos x = 1 cos x =
α α T C x = α, 180 − α = 30°, 150° ✓ 9(e)
𝑦
90° 180° 270° 360°
𝑥
−1
⇒ no solution
9(c)
α ≈ 70.5° ⇒ 1st or 4th quadrant
S α
cos x = −
1 2
=
1 cos2 x
1
or
2
cos x = 3
0° < x < 360°
α T C x = α, 360 − α ≈ 70.5°, 289.5° ✓
S
A α α T C x = α, 360 − α = 60°, 300° ✓ 9(f)
2 tan x
= 3 + 2 cot x
2 tan x
= 3 + 2(
1 tan x
)
2
2 tan x = 3 tan x + 2 2 2 tan x − 3 tan x − 2 =0 (2 tan x + 1)(tan x − 2) = 0
or cos x = 3
α = 60° (no solution) ⇒ 2nd or 3rd quadrant
tan x = −
1 2
or tan x = 2
α ≈ 26.6° α ≈ 63.4° ⇒ 2nd or 4th quadrant ⇒ 1st or 3rd quadrant
0° < x < 360°
S A α α T C x = 180 − α, 180 + α = 120°, 240° ✓
© Daniel & Samuel A-math tuition 📞9133 9982
7 cos x − 3
2 sec2 x 2
(no solution) α = 60° ⇒ 1st or 4th quadrant
A
2 sin2 x + 5 cos x + 1 =0 2 2(1 − cos x) + 5 cos x + 1 = 0 2 − 2 cos 2 x + 5 cos x + 1 = 0 −2 cos 2 x + 5 cos x + 3 =0 2 2 cos x − 5 cos x − 3 =0 (2 cos x + 1)(cos x − 3) = 0
=
cos x =
0° < x < 360°
1
7 cos x − 3
7 cos x − 3 = 2 cos 2 x 2 2 cos x − 7 cos x + 3 = 0 (2 cos x − 1)(cos x − 3) = 0
3
0° < x < 360°
A
0° < x < 360° S α
A
α T C x = 180 − α, 360 − α ≈ 153.4°, 333.4° ✓
sleightofmath.com
0° < x < 360° S
A α
α T C x = α, 180 + α ≈ 63.4°, 243.4° ✓
334
A math 360 sol (unofficial)
Ex 12.2
10(a) 2 tan2 x − 1 = 5 sec x 2 2(sec x − 1) −1 = 5 sec x (2 sec 2 x − 2) −1 = 5 sec x 2 2 sec x − 5 sec x − 3 = 0 (2 sec x + 1)(sec x − 3) = 0 sec x = −
1 2
11(b) |2 cos x + 3 sin x| = sin x 2 cos x + 3 sin x = sin x or 2 sin x = −2 cos x tan x = −1 α ≈ 45° ⇒ 2nd or 4th quadrant
or sec x = 3
cos x = −2 (no solution)
cos x =
1
0° < x < 180°
0 ≤ x ≤ 2π
α T C x = 180 − α, 360 − α ≈ 135° ✓
S α
A α α T C x = α, 2π − α = 1.23, 5.05 ✓
⇒ 2nd or 4th quadrant 0 ≤ x ≤ 2π
0 ≤ x ≤ 2π S
A α
α T C x = α, π + α = 0.785, 3.93
© Daniel & Samuel A-math tuition 📞9133 9982
S
S α
A α C
0° < x < 360° 10 ° < 2x + 10° < 730° 0 2x + 10° = 180 − α, 360 − α, 540 − α, 720 − α ≈ 116.6°, 296.6°, 476.6°, 656.6° x
S α α T
A α α C
T
T
2
0° < x < 180° x = α, 180 − α, 180 + α, 360 − α = 55°, 125° ✓
A
α T C x = 180 − α, 360 − α = 153.4° ✓
12(b) cot(2x + 10°) = −0.5 tan(2x + 10°) = −2 α ≈ 63.4° ⇒ 2nd or 4th quadrant
1−sin 20°
α = 55° ⇒ 1st, 2nd, 3rd or 4th quadrant
S α
2x − 20 = −α, α, 360 − α, 360 + α, 720 − α = −18.2°, 18.2°, 341.8°, 378.2°, 701.8° x = 0.9°, 19.1°, 180.9°, 360.9° ✓
11(a) 2 cos 2 x + sin 20° = 1 2 cos 2 x = 1 − sin 20° = ±√
2
0° < x < 180°
A
4
cos x
1
α ≈ 26.6° ⇒ 2nd or 4th quadrant
0° < x < 360° −20° < 2x − 20° < 700°
⇒ 1st or 3rd quadrant
α T C x = π − α, 2π − α = 2.82, 5.96 ✓
=−
12(a) cos(2x − 20°) = 0.95 α ≈ 18.2° ⇒ 1st or 4th quadrant
10(b) csc 2 x +2 cot x = 4 2 (cot x + 1) + 2 cot x = 4 cot 2 x + 2 cot x − 3 = 0 (cot x + 3)(cot x − 1) = 0 cot x = −3 or cot x = 1 1 tan x = 1 tan x = − 3 π α= α ≈ 0.322
A
tan x
3
α ≈ 1.23 ⇒ 1st or 4th quadrant
S
S α
2 cos x + 3 sin x = − sin x 4 sin x = −2 cos x
≈ 53.3°, 143.3°,
233.3°, 323.3° ✓
A α α C
sleightofmath.com
335
A math 360 sol (unofficial)
Ex 12.2
12(c) csc(2x + 60°) = 4 sin(2x + 60°) =
13(b) sin (3x + 5) = √3 2
1
α ≈ 14.5° ⇒ 1st or 2nd quadrant 0° < x < 360° 60° < 2x + 60° < 780°
6
S
A
α T
α C
0
5
<
6
0.833 < 2x + 60° = α, 180 − α, 360 + α, 540 − α, 720 + α, 900 − α = 14.5, 165.5, 374.5, 525.5 734.5°, 885.5° x ≈ 52.8°, 157.24°, 232.8°, 337.2° ✓
3x 2
x
S α T
0° < x < 360° −60° < 2x − 60° < 660° 2x − 60° = −α, 180 − α, 360 − α,
6
2
+ +
6 5 6
< 3π +
A
α T
α C
5 6
< 10.258
= α, π − α, 2π + α, 3π − α,
4π + α,
= 0.448,2.69, 6.73, 8.97, = 1.24, 3.93, 5.43 ✓
13.0
=−
A
sin(2x − 3)
=−
α C
α ≈ 0.216 ⇒ 3rd or 4th quadrant
14 3 3 14
0
495, 675
S
A
α T
α C
2x − 3 = −2π − α, −π + α, −α, 3π + α, 4π − α,
277.5° ✓
x = 7.5°, 97.5°, 187.5° 13(a) cot(3x + 0.5) = 3
π + α, 2π − α,
= −6.50 −2.93, −0.216, 3.36, 6.06, 9.64, 12.4
1 3
α ≈ 0.22 ⇒ 1st or 3rd quadrant 0
S α T
A α
x
C
3x + 0.5 = α, π + α, 2π + α, 3π + α, 6π + α
x ≈ 0.988, 6.22 ✓
5
2 3x
< 2π 5
csc(2x − 3)
540 − α, 720 − α,
= −45, 135,315,
≈ 0.322,3.46, 19.2
+
3x
S
13(c) 3 csc(2x − 3) + 15 = 1
12(d) tan(2x − 60°) = −1 α = 45° ⇒ 2nd or 4th quadrant
tan(3x + 0.5) =
4
α ≈ 0.448 ⇒ 1st or 2nd quadrant
4
14(a) sin(3x + 70°) = 0.2 α ≈ 11.5° ⇒ 1st or 2nd quadrant
4π + α, 5π + α,
6.60, 9.75,
12.88, 16.03,
2.04, 3.08,
4.13, 5.17
© Daniel & Samuel A-math tuition 📞9133 9982
= 0.0372, 1.39, 3.18, 4.53 ✓
sleightofmath.com
0° < x < 180° 70° < 3x + 70° < 610° 3x + 70° = α, 180 − α, = 11.5, 168.5, x = 32.8°,
S
A
α T
α C
360 + α, 540 − α 371.5, 528.5 100.5°, 152.8° ✓
336
A math 360 sol (unofficial)
Ex 12.2
14(b) 8 csc 2x cot 2x 8(
1 sin 2x
)(
cos 2x sin 2x
=3 )
=3
8 cos 2x 8 cos 2x 8 cos 2x 3 cos 2 2x + 8 cos 2x − 3 (3 cos 2x − 1)(cos 2x + 3) cos 2x =
1 3
16
= 3 sin2 2x = 3(1 − cos 2 2x) = 3 − 3 cos 2 2x =0 =0
1 cos θ
or cos 2x = −3
2 3
1
y
=4
cos θ
2 2
cos θ =
3
1 4
θ is obtuse ⇒ 2nd quadrant (rej ∵ cos θ < 0 in 2nd quadrant)
θ is obtuse ⇒ 2nd quadrant
0° < x < 180° 0° < 2x < 360°
3 -2
S
A α α T C 2x = α, 360 − α = 70.5, 289.5 x = 35.3°, 144.7° ✓
x = −2, r = 3, y = √(3)2 − (−2)2 = √5 y
tan θ = = x
2 sin x cos x − cos x +4 sin x − 2 (2 = cos x sin x − 1) +2(2 sin x − 1) = (2 sin x − 1)(cos x + 2) ✓
15(ii) 2 sin x cos x − 2 = cos x − 4 sin x 2 sin x cos x − cos x + 4 sin x − 2 = 0 (2 sin x − 1)(cos x + 2) =0 1 cos x = −2 sin x = or 2 (no solution) α = 30° ⇒ 1st or 2nd quadrant −360° ≤ x ≤ 360° S
=−
cos θ = −
(no solution) α ≈ 70.5° ⇒ 1st or 4th quadrant
15(i)
2 tan2 θ = 5 sec θ + 10 2 2(sec θ − 1) = 5 sec θ + 10 2 sec 2 θ − 2 = 5 sec θ + 10 2 2 sec θ − 5 sec θ − 12 = 0 (2 sec θ + 3)(sec θ − 4) = 0 3 sec θ = 4 sec θ = − or
√5 −2
=−
√5 2
✓
17(a) 3 cos 2 2x + 4 sin 2x 3(1 − sin2 2x) + 4 sin 2x 3 − 3 sin2 2x + 4 sin 2x 3 sin2 2x − 4 sin 2x − 2
A
sin 2x = = sin 2x =
=1 =1 =1 =0
4±√(−4)2 −4(3)(−2) 2(3) 4±2√10 6 2+√10 3
≈ 1.72 (no solution)
=
=
4±√40 6
=
4±√4×10 6
2±√10 3
sin 2x =
2−√10 3
≈ −0.387
α ≈ 22.8° ⇒ 3rd or 4th quadrant 0° < x < 360° 0° < 2x < 720°
α α T C x = −360 + α, −180 − α, α, 180 − α
S
A
α α T C 2x = 180 + α, 360 − α, 540 + α, 720 − α
= −330°, −210°, 30°, 150° ✓
≈ 202.8°, 337.2°, 562.8°, 697.2° x
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
≈ 101.4°, 168.6°, 281.4°, 348.6° ✓
337
A math 360 sol (unofficial) 17(b) sec x (tan x − 2) (
1 cos x
Ex 12.2 = 2 csc x
) (tan x − 2)
=
sin x cos x
= 2(
(tan x − 2)
= =
sin x 2
(
cos θ
)
sin x ) cos x
tan x
2±2√3 2
S α
=
2±√12 2
=
2±√4×3 2
( tan x = 1 + √3 α ≈ 69.9° ⇒ 1st or 3rd quadrant 0° < x < 360°
A
S
α T C x = 180 − α, 360 − α = 143.8°, 323.8° ✓
𝑥
π 3π
3x = , 2
2π, x
3π 2
2
,
π 2
+
+ 2π π π
5π
6 2
6
= ,
✓
−(2)
F
20−10 sin A 2 F
) +(
−(3)
10 cos A 2
)
F
+
=1
100 cos2 A
=1
F2
400 − 400 sin A + 100 sin2 A + 100 cos 2 A = F 2
α T C x = α, 180 + α = 69.9°, 249.9° ✓
S α
20−10 sin A
F2
400 − 400 sin A + 100(sin2 A + cos 2 A)
= F2
400 − 400 sin A + 100
= F2
F2
= 500 − 400 sin A
F = √500 − 400 sin A or F = −√500 − 400 sin A ✓ (NA) 18(ii)
tan θ =
sin θ cos θ
=
20−10 sin A ) F 10 cos A ( ) F
(
=
20−10 sin A 10 cos A
=
2−sin A cos A
[shown] ✓ 18(iii) Put A = 30° in F = √500 − 400 sin A,
0≤x≤π 0 ≤ 3x ≤ 3π
−1
=
400−400 sin A+100 sin2 A
A α
17(c) sin 3x (4 sin 3x − 3 cos 3x) =4 2 4 sin 3x − 3 sin 3x cos 3x =4 2 4(1 − cos 3x) − 3 sin 3x cos 3x = 4 (4 − 4 cos 2 3x) − 3 sin 3x cos 3x = 4 −4 cos 2 3x − 3 sin 3x cos 3x =0 cos 3x (4 cos 3x + 3 sin 3x) =0 cos 3x = 0 3 sin 3x = −4 cos 3x 4 0≤x≤π tan 3x = − 3 0 ≤ 3x ≤ 3π α ≈ 0.927 𝑦 ⇒ 2nd or 4th quadrant 1 90° 180° 270° 360°
−(1)
sin2 θ + cos 2 θ = 1 sub (1) & (2) into (3):
=
= 1 ± √3
tan x = 1 − √3 α ≈ 36.2° ⇒ 2nd or 4th quadrant 0° < x < 360°
10 cos A
sin θ
tan x − 2 tan x =2 2 tan x − 2 tan x − 2 = 0 2(1)
=
10 sin A + F sin θ = 20 F sin θ = 20 − 10 sin A
2
2±√(−2)2 −4(1)(−2)
= cos θ
cos A
2
tan x =
10 cos A = F cos θ 10
(tan x − 2)
tan x − 2
18(i)
2
F|A=30° = √500 − 400 sin 30° 1 = √500 − 400 ( ) 2 = √500 − 200 = √300 = 10√3 ✓ Put A = 30° in tan θ = tan θ =
A
α T C 3x = π − α, 2π − α, 3π − α
2−sin 30° cos 30°
=
1 2 √3 2
2−
2−sin A cos A
=
3 2 √3 2
= √3
⇒ θ = 60°
= 2.21, 5.36, 8.50 x
© Daniel & Samuel A-math tuition 📞9133 9982
= 0.738, 1.79, 2.83 ✓
sleightofmath.com
338
A math 360 sol (unofficial)
Rev Ex 12 A2(a) 5 sin2 x − 8 sin x cos x = 0 sin x (5 sin x − 8 cos x) = 0 sin x = 0 or 5 sin x = 8 cos x
Rev Ex 12 A1(a) x = a sin θ −(1) (i) a2 − x 2 −(2) sub (1) into (2): = a2 − (a sin θ)2 = a2 − a2 sin2 θ = a2 (1 − sin2 θ) = a2 cos 2 θ ✓
𝑦
tan x =
1
90° 180° 270° 360°
𝑥
−1
0° ≤ x ≤ 360° x = 0°, 180°, 360° ✓
3
= (1 −
A2(b) 5 cot 2 x
)
5(
3 sin2 θ)2
= = cos 3 θ ✓
A1(b) Coordinates of 𝛉 (i) √2 cos θ = − sin θ y tan θ = −√2 = x
θ is obtuse ⇒ 2nd quadrant y = −√2, x = 1, 2
=
1 −1 ( ) √3
cos2 x sin2 x 2
S
-1
+7
= 11 csc x
) +7
=
11 sin x
= −√3 ✓
A
α α T C x = α, 180 − α = 30°, 150° ✓
Trigonometric ratio tan(−θ) = − tan θ = −(−√2) = √2 ✓ x r
A α
0° ≤ x ≤ 360°
𝑟
√2
r = √(√2) + (−1)2 = √3
1
S
5 cos x +7 sin2 x = 11 sin x 2 2 5(1 − sin x) +7 sin x= 11 sin x 5 − 5 sin2 x +7 sin2 x = 11 sin x 2 sin2 x − 11 sin x + 5 = 0 (2 sin x − 1)(sin x − 5) = 0 1 sin x = 5 sin x = or 2 (no solution) α = 30° ⇒ 1st or 2nd quadrant
3 (cos 2 θ)2
A1(b) sec θ = 1 = cos θ (ii)
0° ≤ x ≤ 360°
α T C x = α, 180 + α ≈ 58.0°, 238.0° ✓
(a sin θ)2 2 a2
5
α ≈ 58.0° ⇒ 1st or 3rd quadrant
3 A1(a) x2 2 (1 − 2 ) −(3) (ii) a sub (1) into (3):
= (1 −
8
A2(c) 1 + 2 cos (3 x + 75°) = 0 2
3
cos ( x + 75°) 2
1 1 A1(b) csc(90° − θ) = = = −√3 ✓ sin(90°−θ) cos θ (iii)
=−
1 2
α = 60° ⇒ 2nd or 3rd quadrant 0° ≤ x
≤ 360°
S α α T
A C
3
75° ≤ x + 75° ≤ 615° 2
3 2
x
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
x + 75° = 180 − α, 180 + α, 540 − α, 540 + α = 120, 240, = 30°, 110°,
480, 600 270°, 350° ✓
339
A math 360 sol (unofficial)
Rev Ex 12
A3(a) 10 cos 3x + 8 = 0 cos 3x
=−
A4(b) Prove:
4
S α α T
LHS =
A5(i)
C =
2
= =
3x−2 4 3x−2 4
x
< 14.5
1 cos θ 1
⋅ (
1 1
sin θ cos θ 1 sin θ 1 sin θ
⋅ ⋅
−
sin θ
1−cot x 1+cot x
S
A
α T
α C
= π + α, 2π − α, 3π + α, 4π − α,
5π + α
≈ 3.87, 5.55, ≈ 16.4 ✓
16.4
sin θ
− cos θ)
1−cos2 θ cos θ sin2 θ cos θ
sin θ cos θ
= tan θ
10.2, 11.8,
S
A α
0° < x < 360° 0° < 2x < 720°
α T
2x = α, 180 + α, = 45, 225,
360 + α, 540 + α 405, 585
C
x = 22.5°, 112.5°, 202.5°, 292.5° A4(a) Prove:
LHS =
1−csc x cot x
1−csc x cot x
= RHS
cos θ
A5(ii) sec 2x csc 2x − cot 2x = 1 tan 2x =1 α ≈ 45° ⇒ 1st or 3rd quadrant
3
< 20
=
= RHS [proven] ✓
α ≈ 0.730 ⇒ 3rd or 4th quadrant x
=
Prove: sec θ csc θ − cot θ = tan θ
=
A3(c) 3 sin (3x−2) = −2 =−
tan x+1
tan x 1 − tan x tan x tan x 1 + tan x tan x
LHS = sec θ csc θ − cot θ
A
2x − 70° = 180 − α, 180 + α, 1260 − α, 1260 + α, 1620 − α, 1620 + α = 110,250, 1190, 1330, 1550, 1690 x = 700° ✓
)
tan x−1
LHS = ln(sec x + tan x)(sec x − tan x) = ln(sec 2 x − tan2 x) = ln[(tan2 x + 1) − tan2 x] = ln 1 =0 = RHS [proven] ✓
=
4
1+cot x
A4(c) Prove: ln(sec x + tan x) + ln(sec x − tan x) = 0
C
A3(b) cos(2x − 70°) = sin 200° = − sin 20° = − cos 70° α = 70° S α ⇒ 2nd or 3rd quadrant α T x < 800° 2x − 70° < 1530°
sin (
1−cot x
[proven] ✓
A
3x = π − α, π + α, 3π − α, 3π + α, 5π − α, 5π + α, 7π − α = 2.50, 3.79, 8.78, 10.1, 15.1, 16.4, 21.3 x ≈ 7.12 ✓
4 3x−2
=
tan x+1
5
α ≈ 0.644 ⇒ 2nd or 3rd quadrant x >6 3x > 18
tan x−1
✓
= tan x − sec x
=
1 sin x cos x sin x
1−
=
sin x−1 sin x cos x sin x
=
sin x−1 cos x
= tan x −
sec x = RHS [proven] ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
340
A math 360 sol (unofficial) A6(i)
Rev Ex 12
1st curve y = 4 cos 3x Point P y|x=0 = 4 cos[3(0)] ⇒ P(0,4) ✓
=4
Intersection point At intersection point, y = 4 cos 3x cuts x − axis (y = 0) 4 cos 3x = 0 cos 3x = 0
x
𝑦
π
3x =
2 π
=
1
6
90° 180° 270° 360°
π
⇒ ( , 0)
𝑥
−1
6
2nd curve y = 2 sin x + k π
At ( , 0), 6
π
2 sin ( ) + k = 0 6
1
2( ) + k = 0 2
k
= −1
∴ y = 2 sin x − 1 Point Q π At max, x = y|
π x= 2
2 π
= 2 sin − 1 2
= 2(1) − 1 =1 π ⇒ Q ( , 1) 2
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
341
A math 360 sol (unofficial)
Rev Ex 12
A6(ii) y1 = 4 cos 3x i.e. a = 4, b = 3, c = 0
𝑦
Amplitude = |a| = |4| = 4 Period
=
360 b
=
360 3
= 120°
y2 = 2 sin x − 1 i.e. a = 2, b = 1, c = −1
4 1𝑂
180° 𝑥 𝑦 = 2 sin 𝑥 − 1 𝑦 = cos 3𝑥
−3 −4
✓
Amplitude = |a| = |2| = 2 Period
=
360 b
=
360 1
= 360° Workings
𝑦1 = 4 cos 3𝑥 Domain 0° ≤ 𝑥 ≤ 180° Axis with 𝑦 =0±4 Amplitude Shape +𝑐𝑜𝑠 180−0 Cycle = 1.5 120
𝑦2 = 2 sin 𝑥 − 1 Domain 0° ≤ 𝑥 ≤ 180° Axis with 𝑦 = −1 ± 2 Amplitude Shape +𝑠𝑖𝑛 180−0 1 Cycle = 360
© Daniel & Samuel A-math tuition 📞9133 9982
2
sleightofmath.com
342
A math 360 sol (unofficial) A7
P = 105 − 20 cos (
Rev Ex 12
16πt
P
7
B1(b) 4 sin x cos x
)
4 sin x cos x
= 100
105 − 20 cos ( −20 cos ( cos (
16πt 7
16πt 7
16πt 7
) = 100
)
= −5
)
=
16πt 7 16πt 7 16πt 7
t
S
> 10 >
160 7
π
sin x = 0 0 ≤ x ≤ 2π
90° 180° 270° 360°
x = 0, π,2π ✓
B1(a) sec 2x = 2 1
cos 2x = 2 π α= 3 ⇒ 1st or 4th quadrant A α α C
T
π 5π
x
3 3 π 5π
= , 6
6
, ,
2π + α, 4π − α 7π 11π
,
3 3 7π 11π 6
,
© Daniel & Samuel A-math tuition 📞9133 9982
6
✓
=±
π
1 2
3
⇒ 1st, 2nd, 3rd or 4th quadrant
π 2π 4π 5π
= , 3
3
,
3
,
3
✓
B1(c) (tan x + 1)(2 tan x − 1) = 5 2 tan2 x + tan x − 1 =5 2 2 tan x + tan x − 6 =0 (2 tan x − 3)(tan x + 2) = 0 3 2
tan x = −2
α ≈ 0.983 α ≈ 1.11 ⇒ 1st or 3rd quadrant⇒ 2nd or 4th quadrant 0 ≤ x ≤ 2π S
= ,
α=
4
S A α α α α T C x = α, π − α, π + α, 2π − α
tan x =
S
1 cos x 1
0 ≤ x ≤ 2π
= α, 2π − α, … 22π + α, 24π − α
2x = α, 2π − α,
𝑥
−1
≈ 1.32,4.97, … 70.4,74.1 ≈ 10.3 ✓
) =0
cos x
> 71.8
0 ≤ x ≤ 2π 0 ≤ 2x ≤ 4π
cos x
cos 2 x =
𝑦
4
sin x cos x 1
4 cos x =
1
A α α C
T
=
sin x (4 cos x −
1
α ≈ 1.318 ⇒ 1st or 4th quadrant t
= tan x
A α
α T C x = α, π + α = 0.983,4.12 ✓
sleightofmath.com
0 ≤ x ≤ 2π S α
A
α T C x = π − α, 2π − α = 2.03,5.18 ✓
343
A math 360 sol (unofficial)
Rev Ex 12
B2(i) x = 4 sin θ + 3 cos θ y = 4 cos θ − 3 sin θ
B3(b) Prove: LHS =
y = 2x 4 cos θ − 3 sin θ = 2(4 sin θ + 3 cos θ) 4 cos θ − 3 sin θ = 8 sin θ + 6 cos θ −11 sin θ = 2 cos θ tan θ
=−
2 11
α ≈ 10.3° ⇒ 2nd or 4th quadrant obtuse ⇒ 90° < θ < 180°
S α T
cos x 1−sin x
A α C
θ = 180 − α, 360 − α = 169.7°, 349.7° ✓ B2(ii) x 2 + y 2 = (4 sin θ + 3 cos θ)2 + (4 cos θ − 3 sin θ)2
−
cos x 1−sin x
1 cos x
−
= tan x
1 cos x
=
cos 2 x − (1 − sin x) (1 − sin x) cos x
=
cos 2 x − 1 + sin x (1 − sin x) cos x
=
(1 − sin2 x) − 1 + sin x (1 − sin x) cos x
=
sin x − sin2 x (1 − sin x) cos x
=
sin x (1 − sin x) (1 − sin x) cos x
=
sin x cos x
= tan x = RHS [proven] ✓
2
2
= (16 sin θ + 24 sin θ cos θ + 9 cos θ) +(16 cos 2 θ − 24 sin θ cos θ + 9 sin2 θ) = 25 sin2 θ + 25 cos 2 θ = 25(sin2 θ + cos 2 θ) = 25 [shown] ✓ B3(a) LHS 2
=
1 − tan x 1 + tan2 x
=
1 − (sec 2 x − 1) sec 2 x
2 − sec 2 x sec 2 x 2 = −1 sec 2 x 2 = −1 1 cos 2 x =
B3(c) LHS = ln(1 + cos x) + ln(1 − cos x) = ln(1 − cos 2 x) = ln(sin2 x) = ln[(sin x)2 ] = 2 ln(sin x) = RHS [proven] ✓ B4(a) tan 5x = 0.6 2
α ≈ 0.540 ⇒ 1st or 3rd quadrant x 5x 2 5x 2
x
>4 > 10
S α T
A α C
= α, π − α 2π + α, 3π − α, 4π + α ≈ 0.540,2.60, 6.82, 8.88, ≈ 5.24 ✓
13.11
= 2 cos 2 x −1 = RHS [proven] ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
344
A math 360 sol (unofficial)
Rev Ex 12
B4(b) csc 2x = 6 sin 2x =
1 6
α ≈ 0.167 ⇒ 1st or 2nd quadrant x <5 2x < 10
2x
α C
α ≈ 63.4° α ≈ 18.4° α = 26.6° ⇒ 2nd or 4th quad.⇒ 2nd or 4th quad.⇒ 1st or 3rd quad.
cos ( )
=−
0° < θ < 180° S α
4 3 3
2x
> 666.67°
3 2x
A C
α, 900 + α ≈ 138.6,221.4, 858.6°, 941.4 x ≈ 1287.9° ✓ 3
0° < θ < 180° S α
A
α T C θ = 180 − α, 360 − α = 161.6° ✓
or tan θ =
2
0° < θ < 180° S
A α
α T C θ = α, 180 + α = 26.6° ✓
=
1 cos 2x − cos 2x 1 + sin 2x
=
(1 + sin 2x) − cos 2 2x cos 2x (1 + sin 2x)
(1 − cos 2 2x) + sin 2x = cos 2x (1 + sin 2x)
= 180° − α, 180° + α, 540 − α, 540 + α,
3
or tan θ = − 3
B6(i) f(x)
4
S α α T
> 1000°
A
α T C θ = 180 − α, 360 − α = 116.6° ✓
α ≈ 41.4° ⇒ 2nd or 3rd quadrant x
1
α T
=−
3
1
tan θ = −2
sec ( ) 3 2x
=2
A
= −4
3
6 tan3 θ + 11 tan2 θ − 3 tan θ
S
B4(c) 3 sec (2x) + 4 = 0 3 sec ( )
= 2 cot θ
6(tan θ)3 + 11(tan θ)2 − 3(tan θ) − 2 = 0
2x = α, π − α, 2π + α, 3π − α, 4π + α = 0.167,2.974, 6.451,9.257 12.734 x ≈ 4.63 ✓ 3 2x
B5(ii) 6 tan2 θ + 11 tan θ − 3
900 − =
sin2 2x + sin 2x cos 2x (1 + sin 2x)
=
sin 2x (sin 2x + 1) cos 2x (1 + sin 2x)
=
sin 2x cos 2x
498.6,581.4
2
B5(i) 6x + 11x − 3x − 2 =0 2 (x + 2)(6x + + ⬚) (x + 2)(6x 2 + − 1) (x + 2)(6x 2 − x − 1) =0 (x + 2)(3x + 1)(2x − 1) = 0 1
1
3
2
= tan 2x [shown] ✓
x = −2 or x = − or x = ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
345
A math 360 sol (unofficial)
Rev Ex 12
B6(ii) y = f(x) = tan 2x i.e. a = 1, b = 2, c = 0 Period
=
180 b
=
B7(i)
πt 2 π i.e. a = 1.6, b = , c = 0 v = 1.6 sin
2
T=
180
2π
= 90°
2
b
=
B7(ii) v
𝑦 𝑦 = 𝑓(𝑥)
90°
𝑂
180° 270°
✓
πt 2
Workings
= 4s ✓
πt 2
πt 2
= 1.3 =
13 16
α ≈ 0.948 ⇒ 1st or 2nd quadrant
𝑥
x = 45° x = 135° x = 225°
π 2
= 1.3
1.6 sin sin
2π
t
= α, π − α ≈ 0.948,2.193 ≈ 0.604, 1.40 ✓
S
A
α T
α C
Domain 0° ≤ x ≤ 270° Axis with y=0 Amplitude Shape +tan Cycle
270−0 90
© Daniel & Samuel A-math tuition 📞9133 9982
=3
sleightofmath.com
346
A math 360 sol (unofficial)
Ex 13.1
Ex 13.1 1(a)
1(b)
1(c)
LHS = sin(90° + θ) = sin 90° cos θ + cos 90° sin θ = (1) cos θ +(0) sin θ = cos θ = RHS [proven] ✓ LHS = cos(90° + θ) = cos 90° cos θ − sin 90° sin θ = (0) cos θ −(1) sin θ = − sin θ = RHS [proven] ✓ LHS = sin (
3π 2 3π
3(a)
sin 15° cos 75° + cos 15° sin 75° = sin(15° + 75°) = sin 90° =1✓
3(b)
sin 50° cos 20° − cos 50° sin 20° = sin(50° − 20°) = sin 30° 1
= ✓ 2
3(c)
= − θ) 3π
= sin ( )
cos θ − cos ( ) sin θ
2
π
2 π
2
2
3(d)
= [− sin ( )] cos θ − cos ( ) sin θ = (−1) cos θ −(0) sin θ = − cos θ = RHS [proven] ✓ 1(d)
=
3(e)
2(c)
2(d)
✓
sin 15° sin 30° − cos 15° cos 30° = −(cos 15° cos 30° − sin 15° sin 30°) = − cos(45°) =−
√2 2
✓
tan 35°+tan 10° 1−tan 35° tan 10°
1+tan 2π tan θ (0)−tan θ 1+(0) tan θ
LHS = sin θ cos 2θ + cos θ sin 2θ = sin(θ + 2θ) = sin 3θ = RHS [proven] ✓ LHS = sin 2θ cos θ − cos 2θ sin θ = sin(2θ − θ) = sin θ = RHS [proven] ✓ Prove: LHS = cos 3θ cos 2θ + sin 3θ sin 2θ = cos(3θ − 2θ) = cos θ = RHS [proven] ✓ Prove: LHS =
tan 3θ−tan 4θ 1+tan 3θ tan 4θ
= tan(3θ − 4θ) = tan(−θ) = − tan θ = RHS [proven] ✓
© Daniel & Samuel A-math tuition 📞9133 9982
= tan(35° + 10°) = tan 45° =1✓
tan 2π−tan θ
3(f)
= − tan θ = RHS [proven] ✓
2(b)
√3 2
LHS = tan(2π − θ) =
2(a)
cos 70° cos 40° + sin 70° sin 40° = cos(70° − 40°) = cos 30°
tan 30°−tan 75° 1+tan 30° tan 75°
= tan(30° − 75°) = tan(−45°) = − tan 45° = −1 ✓
4(a)
cos 75° = cos(30° + 45°) = cos 30° cos 45° − sin 30° sin 45° √2 √3 2 2 √6−√2 ✓ 4
= ( )( ) = 4(b)
2
√2 2
sin 15° = sin(45° − 30°) = sin 45° cos 30° − cos 45° sin 30° √2 √3 2 2 √6−√2 ✓ 4
= ( )( ) = 5(a)
1
−( )( )
√2 2
1
−( )( ) 2
LHS = sin(A + B) + sin(A − B) = sin A cos B + cos A sin B + sin A cos B − cos A sin B = 2 sin A cos B = RHS [proven] ✓
sleightofmath.com
347
A math 360 sol (unofficial)
Ex 13.1
5(b) LHS = cos(A + B) − cos(A − B) = cos A cos B − sin A sin B −(cos A cos B + sin A sin B) = cos A cos B − sin A sin B − cos A cos B − sin A sin B = −2 sin A sin B = RHS [proven] ✓
6(d) LHS
6(a) LHS
=
1 cos(α − β)
1 1 cos α cos β = = cos α cos β + sin α sin β cos α cos β + sin α sin β cos α cos β sec α sec β 1 + tan α tan β
= RHS [proven] ✓
=
sin(A + B) − sin(A − B) cos(A + B) − cos(A − B)
=
(sin A cos B + cos A sin B) − (sin A cos B − cos A sin B) (cos A cos B − sin A sin B) − (cos A cos B + sin A sin B)
sin A cos B + cos A sin B = cos A cos B − sin A sin B 2 cos A sin B = −2 sin A sin B
=
7(a)
LHS = tan(A + 45°) tan(A − 45°) =
− sin A cos B + cos A sin B − cos A cos B − sin A sin B
= =
= − cot A
7(b)
sin(A + B) = cos(A − B)
tan A−(1) 1+tan A(1)
tan2 A−1 1−tan2 A
LHS = tan A + tan B =
sin A cos B + cos A sin B cos A cos B + sin A sin B sin A cos B + cos A sin B cos A cos B = cos A cos B + sin A sin B cos A cos B tan A + tan B = 1 + tan A tan B
7(c) LHS
= RHS [proven] ✓
= cot(x + y)
=
=
=
sin A cos A
+
sin A cos B
sin A cos B +sin A cos A cos A cos B sin(A+B) cos A cos B
= RHS [proven] ✓
=
6(c) LHS
1 tan(x + y)
1 = tan x + tan y 1 − tan x tany
sin(A + B) = sin(A − B) sin A cos B + cos A sin B sin A cos B + cos A sin B cos A cos B = = sin A cos B − cos A sin B sin A cos B − cos A sin B cos A cos B tan A + tan B = tan A − tan B
© Daniel & Samuel A-math tuition 📞9133 9982
⋅
tan A−tan 45° 1+tan A tan 45°
= RHS [proven] ✓
LHS
= RHS [proven] ✓
tan A+(1) 1−tan A(1)
⋅
= −1
= RHS [proven] ✓ 6(b)
tan A+tan 45° 1−tan A tan 45°
1 − tan x tan y 1 − tan x tan y cot x cot y − 1 tan x tan y = = tan x + tan y = tan x + tan y cot y + cot x tan x tan y =
cot x cot y − 1 cot x + cot y
= RHS [proven] ✓
sleightofmath.com
348
A math 360 sol (unofficial)
Ex 13.1
7(d) LHS
9(i)
7
− cos A sin B =
10
− cos A sin B
9(ii)
= RHS [proven] ✓
√2 √2 √2 = 2 [sin A ( ) + cos A ( )] [cos A ( ) − 2 2 2 √2 sin A ( )] 2 2 √2 = 2 ( ) (cos A + sin A) (cos A − sin A) 2 2 2 2
7
∵ sin A cos B =
2
10
1 5
1
= ✓ 5
7
1
10
5
∵ sin A cos B = = 9(iii)
tan A tan B
= = = =
2
= cos A − (1 − cos A) = 2 cos 2 A − 1 = RHS [proven] ✓
9 10
7 10
, cos A sin B =
1 5
✓
sin A cos A sin B cos B
sin A cos A
×
cos B sin B
sin A cos B sin B cos A 7 10 1 5
∵ sin A cos B =
7 10
, cos A sin B =
1 5
7
= ✓ 2
10
LHS = cos(A + B + C) = cos[(A + B) + C]
sin(A+B) sin A cos B+cos A sin B
= cos A cos B cos C − sin A sin B cos C − sin A cos B sin C − cos A sin B sin C = RHS [proven] ✓
2
= cos A − sin A cos A − sin2 cos A − cos A sin2 A
sin A cos B
= cos A −3(1 − cos A) cos A
= −5
cos A sin B
= −5 ✓
tan A cot B tan(A − B) tan A−tan B 1+tan A tan B 3 −tan B 4 3 1+ tan B 4
= = =
25 24 25 24 25
∵ tan A =
24
18 − 24 tan B = 25 + 4
= cos A −3 sin A cos A 2
3
= −5 cos A sin B
sin A cos B
2
3
2
3 sin A cos B + 3 cos A sin B = 2 sin A cos B − 2 cos A sin B
171 3
3
=
sin A cos B−cos A sin B
11
LHS = cos 3A = cos A cos A cos A − sin A sin A cos A − sin A cos A sin A − cos A sin A sin A
2
=
sin(A−B)
= cos(A + B) cos C − sin(A + B) sin C = (cos A cos B − sin A sin B) cos C −(sin A cos B + cos A sin B) sin C
3
2 1
sin(A + B) = sin A cos B + cos A sin B
= 2 ( ) (cos A − sin A)
8(ii)
2 1
=( )+( )
7(e) LHS = 2 sin(A + 45°) cos(A + 45°) = 2[sin A cos 45° + cos A sin 45°] [cos A cos 45° − sin A sin 45°]
8(i)
1
=−
cos A sin B
sin y cos x − sin x cos y sin(y − x) = sin y cos x + cos y sin x sin(y + x)
4 2
=
sin A cos B − cos A sin B =
sin y sin x sin y cos x − sin x cos y tan y − tan x cos y − cos x cos x cos y = = = sin y sin y cos x + cos y sin x sin x tan y + tan x + cos y cos x cos x cos y =
sin(A − B)
tan B
tan B
75 4
3 4
tan B
= −7 =−
28 171
✓
= cos 3 A −3 cos A + 3 cos 3 A = 4 cos 3 A − 3 cos A = RHS [proven] ✓ © Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
349
A math 360 sol (unofficial) 12(i)
Ex 13.1
Quadrant
13(i)
4
tan A = > 0
4
⇒ 1st or 3rd quadrant
3
Coordinates of A cos A = − for 90° < A < 180° 5
3 5
4
-4
sin B =
y
4
x
3
r
5
r
5
3
x
4
12 13
for 0° < B < 90°
13 B 12 𝑥
x = √132 − 122 = 5
3
B
x
5
y
5
y = 12, r = 13,
Coordinates of B sin B = − in 3rd quadrant
3
r
Coordinates of B
𝑟
r = √(−4)2 + (−3)2 = 5 sin A = = − , cos A = = −
y
⇒ sin A = = , tan A = = −
A
-3
y = −4, x = −3,
-4
y = √52 − (−4)2 = 3
Coordinates of A 3
-3
x
5
r
13
⇒ cos B = =
5
,
y
12
x
5
tan B = =
Trigonometric ratio sin(A + B) = sin A cos B + cos A sin B
y = −3, r = 5, x = −√(5)2 − (−3)2 = −4
3
5
−4
12
33
5
13
5
13
65
= ( )( ) + ( )( ) = − x
4
y
3
r
5
x
−4
cos B = = − , tan B = = −
=
tan A+tan 45°
=
1−tan A tan 45°
4
13(ii)
4 ( )+(1) 3 4 1−( )(1) 3
−4
−4
−3
5
5
5
tan(A + B) =
13(iii) sec(A − B)= =
= ( )( ) +( )( ) =
5 24 25
tan A+tan B 1−tan A tan B
= −7 ✓
12(ii) cos(A − B) = cos A cos B + sin A sin B −3
✓
3
Trigonometric ratio tan(A + 45°) =
A
x = −4, r = 5,
same quadrant ⇒ 3rd quadrant
tan A = in 3rd quadrant
5
𝑦
sin B = − < 0 ⇒ 3rd or 4th quadrant
=
✓
=
3 12 )+( ) −4 5 3 12 1−( )( ) −4 5
(
=
33 56
✓
1 cos(A−B) 1 cos A cos B+sin A sin B 1 −4 5 3 12 )( )+( )( ) 5 13 5 13
(
=
65 16
✓
12(iii) sin(B − A) = sin B cos A − cos B sin A −3
−3
5
5
= ( )( ) =
7 25
−4
−4
5
5
−( )( )
✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
350
A math 360 sol (unofficial) 14
Ex 13.1
Right angle triangle hyp =
√(24)2
sin θ =
7 25
+
72
, cos θ =
24 θ hyp
= √625 = 25
24 25
7
, tan θ =
= cos(x − 50°)
cos x cos 10° − sin x sin 10° = cos x cos 50° + sin x sin 50°
7
24
15(c) cos(x + 10°)
cos x cos 10° − cos x cos 50° = sin x sin 10° + sin x sin 50° Trigonometric ratio sin A = sin(θ + 60°) = sin θ cos 60° + cos θ sin 60° 7
1
24
= ( )( ) =
25 2 7+24√3 50
cos x (cos 10° − cos 50°) cos 10°−cos 50°
= tan x
sin 10°+sin 50°
√3 2
+( )( ) 25
= sin x (sin 10° + sin 50°)
tan x
=
✓ =
cos A = cos(θ + 60°) = cos θ cos 60° − sin θ sin 60° 24
1
7
= ( )( ) =
25 2 24−7√3 50
√3 2
✓
tan A = tan(θ + 60°) =
tan θ+tan 60° 1−tan θ tan 60°
=
7 24
( )+(√3) 7 1−( )(√3) 24
=
7+24√3 24−7√3
✓
15(a) sin(x + 30°) = 2 cos x sin x cos 30° + cos x sin 30° = 2 cos x √3 sin x ( ) 2 √3 sin x ( ) 2
1
+ cos x ( ) 2
= 2 cos x
α = 20° ⇒ 1st or 3rd quadrant
S
= √3
cos x cos 60°−sin x sin 60° 2
α T
0° < x < 360°
= 5 sec(x − 20°)
2
2
1 2
cos x( )−sin x(
= =
√3 ) 2
5 cos(x−20°) 5 cos x cos 20°+sin x sin 20° 5 cos x cos 20°+sin x sin 20° 5
5 2
5
√3 sin x + 2 sin x sin 20°
= cos x − 2 cos x cos 20° 2
5
5
sin x ( √3 + 2 sin 20°) 2
x = α, 180 + α = 60°, 240° ✓
= cos x ( − 2 cos 20°) 2
tan x
=5 2
√2 2
√2 2
= 3 sin x = 3 sin x
tan x α ≈ 7.1° ⇒ 1st or 3rd quadrant
2 [cos x ( ) − sin x ( )]
= 3 sin x
√2 cos x − √2 sin x √2 cos x
= 3 sin x = (3 + √2) sin x
tan x
=
α ≈ 17.8° ⇒ 1st or 3rd quadrant
S
0° < x < 360°
α T
5
2 cos x cos 20° + 2 sin x sin 20° = cos x − √3 sin x 2 2
C
15(b) 2 cos(x + 45°) 2(cos x cos 45° − sin x sin 45°)
)
C
=
= ( ) cos x
2
A α
α T
0° < x < 360° x = α, 180 + α = 20°, 200° ✓
2
A α
10°−50°
= tan 20°
cos(x+60°)
S
10°+50° 10°−50° ) sin( ) 2 2 10°+50° 10°−50° 2 sin( ) cos( ) 2 2
−2 sin(
tan x
15(d) 2 sec(x + 60°)
3
tan x α = 60° ⇒ 1st or 3rd quadrant
sin 10°+sin 50°
= − tan (
−( )( ) 25
cos 10°−cos 50°
√2 3+√2
0° < x < 360° x = α, 180 + α = 7.1°, 187.1°
5 −2 cos 20° 2
√3+2 sin 20°
≈ 0.124 S α T
A α C
A α C
x = α, 180 + α = 17.8°, 197.8° ✓ © Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
351
A math 360 sol (unofficial) 16(a)
tan x+tan 15° 1−tan x tan 15°
Ex 13.1 17(a) sin x cos 1 − cos x sin 1 = 0.2 sin(x − 1) = 0.2 α ≈ 0.201 S A ⇒ 1st or 2nd quadrant α α T C 0
=2
tan(x + 15°) = 2 α ≈ 63.4° ⇒ 1st or 3rd quadrant 0° < x < 360° 15° < x + 15° < 375°
S
A α
α T
C
x − 1 = α, π − α = 0.201,2.94 x = 1.20, 3.94 ✓
x + 15° = α, 180 + α ≈ 63.4°, 243.4° x ≈ 48.4°, 228.4° ✓ 17(b)
16(b) 2 tan x + 3 tan(x − 45°) = 0 2 tan x + 3 ( 2 tan x + 3 [ 2 tan x +
tan x−tan 45° 1+tan x tan 45° tan x−(1)
1+tan x(1) 3 tan x−3
]
1+tan x
2 tan x
S
A α
α T C x = α, 180 + α = 26.6°, 206.6° ✓
=
tan(2x − 1) =
)= 0
1 2 1 2
α ≈ 0.464 ⇒ 1st or 3rd quadrant
=0 =0 =
3−3 tan x
0
1+tan x
2 tan x + 2 tan2 x = 3 − 3 tan x 2 tan2 x + 5 tan x − 3 =0 (2 tan x − 1)(tan x + 3) = 0 1 tan x = −3 tan x = 2 α ≈ 71.6° α ≈ 26.6° ⇒ 2nd or 4th quadrant ⇒ 1st or 3rd quadrant 0° < x < 360°
tan 2x−tan 1 1+tan 2x tan 1
2x − 1 = α, π + α, = 0.464, 3.61, x = 0.732,2.30,
A
α T C x = 180 − α, 360 − α = 108.4°, 288.4° ✓
16(c) tan 5x sin 5x cos 5x
sin 5x cos 2x sin 5x cos 2x − sin 2x cos 5x sin(5x − 2x) sin 3x
C
2π + α, 3π + α 6.75, 9.89 3.87, 5.44 ✓
sin 2x cos 2x
cos 0.4
tan x
=
tan x α ≈ 0.339 ⇒ 1st or 3rd quadrant
≈ 0.353
0 < x < 2π x = α, π + α ≈ 0.339, 3.48 ✓
= tan 2x =
α T
A α
17(c) cos(x − 0.4) = 3 sin x cos x cos 0.4 + sin x sin 0.4 = 3 sin x cos x cos 0.4 = sin x (3 − sin 0.4)
0° < x < 360° S α
S
S α T
3−sin 0.4
A α C
= sin 2x cos 5x =0 =0 𝑦 =0 1
0° < x < 360° 0° < 3x < 1080°
90° 180° 270° 360°
𝑥
−1
3x = 0,180, 360,540 720,900, 1080 x = 60°, 120°, 180°, 240°, 300° ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
352
A math 360 sol (unofficial) 17(d) 3 cos x 3 cos x 3 cos x 3 cos x + 4 cos x sin 2 cos x (3 + 4 sin 2) tan x
Ex 13.1 = 4 sin(x − 2) = 4(sin x cos 2 − cos x sin 2) = 4 sin x cos 2 − 4 cos x sin 2 = 4 sin x cos 2 = 4 sin x cos 2 =
√5
5
cos(A + B) = −
cos(A + B) = −
√5 A 2
𝑦
<0
5 13
=
y
1
x
2
Recall
r
y
12
r
13
4
=
√10
y = 3, r = √10,
B 𝑥
2
x = √(√10) − 32 = 1
3
5
1+tan B tan A
5
13
13
, cos(A + B) = −
3
( )
13 56 65
−5
4
13
5
−( )
5
✓
19(ii) Coordinates of C acute C ⇒ 1st quadrant sin C =
12 13
13 C 12 𝑥
y
= , r
x = √132 − 122 = 5 x
5
r
13
⇒ cos C = =
=3✓ tan B−tan A
12
y = 12, r = 13,
Trigonometric ratio
tan(B − A) =
-5
cos A = ,
5
12
and B is acute
1
,
A+B
3
sin A = ,
=( )
3
13
𝑦
sin B = sin[(A + B) − A] = sin(A + B) cos A − cos(A + B) sin A
18(ii) Coordinates
tan B = =
⇒ Q2 or Q3
x
sin(A + B) =
tan A = = [shown] ✓
18(iii)
13
⇒ Q1 or Q2
∴ Q2
Trigonometric ratio
x
5
⇒ sin(A + B) = =
2
y
5
y = √(13)2 − (−5)2 = 12
y = √(√5) − 22 = 1
3
4
r
Coordinates of (𝐀 + 𝐁) A and B are acute
and A is acute
√10
y
x = −5, r = 13,
x = 2, r = √5,
sin B =
5 𝑦 A 3
y = √52 − 32 = 4
4 cos 2
18(i) Coordinates 2
3
cos A = for acute A
⇒ sin A = = ,
3+4 sin 2
tan x ≈ −3.99 α ≈ 1.33 S A ⇒ 2nd or 4th quadrant α α T C 0 < x < 2π x = π − α, 2π − α ≈ 1.82, 4.96 ✓
cos A =
19(i) Coordinates of A
=
3 1
1 2 3 1 1+( )( ) 1 2
( )−( )
=1✓
Recall
sin C =
12
,
13
cos C =
sin(A + B) =
⇒ B − A = 45° ✓
5 13
,
12
5
13
13
, cos(A + B) = −
sin(A + B + C) = sin[(A + B) + C] = sin(A + B) cos C + cos(A + B) sin C =
12 13
5
( ) 13
−5
12
13
13
+( )
=0✓ 19(iii) sin(A + B + C) = 0 0° < A + B + C < 270° A + B + C = 180° ∴ Yes, A, B and C are angles of triangle ✓ © Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
353
A math 360 sol (unofficial) 20
Ex 13.1
Show: sin(A + B) sin(A − B) = sin2 A − sin2 B LHS = (sin A cos B + cos A sin B)(sin A cos B − cos A sin B) = sin2 A cos 2 B − cos 2 A sin2 B 2 (1 2 = sin A − sin B) −(1 − sin2 A) sin2 B = sin2 A − sin2 A sin2 B − sin2 B + sin2 A sin2 B = sin2 A − sin2 B = RHS [shown] ✓
x
tan(α + β) tan α+tan β
90° 180° 270° 360° 90° 180° 270° 360°
𝑥
5 x
( )+tan β
5+x tan β
=
x−5 tan β
tan β (x + tan β (
20(ii) LHS = sin 15° sin 75° = sin 75° sin 15° = sin(45° + 30°) sin(45° − 30°) = sin2 45° − sin2 30°
= =
2 4 1
2
1 2
−( ) 2
−
1 4
4
10 x 10 x 10
∵ tan α =
x
5 x
10 x
= 10 −
50 x
tan β
50 x
) = 10 − 5
x2 +50 x
) =5
tan β
=
5x x2 +50
✓
21(ii) tan(2α + β) = tan[α + (α + β)] =
−1
2x = α, 180 − α, 4x = 0,180, = 0,180, 360,540, 720 x = 0°, 45°, x = 0°, 45°, 90°, 135°, 180°
√2 2
=
5 1−( ) tan β x
𝑥
−1
=( )
=
1−tan α tan β
1
1
=
5 + x tan β
20(i) sin2 3x = sin2 x sin2 3x − sin2 x =0 sin(3x + x) sin(3x − x) = 0 sin 4x sin 2x =0 sin 4x = 0 sin 2x = 0 0° ≤ x ≤ 180° 0° ≤ x ≤ 180° 0 ≤ 2x ≤ 360° 𝑦 0° ≤ 4x ≤ 720° 𝑦
21(i) tan α = 5
=
360 + α 360 180° ✓
tan α+tan(α+β) 1−tan α tan(α+β) 5 x
10 x 5 10 1−( )( ) x x
( )+( )
5
10
x
x
∵ tan α = , tan(α + β) = = =
15 x x2 −50 x2
15x x2 −50
0° < 2α + β < 90° ⇒ tan(2α + β) > 0 15x x2 −50
>0 x
>0
(x+√50)(x−√50) x
>0
(x+5√2)(x−5√2)
−
= RHS [shown] ✓
−5√2
−
+ 0
+ 5√2
−5√2 < x < 0 or x > 5√2 ✓?
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
354
A math 360 sol (unofficial) 21(ii) tan(2α + β)
= =
Ex 13.1
tan 2α+tan β
0° < 2α + β < 90° tan(2α + β)
1−tan 2α tan β 2 tan α ( )+tanβ 1−tan2 α 2 tan α 1−( ) tan β 1−tan2 α
5
5x
x
x2 +50
∵ tan α = , tan β =
>0
15x[x2 +25]
>0
x2 −25x2 +25
x
25+√(−25)2 −4(1)(25) 25−√(−25)2 −4(1)(25) [x− ][x− ] 2(1) 2(1)
,
tan(2α + β)
x
>0
25+√525 25−√525 [x− ][x− ] 2 2
5 2( ) x ] + ( 5x ) [ x 2 + 50 5 2 1−( ) x = 5 2( ) x ] ( 5x ) 1−[ 5 2 x 2 + 50 1−( ) x
−
+ 0
−
25−√525 2
22 A+B+C tan(A + B + C)
10 5x ) [ 2 x ]+( 2 x − 25 x + 50 x2 = 10 5x ) 1−[ 2 x ]( 2 x − 25 x + 50 x2
tan(A+B)+tan C 1−tan(A+B) tan C
⇒ tan(A + B) + tan C tan A+tan B 1−tan A tan B
+
25−√525 25+√525 2
0
>0
+ tan C
2
or x >
25+√525 2
✓
= 180° = tan(180°) =0 =0 =0
tan A + tan B + tan C − tan A tan B tan C = 0 tan A + tan B + tan C = tan A tan B tan C [shown] ✓
10x 5x [ 2 ]+( 2 ) x − 25 x + 50 = 10x 5x ]( ) 1−[ 2 x − 25 x 2 + 50 10x 5x (x 2 − 25)(x 2 + 50) 2 − 25] + (x 2 + 50) x = × 2 10x 5x (x − 25)(x 2 + 50) ]( ) 1−[ 2 x − 25 x 2 + 50 [
=
10x(x 2 + 50) + 5x(x 2 − 25) (x 2 − 25)(x 2 + 50) − 50x 2
=
10x 3 + 500x + 5x 3 − 125x x 4 + 25x 2 + 25 − 50x 2
=
15x 3 + 375x x 4 − 25x 2 + 25
15x[x 2 + 25] = 2 x − 25x 2 + 25
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
355
A math 360 sol (unofficial)
Ex 13.2 2(b)
Ex 13.2 1(a)
Coordinates 1
A = cos −1 (− ) for obtuse A 1
1
2
2
2
cos 2 22 ° − sin2 22 ° = cos(45°) =
√2 2
cos 𝐴 = −
1 2
2
y
✓
-1
y = √(2)2 − (−1)2 = √3 1(b)
π
π
8
8
2 sin cos
π
= sin ( ) =
1(c)
π 2 cos 2 12
√2 2
𝑦 𝑟
√3 , 2
=
cos 𝐴 =
𝑥 𝑟
=−
1 2
✓ Trigonometric ratio sin 2A = 2 sin A cos A
π
− 1 = cos ( ) 6
√3 2
= 1(d)
sin 𝐴 =
4
(cos 75° + sin 75°)2 = cos 2 75° + 2 sin 75° cos 75° + sin2 75° = (sin2 75° + cos 2 75°) +2 sin 75° cos 75° = (1) + sin 150° (1) = + sin 30° =1
−1
√3 2
= 2( )( )
✓
+
=−
2
√3 2
✓
−1 2
√3 2
cos 2A = cos 2 A − sin2 A = ( ) − ( ) 2
2
=−
1 2
✓
tan 2A =
1
2 tan A 1−tan2 A
2(
=
√3 ) −1
1−(
2
3
√3 ) −1
2
=
−2√3 1−3
= √3 ✓
= ✓ 2
1(e)
3(i)
sin2 67.5° = = = =
1(f)
2 tan 15° 1−tan2 15°
1−cos(135°)
3(
2 1−(− cos 45°)
3
2
2
1−(−
4
2
1 √3
3(ii)
✓
sin 2x
3
= ✓ 9
3(iii) 5
3
5
cos 8x = cos[2(4𝑥)] = 2 cos 2 4x −1 1 2
= 2( )
𝑥 x = √52 − 32 = 4 = , 5
=−
tan 𝐴 =
𝑦 𝑥
=
3 4
4(a)
Trigonometric ratio 3
4
24
5
5
25
sin 2A = 2 sin A cos A= 2 ( ) ( ) =
LHS = =
✓
3 2
7
5
5
25
✓
4(b)
LHS = =
2 tan A 1−tan2 A
=
3 4 3 2 1−( ) 4
2( )
=
24 7
✓
9 79
81
−1
✓
cos 2A cos A+sin A cos2 A−sin2 A cos A+sin A
=
(cos A+sin A)(cos A−sin A) cos A+sin A
=
cos A − sin A = RHS [proven] ✓
4 2
cos 2A = cos 2 A − sin2 A = ( ) − ( ) =
tan 2A =
3
1
sin 𝐴 = for acute A
𝑟
2
= ✓
2 2
3
cos 𝐴 =
=1
cos 4x = cos[2(2𝑥)] = 1 − 2 sin2 2x
✓
4
=1
= 1 − 2( )
Coordinates
𝑥
)
sin 2x
√2 ) 2
2 2+√2
sin 2x
= tan 30° =
2(a)
3 sin x cos x = 1
4(c)
LHS =
1−cos 2A sin 2A sin A cos A
=
1−(1−2 sin2 A) 2 sin A cos A
=
2 sin2 A 2 sin A cos A
= tan A = RHS [proven] ✓
1−cos 2A 1+cos 2A 2
=
1−(1−2 sin2 A) 1+(2 cos2 A−1)
=
2 sin2 A 2 cos2 A
= tan A = RHS [proven] ✓ © Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
356
A math 360 sol (unofficial) 4(d)
Ex 13.2
LHS = 4 sin A cos 3 A − 4 sin3 A cos A = 4 sin A cos A (cos 2 A − sin2 A) 1
6(i)
(cos 2 A − sin2 A)
= 4 ( sin 2𝐴) 2
sin A =
= 2 sin 2𝐴 cos 2𝐴 = sin 4A = RHS [proven] ✓ 5(a)
1 cos A
)(
LHS = =
1 sin A
)=
1 sin A cos A
=1 2
1 sin 2A
=
sin 2A
5(c)
LHS =
x
Trigonometric ratio cos 2A = cos 2 A − sin2 A
6(ii)
=
1
=− ✓ 2
cos 4A = 2 cos 2A − 1 1 2
1
=− ✓
= 2 (− ) − 1 2
)(
cos A sin A
)=
1 sin A cos A
=1 2
1 sin 2A
=
A sec 2 2
=
1 cos2
A 2
=
1 1+cos A 2
=
2 1+cos A
6(iii)
sin 4A = √1 −
1 2
6(iv)
=
cos A cos
21 2
= 2 cos
2
=
2 2 tan A ) 1−tan2 A
(
=
A =
1+cos A 1−cos A
=
1 2 1 1−[1−2 sin2 ( A)] 2
1+[2 cos2 ( A)−1]
1 cot 2 ( A) 2
=
2
√3 2
✓
A−1
2
1
1+cos A
2
2
1−tan2 A tan A
=
2 1 2
1+cos A
cos A = √ tan 2A
2
cos 2 4𝐴
= √1 − (− )
= 2 csc 2A = RHS [proven] ✓
LHS = 2 cot 2A =
LHS =
2
2
=√
1 2
1+(− ) 2
= cot A − tan A = RHS [proven] ✓ 5(e)
√3 2
2
RHS [proven] ✓ 5(d)
y
2
1 2
1 ) cos2 A sin A ( ) cos A
2
1
r
= (− ) − ( )
tan A
1
x
2 sin 2A
(
cos2 A
𝑥
cos A = = − , tan A = = −√3
sec2 A
=(
2 A
√3 2
= 2 csc 2A = RHS [proven] ✓ 5(b)
√3 2
x = −√(2)2 − (√3) = −1
LHS = sec A csc A =(
Coordinates obtuse A ⇒ 2𝑛𝑑 𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡
1
1+cos A
2
2
or cos A = −√
1
(
rej ∵ cos A > 0 2 1
for 45° < A < 90°
)
2
=√
1 2 1 2 sin2 ( A) 2
2 cos2 ( A)
1 2
2
1
=√
4
= RHS [proven] ✓
1
= ✓ 2
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
357
A math 360 sol (unofficial) 7(i)
Ex 13.2
Coordinates 2 tan A = 3 3π π
A
-3 -2
8(i)
Coordinates 𝑎𝑐𝑢𝑡𝑒 𝜃 ⇒ 1𝑠𝑡 𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡 1
𝑦
k
𝑥
cot θ = k⇒ tan θ = =
𝑟
𝑟 θ 𝑘
𝑦 = 1, 𝑥 = 𝑘,
2
1
r = √12 + k 2 = √1 + 𝑘 2 r=
√(−2)2
sin 𝐴 =
𝑦 𝑟
(−3)2
+
=−
2 √13
= √13 𝑥
, cos 𝐴 =
𝑟
=−
𝑦
sin 𝜃 =
3
𝑟
=
1 √1+𝑘 2
, cos 𝜃 =
𝑥
𝑘
=
𝑟
√1+𝑘 2
√13
Trigonometric ratio Trigonometric ratio tan 2A = 7(ii) 7(iii)
tan 3A =
2 tan A 1−tan2 A
=
2 2( ) 3 2 2 1−( ) 3
tan 2A+tan A 1−tan 2A tan A
=
tan A
sin 2θ = 2 sin θ cos θ = 2 ( =
1 2 1 1−tan2 A 2
12 5
2 3 12 2 1−( )( ) 5 3
=
1
6 tan A
tan A = 2 1
−3−√13
2
2
8(ii) =−
46 9
1−tan θ tan 45° tan θ+tan 45°
8(iii)
2
sec 2θ = =
1 2 tan2 A 2
0 =
0
or tan A =
8(iv)
−3±√13 2
2
7(iv)
Recall sin 𝐴 = − csc 2A = =
1 sin 2A 1 12 13
=
2 √13
= 13 12
rej ∵ tan A < 0 π
2 1
2
2
for < A <
, cos 𝐴 = − 1
2 sin A cos A
=
3π
=
) ✓
1 k
1−( )(1) 1 k
( )+(1)
1
=
cos 2θ
1
2k 1+k2
1 cos2 θ−sin2 θ
=
1+k2 k2 −1
1
=
2
k 1 ( ) −( ) 2 √1 + k √1 + k 2 1
✓
1+k
1
k2 −1 1+k2
=
tan θ+tan 45° 1−tan θ tan 45°
k−1
=
2
k2 1 + k2
−
1 1 + k2
✓
tan 2θ+tan θ 1−tan 2θ tan θ 2 tan θ )+tan θ 1−tan2 θ 2 tan θ 1−( ) tan θ 1−tan2 θ
(
=
2 tan θ+(tan θ−tan3 θ) (1−tan2 θ)−2 tan2 θ
4
3 √13
=
1 −2 −3 2( )( ) √13 √13
✓ = 9(a)
3 tan θ−tan3 θ
3 1 − k k3 3 1− 2 k
LHS = 1 2 1 cos A 2
9(b)
9(c)
sleightofmath.com
=
3k2 −1
=
k3 −3k
sin A 1+cos A
1 3 k 1 2 1−3( ) k 1 k
3( )−( )
=
3k2 −1
✓
k(k2 −3) 1 2
1 2
2 sin A cos A 1 2
1+(2 cos2 A−1)
=
1 2
1 2
2 sin A cos A 1 2
2 cos2 A
=
1
= tan A = RHS [proven] ✓
LHS = =
=
1−3 tan2 θ
sin A
© Daniel & Samuel A-math tuition 📞9133 9982
) =
2 1
(
k √1+k2
tan 3θ = tan(2𝜃 + 𝜃) =
−3+√13
=
tan(θ+45°)
=
3
1
1
cot(θ + 45°) =
✓
3
=
2(1)
)(
✓
2
=2−
2 1 21 2 tan A + 6 tan A − 2 = 2 2 1 21 tan A + 3 tan A − 1 = 2 2 1 −3±√(3)2 −4(1)(−1)
tan A =
✓
5
( )+( )
=
2 tan A
12
1 √1+k2
2
1+tan2 A 1−tan2 A
cos2 A+sin2 A cos2 A−sin2 A
=
=
sin2 A cos2 A sin2 A 1− 2 cos A
1+
1 cos 2A
=
cos2 A+sin2 A cos2 A cos2 A−sin2 A cos2 A
= sec 2A = RHS [proven]✓
LHS = cos 4 A − sin4 A = (cos 2 A + sin2 A) (cos 2 A − sin2 A) (cos 2A) =1 = cos 2A = RHS [proven] ✓ 358
A math 360 sol (unofficial) 9(d)
9(e)
LHS = cos 4A = cos(2 ⋅ 2𝐴) = 1 − 2 sin2 2A = 1 − 2 (sin 2A)2 = 1 − 2(2 sin A cos A)2 = 1 − 2(4 sin2 A cos 2 A) = 1 − 8 sin2 A cos 2 A = 1 − 8 sin2 A (1 − sin2 A) = 1 − 8 sin2 A + 8 sin4 A = 8 sin4 A − 8 sin2 A + 1 = RHS [proven] ✓
Ex 13.2 10(a) 4 sin 2x 4(2 sin x cos x) 8 sin x cos x sin x (8 cos x − 1)
= = =
0° < x < 360°
α ≈ 82.8° ⇒ 1st or 4th quadrant
𝑦 1
90° 180° 270° 360°
0° < x < 360°
𝑥
S
A α α T C x = α, 360 − α = 82.8°, 277.2° ✓
−1
x = 180° ✓
1−cos 2A 2
)
2 1−2 cos 2A+cos2 2A 4
10(b) 4 sin x cos x = 1 4(
4 2−4 cos 2A+1+cos 4A
2 sin 2x
=1
sin 2x
=
8
= (3 − 4 cos 2A + cos 4A) = RHS [proven] ✓ 1+cos 2A+sin 2A
1 + (2 cos 2 A − 1) + (2 sin A cos A) 1 − (1 − 2 sin2 A) + (2 sin A cos A)
=
2 cos 2 A + 2 sin A cos A 2 sin2 A + 2 sin A cos A
=
2 cos A (cos A + sin A) 2 sin A (sin A + cos A)
= cot A
)
=1 1 2
0° < x < 360° 0° < 2x < 720°
1−cos 2A+sin 2A
=
2
α = 30° ⇒ 1st or 2nd quadrant
8
LHS =
sin 2x
1+cos 4A 1−2 cos 2A+( ) 2
1
9(f)
1
or cos x = 8
sin x = 0
LHS = (sin2 A)2 =(
= sin x = sin x = sin x =0
S
A
α T
α C
2x = α, 180 − α, = 30, 150, x = 15°, 75°,
360 + α, 540 − α 390, 510 195°, 255° ✓
10(c) (sin x − cos x)2 =2 sin2 x − 2 sin x cos x + cos 2 x = 2 (sin2 x + cos 2 x) − 2 sin x cos x = 2 1 − sin 2x =2 sin 2x = −1 𝑦
0° < x < 360° 0° < 2x < 720°
= RHS [proven] ✓
1
90° 180° 270° 360°
𝑥
−1
2x = 270, x = 135°,
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
270 + 360 315° ✓
359
A math 360 sol (unofficial)
Ex 13.2
10(d) cos 2x − 3 cos x + 2 =0 (2 cos 2 x − 1) − 3 cos x + 2 = 0 2 cos 2 x − 3 cos x + 1 =0 (2 cos x − 1)(cos x − 1) =0 1 cos x = or cos x = 1 2 0° < x < 360 α = 60° 𝑦 ⇒ 1st or 4th quad. 1 0° < x < 360°
90° 180° 270° 360°
S
A α α T C x = α, 360 − α = 60°, 300° ✓
𝑦 1
1
𝑥
90° 180° 270° 360°
⇒ 𝑛𝑜 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
⇒ x = 0, π ✓
⇒ x = 0, 2π ✓
cos x [5 (
sin 2𝑥 2
)
5
4
0 ≤ x ≤ 2π
α ≈ 0.927 ⇒ 3rd or 4th quadrant
𝑦 1
2 90° 180° 270° 360°
(no solution)
𝑥
−1
π 3π
x= , 2
2
2 tan x
1−tan2 x 2
11(c) cos 2x 1 − 2 sin2 x 2 sin2 x − sin x − 1 (2 sin x + 1)(sin x − 1)
=3
) tan x = 3 =3 = 3 − 3 tan2 x =3
tan2 x
=
sin x = − α=
3
= ±√
3 5
α ≈ 37.8° ⇒ 1st, 2nd, 3rd or 4th quadrant
2
or
S α α T
A α α C
α T
α C
= − sin x = − sin x =0 =0
sin x = 1
,
𝑦 1
𝑥
−1
7π 11π 6
3π + α, 4π − α 10.4, 11.6 5.18, 5.82 ✓
90° 180° 270° 360°
A
α α T C x = π + α, 2π − α =
sleightofmath.com
A
0 ≤ x ≤ 2π
6
S
x = α, 180 − α, 180 + α, 360 − α = 37.8°, 142.2°, 217.8°, 322.2° ✓
© Daniel & Samuel A-math tuition 📞9133 9982
π
1
⇒ 3rd or 4th quad. 0 ≤ x ≤ 2π
5
S
2x = π + α, 2π − α, ≈ 4.07,5.36, x ≈ 2.03, 2.68,
𝑥
2 tan x 5 tan2 x
tan x
0 ≤ x ≤ 2π 0 ≤ 2x ≤ 4π
✓
⇒ x = 180° ✓
1−tan2 x 2 tan2 x
=0
or sin 2x = − 5
cos x = 0
3
=0 =0
=0
2
−1
(
+ 2]
cos x ( sin 2x + 2)
𝑦
tan 2x tan x
𝑥
−1
sin x = −
or
90° 180° 270° 360°
−1
1
10(f)
𝑥
−1
= 3 sin x = 3 sin x = 3 sin x = 2 sin2 𝑥 + 3 sin 𝑥 =0 =0
0° < x < 360°
90° 180° 270° 360°
𝑦
11(b) 5 sin x cos 2 x + 2 cos x cos x (5 sin x cos x + 2)
10(e) cos 2x − 1 (1 − 2 sin2 x) − 1 −2 sin2 x 0 2 sin2 x + 3 sin x sin x (2 sin x + 3) sin x = 0
11(a) 2 sin x = sin 2x 2 sin x = 2 sin x cos x sin x = sin x cos x sin x (cos x − 1) = 0 sin x = 0 or cos x = 1 0 ≤ x ≤ 2π 0 ≤ x ≤ 2π
6
π
⇒x = ✓ 2
✓
360
A math 360 sol (unofficial)
Ex 13.2
11(d) 2 cos 2x = 11 cos x + 1 2 2(2 cos x − 1) = 11 cos x + 1 4 cos 2 x − 2 = 11 cos x + 1 2 4 cos x − 11 cos x − 3 = 0 (4 cos x + 1)(cos x − 3) = 0 1 cos x = 3 cos x = − 4 (no solution) α ≈ 1.32 ⇒ 2nd or 3rd quadrant
12(i)
At x-axis, y =0 2 3 sin 2x + 2 cos x =0 3(2 sin x cos x) + 2 cos 2 x = 0 6 sin x cos x + 2 cos 2 x =0 2 3 sin x cos x + cos x =0 cos x (3 sin x + cos x) =0 cos x = 0 3 sin x = − cos x
0 ≤ x ≤ 2π
𝑦
S A α α T C x = π − α, π + α = 1.82, 4.46 ✓ 11(e) tan 2x
90° 180° 270° 360°
𝑥
−1
0° < x < 360°
=−
2 tan x = 3 tan x − 3 tan3 x 3 tan3 x − tan x =0 2 tan x (3 tan x − 1) = 0 tan x = 0 or tan2 x = 1 𝑦
tan x = ±
1
𝑥
−1
α≈
π
3 1
√3
6
0 ≤ x ≤ 2π
⇒ 1st, 2nd, 3rd or 4th quadrant
x = 0, π, 2π ✓
0 ≤ x ≤ 2π S α α T
A α α C
© Daniel & Samuel A-math tuition 📞9133 9982
6
S α
A
12(ii) y =2 2 3 sin 2x + 2 cos x =2 2 3(2 sin x cos x) + 2(1 − sin x) = 2 6 sin x cos x + (2 − 2 sin2 x) = 2 6 sin x cos x − 2 sin2 x =0 2 3 sin x cos x − sin x =0 sin x (3 cos x − sin x) =0 sin x = 0 3 cos x = sin x 𝑦 tan x = 3 1 α ≈ 71.6° 𝑥 ⇒ 1st or 3rd quadrant 90° 180° 270° 360° −1
π 5π 7π 11π 6
3
α ≈ 18.4° ⇒ 2nd or 4th quadrant
x = 180 − α, 360 − α = 161.6°, 341.6° ✓
0° < x < 360°
x = α, π − α, π + α, 2π − α = ,
1
α T C x = α, 360 − α = 90°, 270° ✓ 0° < x < 360°
= 3 tan x
1−tan2 x
tan x
1
= 3 tan x
2 tan x
90° 180° 270° 360°
y = 3 sin 2x + 2 cos 2 x
,
6
,
6
0° < x < 360° S
x = 180° ✓
✓
sleightofmath.com
A α
α T C x = α, 180 + α = 71.6°, 251.6° ✓
361
A math 360 sol (unofficial) 13(i)
Ex 13.2 14(ii) 8 cos 3 x 8 cos 3 x − 6 cos x 2(4 cos 3 x − 3 cos x) 2 cos 3x
a = cos x + sin x b = cos x − sin x a + b = 2 cos x
a+b
⇒ cos x =
a − b = 2 sin x
⇒ sin x =
2
cos 3x
=
a+b 2 2
)
−(
a2 +2ab+b2 4
=−
α = 60° ⇒ 2nd or 3rd quadrant
a−b 2
0° < x < 180° 0° < 3x < 540°
cos 2x = cos 2 x − sin2 x =(
= 6 cos x − 1 = −1 = −1 = −1
a−b 2
1 2
S α α T
A C
)
−
2 a2 −2ab+b2
3x = 180 − α, 180 + α, = 120, 240, x = 40°, 80°,
4
4ab 4 = ab ✓ =
540 − α 480 160° ✓
sin 2x = 2 sin x cos x = 2(
a−b 2
)(
a+b 2
) = 2(
a2 −b2 4
) =
a2 −b2 2
✓
13(ii) a2 +b2 = (cos x + sin x)2 +(cos x − sin x)2 = (cos 2 x + 2 sin x cos x + sin2 x) +(cos 2 x − 2 sin x cos x + sin2 x) = 2 cos 2 𝑥 + 2 sin2 𝑥 = 2(cos 2 𝑥 + sin2 𝑥) = 2 [proven] ✓ 14
14(i)
LHS = cos 3x = cos(2x + x) = cos 2x cos x = (2 cos 2 x − 1) cos x = 2 cos 3 x − cos x = 2 cos 3 x − cos x = 2 cos 3 x − cos x = 4 cos 3 x − 3 cos x = RHS [shown] ✓
− sin 2x sin x −(2 sin x cos x) sin x −2 cos x (sin2 x) −2 cos x (1 − cos 2 x) −2 cos x + 2 cos 3 x
8 cos 3 10° − 6 cos 10° 3 = 2(4 cos 10° − 3 cos 10°) = 2 cos 30° √3 2
= 2( ) = √3 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
362
A math 360 sol (unofficial) 15
Ex 13.2
Prove: tan x = cot x − 2 cot 2x
16 Prove: cos 6 θ + sin6 θ =
RHS = cot x − 2 cot 2x 2 = cot x − tan 2x 2 = cot x − 2 tan x = cot x −
1−tan2 x 1−tan2 x
tan x
= −(sin θ cos θ)2 + (
tan x = cot x − 2 cot 2x 2 cot 2x = cot x − tan x =
8
LHS = cos 6 θ + sin6 θ = (cos 2 θ)3 + (sin2 θ)3 = [cos 2 θ + sin2 θ] [(cos 2 θ)2 − (cos 2 θ)(sin2 θ) + (sin2 θ)2 ] [(cos 2 θ)2 − sin2 θ cos 2 θ + =1 (sin2 θ)2 ] = − sin2 θ cos 2 θ +(cos 2 θ)2 +(sin2 θ)2
= cot x − cot x + tan x = tan x = LHS [proven] ✓
cot 2x
5+3 cos 4θ
1
= − ( sin 2θ)
cot x−tan x
2
2
1
2
2
= − sin 2θ
+
4
Show: 2 tan 20° + 4 tan 40° + 8 tan 80° = 9(cot 10° − tan 10°)
1 1−cos 4θ
=− ( =
LHS = 2 tan 20° +4 tan 40° +8 tan 80° = 2(cot 20° − 2 cot 40°) +4(cot 40° − 2 cot 80°) +8(cot 80° − 2 cot 160°)
= = =
4 2 cos 4θ−1
+
)
8 cos 4θ−1 8 cos 4θ−1 8 5+3 cos 4θ
+ + + +
1+cos 2θ 2 2
)
1+2 cos 2θ+cos2 2θ 4 2+2 cos2 2θ
+( +
1−cos 2θ 2
)
2
1−2 cos 2θ+cos2 2θ 4
4 2+2(
1+cos 4θ ) 2
4 2+1+cos 4θ 4 3+cos 4θ 4 6+2 cos 4θ 8
8
= RHS [proven] ✓
= 2 cot 20° −4 cot 40° +4 cot 40° −8 cot 80° +8 cot 80° −16 cot 160° = 2 cot 20° −16 cot 160° = 2 cot 20° − = 2 cot 20° −
16 tan 160° 16 − tan 20°
= 2 cot 20° +16 cot 20° = 18 cot 20° = 18 (
cot 10°−tan 10° 2
)
∵ cot 2x =
cot x−tan x 2
= 9(cot 10° − tan 10°) = RHS [shown] ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
363
A math 360 sol (unofficial) 17(i)
Ex 13.2
3 +4 cos 2 x = 3 +4 (
1+cos 2x 2
)
= 3 +2 + 2 cos 2x = 2 cos 2x + 5 ✓ 17(ii) y = 3 + 4 cos 2 x = 2 cos 2x + 5
𝑦 7 5.5 5 4 3 2.5
i.e. 𝑎 = 2, 𝑏 = 2, 𝑐 = 5 Amplitude = |𝑎| = |2| = 2 Period
=
2𝜋 𝑏
=
2𝜋 2
=𝜋
𝑂
𝑦 = 3 + 4 cos 2 𝑥
𝑦 = 4 − 3 sin 𝑥 cos 𝑥 𝜋
𝑥
2𝜋
17(iii) y = 4 − 3 sin x cos x 1
= 4 − 3 ( sin 2x) 2
3
= − sin 2x + 4 2
3
i.e. 𝑎 = − , 𝑏 = 2, 𝑐 = 4 2
3
3
2
2
Amplitude = |𝑎| = |− | = Period
=
2𝜋 𝑏
=
2𝜋 2
=𝜋
2
17(iv) 4 cos 𝑥 + 3 𝑠𝑖𝑛 𝑥 𝑐𝑜𝑠 𝑥 − 1 = 0 4 𝑐𝑜𝑠 2 𝑥 = 1 − 3 𝑠𝑖𝑛 𝑥 𝑐𝑜𝑠 𝑥 2 3 + 4 𝑐𝑜𝑠 𝑥 = 4 − 3 𝑠𝑖𝑛 𝑥 𝑐𝑜𝑠 𝑥 4 intersections ⇒ 4 sol ✓ Workings 𝑦1 = 2 cos 2𝑥 + 5 Domain 0 ≤ x ≤ 2π Axis with y=5±2 Amplitude Shape +cos 2π−0 Cycle =2 π
𝑦2 = −4 − 3 sin 𝑥 cos 𝑥 Domain 0 ≤ x ≤ 2π 3 Axis with y=4± 2 Amplitude Shape −sin 2π−0 Cycle =2 π
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
364
A math 360 sol (unofficial) 18
R=
1 2 v sin θ cos θ 4.9
R|v=16 1 4.9
(16)2
2
19
x Show: √2 + √2 + 2 cos x = 2 sin
4
LHS = √2 + √2 + 2 cos x
= 25 sin θ cos θ = 25
sin θ cos θ 1
Ex 13.2
sin 2𝜃
sin 2θ
= = =
1
= √2 + √2 + 2 [2 cos 2 ( x) − 1]
245
2
512 245 512 490
1
= √2 + √2 + 4 cos 2 ( x) − 2 2
512
α ≈ 73.1° ⇒ 1st or 2nd quadrant 0° < θ < 90° 0° < 2θ < 180°
1
S
A
α T
α C
= √2 + √4 cos 2 ( x) 2
1
= √2 + 2√cos 2 ( x) 2
2θ = α, 180 − α ≈ 73.1,106.9 θ ≈ 36.6°, 53.4° ✓
1
= √2 + 2 [− cos ( x)] 2
1
1
2
2
∵ cos x < 0 for 135° < 𝑥 < 180° 1
= √2 − 2 cos ( x) 2
1
= √2 − 2 [1 − 2 sin2 ( x)] 4
1
= √2 − 2 + 4 sin2 ( x) 4
1
= √4 sin2 ( x) 4
1
= 2√sin2 ( x) 4
= 2 sin
x 4 1
1
4
4
∵ sin ( 𝑥) > 0 𝑓𝑜𝑟 67.5° < 𝑥 < 90° = RHS [shown] ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
365
A math 360 sol (unofficial)
Ex 13.3 4(a)
Ex 13.3 1(a)
R = √32 + 42 = 5 4 α = tan−1 ( ) ≈ 53.1° 3 ∴ y = 5 sin(θ − 53.1°)
cos θ + sin θ
R = √12 + 12 = √2 1 α = tan−1 ( ) = 45° 1
max = 5 ✓ ⇒ sin(θ − 53.1°) = 1 0° < θ < 360° −53.1 < θ − 53.1° < 306.9° θ − 53.1° = 90° θ ≈ 143.1° ✓
∴ cos θ + sin θ = √2 cos(θ − 45°) ✓ 1(b)
√3 cos θ − sin θ 2
R = √(√3) + 12 = √3 + 1 = 2
α = tan−1 ( ) = 30°
1
√3
∴ √3 cos θ − sin θ = 2 cos(θ + 30°) ✓ 1(c)
R = √32 + 42 = 5 (4) α = tan−1 [(3)] ≈ 53.1°
∴ 3 sin θ + 4 cos θ = 5 sin(θ + 53.1°) ✓ 1(d)
4(b)
2
R = √12 + (√2) = √1 + 2 = √3 α=
√2 tan−1 ( ) 1
3(i)
α≈
1
≈ 1.18 ✓
𝑦 1
90° 180° 270° 360°
𝑥
−1
I = 15 sin(120πt) − 8 cos(120πt)
Min = −√10 ✓ θ + 71.6° ≈ 180° θ ≈ 108.4° ✓
R = √152 + 82 = 17 8 α = tan−1 ( ) ≈ 0.489 96 15
∴ I = 17 sin(120πt − 0.489 96) ✓ 3(ii)
−1
R = √12 + 32 = √10 3 α = tan−1 ( ) ≈ 71.6°
Max = √10 ✓ ⇒ cos(θ + 71.6°) = 1 0° < θ < 360° 71.6° < θ + 71.6° < 431.6° θ + 71.6° ≈ 0°, 360° θ ≈ 288.4° ✓
R = √52 + 122 = 13 ✓ 12 tan−1 ( ) 5
𝑥
= 54.7°
5 sin θ − 12 cos θ = R sin(θ − α)
90° 180° 270° 360°
∴ y = √10 cos(θ + 71.6°)
∴ sin θ − √2 cos θ = √3 sin(θ − 54.7°) ✓ 2
𝑦 = sin 𝑥
y = cos θ − 3 sin θ
sin θ − √2 cos θ
𝑦 1
min = −5 ✓ ⇒ sin(θ − 53.1°) = −1 θ − 53.1° = 270° θ ≈ 323.1° ✓
3 sin θ + 4 cos θ
y = 3 sin θ − 4 cos θ
A = 17 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
366
A math 360 sol (unofficial) 4(c)
Ex 13.3
y = 6 cos θ + 5 sin θ
√62
5(a)
3 cos x − 4 sin x = 1 R = √32 + 42 = 5 4 α = tan−1 ( ) ≈ 53.1° 3 ∴ 5 cos(x + 53.1°)= 1
52
R= + = √61 −1 (5) α = tan ≈ 39.8° 6
∴ y = √61 cos(θ − 39.8°)
cos(x + 53.1°) max = √61 ✓ ⇒ cos(θ − 39.8°) = 1 0° < θ < 360° −39.8° < θ − 39.8° < 320.1° θ − 39.8° ≈ 0° θ ≈ 39.8° ✓
𝑦
90° 180° 270° 360°
𝑥
T
A α α C
x + 53.1° ≈ α, 360 − α ≈ 78.5,281.5 x ≈ 25.3°, 228.4° ✓ 5(b)
√3 sin x − cos x = 1 2
R = √(√3) + 12 = √3 + 1 = 2
α = tan−1 ( ) = 30°
1
√3
∴ 2 sin(θ − 30°) = 1
3
sin(θ − 30°)
∴ y = 3√5 sin(θ + 63.4°)
min = −3√5 ✓ ⇒ sin(θ + 63.4°) = −1 x + 63.4° ≈ 270° x ≈ 206.6° ✓
S
0° < x < 360° 53.1° < x + 53.1° < 413.1°
−1
R = √32 + 62 = √45 = √9 × 5 = 3√5 6 α = tan−1 ( ) ≈ 63.4°
max = 3√5 ✓ ⇒ sin(θ + 63.4°) = 1 0° < θ < 360° 63.4° < θ + 63.4° < 423.4° x + 63.4° ≈ 90° x ≈ 26.6° ✓
5
1
y = 3 sin θ + 6 cos θ
1
α ≈ 78.5° ⇒ 1st or 4th quadrant
min = −√61 ✓ cos(θ − 39.8°) = −1 θ − 39.8° ≈ 180° θ ≈ 219.8° ✓ 4(d)
=
1 2
α = 30° ⇒ 1st or 2nd quadrant
𝑦 1
=
𝑦 = sin 𝑥 90° 180° 270° 360°
0° < x < 360° −30° < x − 30° < 330°
𝑥
−1
S
A
α T
α C
x − 30° = α, 180 − α = 30,150 x = 60°, 180° ✓ 5(c)
6 cos x − 2 sin x = 3.5
R = √62 + 22 = √40 = √4 × 10 = 2√10 2 α = tan−1 ( ) ≈ 18.4° 6
∴ √10 cos(x + 18.4°) = 3.5 cos(x + 18.4°)
=
3.5 2√10
α ≈ 56.4° ⇒ 1st or 4th quadrant 0° < x < 360° 18.4° < x + 18.4° < 378.4°
S T
A α α C
x + 18.4° ≈ α, 360 − α ≈ 56.4,303.6 x ≈ 38.0°, 285.2° ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
367
A math 360 sol (unofficial) 5(d)
Ex 13.3 6(i)
sin x + 2 cos x = √2
√12
R= + = √5 −1 (2) α = tan ≈ 63.4° 1
=√
R = √82 + 62 = 10 6 α = tan−1 ( ) ≈ 0.643 50 8
∴ G(t) = 10 cos(4t − 0.643 50) ✓
∴ √5 sin(x + 63.4°) = √2 sin(x + 63.4°)
G(t) = 8 cos 4t + 6 sin 4t
22
2
6(ii)
5
α ≈ 39.2° ⇒ 1st or 2nd quadrant 0° < x < 360° 63.4° < x + 63.4° < 423.4°
S
A
α T
α C
−1 ≤ cos(4t − 0.643 50) ≤1 −10 ≤ 10 cos(4t − 0.643 50) ≤ 10 min = −10 ✓ 10 cos(4t − 0.643 50) = −10 cos(4t − 0.643 50) = −1
x + 63.4° ≈ α, 180 − α, 360 + α ≈ 39.2,140.8, 399.2 x ≈ 77.3°, 335.8° ✓
𝑦
t >0 4t − 0.643 50 > −0.643 50
1
90° 180° 270° 360°
𝑥
−1
5(e)
4t − 0.643 50 = π t ≈ 0.946 ✓
2.1 cos x − sin x = 1.6
R = √(2.1)2 + (1)2 = 1
∴
α = tan−1 ( ) 2.1
1
1 10
√541
≈ 25.5°
7(i)
√541 cos(x + 25.5°) = 1.6 10
cos(x + 25.5°)
=
16
4
√541
α ≈ 46.5° ⇒ 1st or 4th quadrant
S
0° < x < 360° 25.5° < x + 25.5° < 385.5°
= 5(1 + 0) = 5 coulombs ✓
A α α C
T
7(ii)
16
R = √12 + ( ) = √
α = tan−1 ( 4 ) ≈ 0.245
=
√17 4
1
=
R= + ≈ 17.26 −1 ( e ) α = tan ≈ 40.9° π ∴ 17.26 cos(x − 40.9°) ≈ 2 ≈
17
4
∴ q=
e2
cos(x − 40.9°)
1 2
1
π cos x + e sin x = 2 √π2
1
q= 5e−10t (cos 60t + sin 60t) 4
x + 25.5° ≈ α, 360 − α ≈ 46.5,313.5 x ≈ 21.1°, 288.0° ✓ 5(f)
1 q = 5e−10t (cos 60t + sin 60t) 4 1 −10(0) (cos q|t=0 = 5e 0 + sin 0)
√17 5e−10t [ cos(60t 4 5√17 −10t
⇒A =
e
4 5√17 4
− 0.245)]
cos(60t − 0.245)
✓
⇒ B = 0.245 ✓ 2
7(iii)
17.26
α ≈ 61.2° ⇒ 1st or 4th quadrant 0°
S T
A α α C
t →∞ −10t e →0 q → 0✓
x − 40.9° ≈ α, 360 − α ≈ 61.2,298.8 x ≈ 102.1°, 339.6° ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
368
A math 360 sol (unofficial) 8(a)
Ex 13.3
y = 4 sin θ + 3 cos θ − 2
8(c)
R= + =5 −1 (3) α = tan ≈ 36.9° 4 ∴ y = 5 sin(θ + 36.9°) − 2 √42
32
−1 ≤ sin(θ + 36.9°) −5 ≤ 5 sin(θ + 36.9°) −7 ≤ 5 sin(θ + 36.9°) − 2
≤1 ≤5 ≤3
max = 3 ✓ ⇒ sin(θ + 36.9°) = 1 0° < θ < 360° 36.9° < θ + 36.9° < 399.9° θ + 36.9° ≈ 90° θ ≈ 53.1° ✓
R = √12 + (√2) = √3
α = tan−1 ( )
√2 1
≈ 54.7°
−1 ≤ sin(θ − 54.7°) ≤1 −√3 ≤ √3 sin(θ − 54.7°) ≤ √3 3√3 ≤ √3 sin(θ − 54.7°) ≤ 5√3 𝑦
max = 5√3 ✓ ⇒ sin(θ − 54.7°) = 1 0° < θ < 360° −54.7° < θ − 54.7° < 305.3° θ − 54.7° ≈ 90° θ ≈ 144.7° ✓ 𝑦
𝑦 = sin 𝑥
1
90° 180° 270° 360°
𝑥
−1
𝑦 = sin 𝑥
1
min = 3√3 ✓ ⇒ sin(θ − 54.7°) = −1 θ − 54.7° ≈ 270° θ ≈ 324.7° ✓
y = 3 − 7 cos θ + 24 sin θ = 3 + (24 sin θ − 7 cos θ) R = √242 + 72 = 25 7 α = tan−1 ( ) ≈ 16.3° 24 ∴ y = 3 + 25 sin(θ − 16.3°)
8(d)
y = 7 + 15 cos 2θ + 8 sin 2θ = 7 + (15 cos 2θ + 8 sin 2θ)
max = 24 ✓ ⇒ cos(2θ − 28.1°) = 1
𝑦 1
90° 180° 270° 360°
𝑦 = sin 𝑥 90° 180° 270° 360°
𝑥
−1 ≤ cos(2θ − 28.1°) ≤1 −17 ≤ 17 cos(2θ − 28.1°) ≤ 17 −10 ≤ 17 cos(2θ − 28.1°) + 7≤ 24
max = 28 ✓ ⇒ sin(θ − 16.3°) = 1 0° < θ < 360° −16.3° < θ − 16.3° < 343.7° θ − 16.3° ≈ 90° 𝑦 θ ≈ 106.3° ✓ 1
90° 180° 270° 360° −1
R = √152 + 82 = 17 8 α = tan−1 ( ) ≈ 28.1° 15 ∴ y = 7 + 17 cos(2θ − 28.1°)
−1 ≤ sin(θ − 16.3°) ≤1 −25 ≤ 25 sin(θ − 16.3°) ≤ 25 −22 ≤ 3 + 25 sin(θ − 16.3°) ≤ 28
min = −22 ✓ sin(θ − 16.3°) = −1 θ − 16.3° ≈ 270° θ ≈ 286.3° ✓
2
∴ y = √3 sin(θ − 54.7°) + 4√3
min = −7 ✓ ⇒ sin(θ + 36.9°) = −1 θ + 36.9° ≈ 270° θ ≈ 233.1° ✓ 8(b)
y = sin θ − √2 cos θ + 4√3 = (sin θ − √2 cos θ) + 4√3
𝑥
−1
𝑥
0° < θ < 360° −28.1° < 2θ − 28.1° < 691.9° 2θ − 28.1° = 0°, 360° θ = 14.0°, 194.0° ✓
−1
min = −10 ✓ ⇒ cos(2θ − 28.1°) = −1 2θ − 28.1° ≈ 180°, 180° + 360° θ ≈ 104.0°, 284.0° ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
369
A math 360 sol (unofficial) 9(i)
Ex 13.3
πx
πx
6
6
10(a)
h = 1.6 + 0.5 sin ( ) − 1.2 cos ( )
∴ h = 1.6 + 1.3 sin ( −1
≤ sin (
πx 6
6
≤ 1.3 sin (
πx 6 πx 6
− 1.18)
− 1.18)
−1.3 ≤ 1.3 sin ( 0.3
πx
≤ 1.3
sin (
πx 6
πx 6
=
4 13
α ≈ 0.313 ⇒ 1st or 2nd quadrant 0
S
A
α T
α C
α C
2
∴√5 cos(2x − 26.6°) = −2 =−
2 √5
α ≈ 26.6° ⇒ 2nd or 3rd quadrant
− 1.18
≈ α, π − α, 2π + α, 3π − α ≈ 0.313,2.83, 6.60,9.11 x ≈ 2.84h, 7.64h, 14.8h, 19.6h ≈ 2h 51 min, 7h 39 min 14h 51min, 19h 39min ⇒ 02: 51, 07: 39, 14: 51, 19: 39 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
α T
R = √22 + 12 = √5 1 α = tan−1 ( ) ≈ 26.6°
cos(2x − 26.6°)
6
A
10(b) 2 cos 2x + sin 2x + 2 = 0 2 cos 2x + sin 2x = −2
6
πx
S
x − 56.3° ≈ α, 180 − α ≈ 56.3,123.7 x ≈ 112.6°, 180° ✓
− 1.18) = 2
− 1.18)
3 √13
0°
1.6 + 1.3 sin (
=
α ≈ 56.3° ⇒ 1st or 2nd quadrant
− 1.18) + 1.6 ≤ 2.9
h
2
sin(x − 56.3°)
⇒ max. = 2.9 ✓ ⇒ min. = 0.3 ✓ 9(ii)
R = √22 + 32 = √13 3 α = tan−1 ( ) ≈ 56.3°
∴√13 sin(x − 56.3°) = 3
≤1
− 1.18)
=2
sin x+cos x
4 sin x − cos x − 3 = 2 sin x + 2 cos x 2 sin x − 3 cos x = 3
R = √0.52 + 1.22 = √1.69 = 1.3 1.2 α = tan−1 ( ) ≈ 1.18 0.5
4 sin x−cos x−3
sleightofmath.com
0°
S α α T
A C
540 − α, 540 + α 513.4, 566.6 270°, 296.6° ✓
370
A math 360 sol (unofficial)
Ex 13.3
10(c) sin 1 x cos 1 x +2 cos x = 1 2
1 2
10(e) 2 sin x(2 sin x − cos x) = 1 4 sin2 x −2 sin x cos x = 1
2
sin x
+2 cos x = 1
4(
1 2
17
2
4
R = √( ) + 22 = √
α = tan−1 ( 1 ) ≈ 76.0°
=
√17 2
2
∴
√17 sin(x 2
+ 76.0°) = 1
sin(x + 76.0°)
=
√17
x + 76.0° ≈ α, 180 − α, ≈ 29.0,151.0 x ≈ 75.0°,
cos x sin x
S
A
= 3 + 2(
α T
α C
1 sin x
x ≈ 45°, ✓ 11(i)
=
1 √5
S
A
α T
α C
360 + α, 540 − α,
720 +
386.6, 513.4,
746.6
161.6°, 225°,
341.6°
V = 70 sin t + 85 cos t
R = √702 + 852 ≈ 110.11 ✓ 85
α = tan−1 ( ) ≈ 0.881 87 ✓ 70 ∴ V = 110.11 sin(t + 0.881 87)
2
∴ √13 cos(x + 56.3°) = 2 =
1
2x + 63.4° ≈ α, 180 − α, α ≈ 26.6, 153.4,
)
R = √22 + 32 = √13 3 α = tan−1 ( ) ≈ 56.3°
cos(x + 56.3°)
R = √12 + 22 = √5 2 α = tan−1 ( ) ≈ 63.4°
0° < x < 360° 63.4° < 2x + 63.4° < 783.4°
360 + α, 540 − α 389.0, 511.0 313.1° ✓
2 cos x = 3 sin x + 2 2 cos x − 3 sin x = 2
=1 =1
α ≈ 26.6° ⇒ 1st or 2nd quadrant
= 3 + 2 csc x )
2 − 2 cos 2x − sin 2x sin 2x + 2 cos 2x
sin(2x + 63.4°)
0° < x < 360° 76.0° < x + 76.0° < 436.0°
2(
=1
2
∴ √5 sin(2x + 63.4°) = 1
2
α ≈ 29.0° ⇒ 1st or 2nd quadrant
10(d) 2 cot x
) − sin 2x
2
1−cos 2x
2 √13
α ≈ 56.3° ⇒ 1st or 4th quadrant 0° < x < 360° 56.3° < x + 56.3° < 416.3°
S T
A α α C
11(ii) −1 ≤ sin t ≤1 −110.11 ≤ 110.11 sin(t + 0.881 87) ≤ 110.11 ⇒ max = 110.11 ✓ 110.11 sin(t + 0.881 87) = 110.11 sin(t + 0.881 87) =1
x + 56.3° ≈ α, 360 − α, 360 + α ≈ 56.3,303.7 416.3 x ≈ 247.4° ✓
t ≥0 t + 0.881 87 ≥ 0.881 87
𝑦 1
𝑦 = sin 𝑥 90° 180° 270° 360°
t + 0.881 87 ≈ t
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
π
𝑥
−1
2
≈ 0.689 ms −1 ✓
371
A math 360 sol (unofficial)
Ex 13.3
11(iii) V = 50 110.11 sin(t + 0.881 87) = 50 sin(t + 0.881 87)
=
α ≈ 0.471 ⇒ 1st or 2nd quadrant t ≥0 t + 0.881 87 ≥ 0.881 87
13(i)
In △ QRS, cos θ° =
110.11
S
A
α T
α C
θ
SR 8
T
8
S
θ
R
𝑂
R = √22 + 82 = √68 = √4 × 17 = 2√17 8
α = tan−1 ( ) ≈ 76.0° 2
∴ OR = 2√17 sin(θ° + 76.0°) max = 2√17 ⇒ sin(θ° + 76.0°) = 1 0° < θ < 90° 76.0° < θ + 76.0° < 166.0° θ° + 76.0° = 90° θ° ≈ 14.0° ✓
10
∴ x = √149 cos(8t − 0.611) ✓ 12(ii) −1 ≤ cos t ≤1 −√149 ≤ √149 cos(8t − 0.611) ≤ √149
𝑦 1
90° 180° 270° 360°
𝑥
−1
13(ii) OR =6 2√17 sin(θ° + 76.0°) = 6
max. = √149 ✓
sin(θ ° + 76.0°) x
= √149 √149 cos(8t − 0.611) = √149 cos(8t − 0.611) =1 t ≥0 8t − 0.611 ≥ −0.611
=
3 √17
α ≈ 46.7° ⇒ 1st or 2nd quadrant 𝑦 1
90° 180° 270° 360°
0° < θ° < 90° 76.0° < θ° + 76.0°< 166.0°
𝑥
S
A
α T
α C
−1
θ° + 76.0° ≈ α, 180 − α ≈ 46.7,133.3 θ° ≈ 57.4° ✓
8t − 0.611 ≈ 0 t ≈ 0.0763 ✓ 12(iii) x
=9 √149 cos(8t − 0.611) = 9 =
14(i) 9
0
3 sin θ + 4 cos(60° − θ) =2 [ ] 3 sin θ + 4 cos 60° cos θ + sin 60° sin θ = 2 1
√149
α ≈ 0.742 ⇒ 1st or 4th quadrant
© Daniel & Samuel A-math tuition 📞9133 9982
P
Q
OR = OS +SR = PT +SR = (2 sin θ° +8 cos θ°) cm [shown] ✓
R = √102 + 72 = √149 7 α = tan−1 ( ) ≈ 0.611
cos(8t − 0.611)
2
2
⇒ SR = 8 cos θ°
x = 10 cos 8t + 7 sin 8t
PT
⇒ PT = 2 sin θ°
50
t + 0.881 87 ≈ α, π − α ≈ 0.471,2.67 t ≈ 1.79 ms ✓ 12(i)
In △ PQT, sin θ° =
=2
3 sin θ + 2 cos θ + 2√3 sin θ (3 + 2√3) sin θ + 2 cos θ
=2 =2✓
2
S T
A α α C
√3 2
3 sin θ + 4 [( ) cos θ + ( ) sin θ]
2π + α 7.02 0.954 ✓
sleightofmath.com
372
A math 360 sol (unofficial)
Ex 13.3
14(ii) For (3 + 2√3) sin θ + 2 cos θ
15(ii) OM
=4 √29 cos(θ − 68.2°) = 4
2
R = √(3 + 2√3) + 22
cos(θ − 68.2°)
= √(9 + 12√3 + 12) + 4
α = tan−1 (
2 3+2√3
∴ √25 + 12√3 sin(θ + 17.2°) = 2
15
=
α ≈ 17.2° ⇒ 1st or 2nd quadrant
S
A
α T
α C
tan θ = AC
16(i)
360 + α 377.2 360° ✓
= 2 cot θ
sin θ
=
sin θ
=
𝑀
𝑂
(5,2) 2θ 5 𝐶 𝐴
𝑥
OM OA OM 5+2 cot θ
cos θ sin θ
)
18 16
tan x
𝑦 1
90° 180° 270° 360°
𝑥
−1
= tan x =
9 8
α ≈ 48.4° ⇒ 1st or 3rd quadrant
R = √22 + 52 = √29 5 α = tan−1 ( ) ≈ 68.2°
0° < x < 90° x = α, 180 − α ≈ 48.4°, 131.6° ✓
2
∴ OM = √29 cos(θ − 68.2°) max = √29 ✓ ⇒ cos(θ − 68.2°) = 1 0° < θ < 90° −68.2° < θ − 68.2° < 28.8° θ − 68.2° = 0° θ = 68.2° ✓
2
16 area of △ COD = 2(area of △ AOB) (ii)(b) 18 cos x = 2(8 sin x) 18 cos x = 16 sin x
For 2 cos θ + 5 sin θ
© Daniel & Samuel A-math tuition 📞9133 9982
+18 cos x [shown] ✓
Max = 2√97 ✓ ⇒ sin(x + 66.0°) = 1 0° < θ < 90° 66.0° < θ + 66.0° < 156.0° x + 66.0° = 90 x ≈ 24.0° ✓
= 5 sin θ +2 cos θ = 2 cos θ+5 sin θ [shown] ✓
= 8 sin x
8
sin θ (5 + 2 cot θ) = OM OM = sin θ (5 + 2 cot θ)
15(i)
+ (6)(6) sin(90° − x)
∴ S = 2√97 sin(x + 66.0°)
𝐵
= sin θ (5 + 2
1
= (4)(4) sin x
16 For 8 sin x + 18 cos x, (ii)(a) R = √82 + 182 = 2√97 18 α = tan−1 ( ) ≈ 66.0°
𝑦
OA = OC +CA =5 +2 cot θ [shown] ✓
S = area of △ AOB +area of △ COD 2
2
T
θ − 68.2° ≈ −α, α, 360 − α ≈ −42.0 42.0, 318.0 Θ ≈ 26.2° ✓
√25+12√3
1
AC
A α α C
2
sin(θ + 17.2°)
θ + 17.2° ≈ α, 180 − α, ≈ 17.2,162.8, θ ≈ 0°, 146°,
S
0° <θ < 90° −68.2° < θ − 68.2° < 28.8°
) ≈ 17.2°
0° ≤ θ ≤ 360° 17.2° ≤ θ + 17.2° ≤ 377.2°
√29
α ≈ 42.0° ⇒ 1st or 4th quadrant
= √25 + 12√3
4
=
S α T
A α C
𝑦 1
90° 180° 270° 360° −1
𝑥
17(i) p = A sin(ωt) +B sin(ωt + c) = A sin(ωt) +B[sin(ωt) cos(c) + cos(ωt) sin(c)] = A sin(ωt) +B cos(c) sin(ωt) + B sin(c) cos(ωt) = [A + B cos(c)] sin(ωt) +B sin(c) cos(ωt) = B sin (c) cos(ωt) +[A + B cos (c)] sin(ωt) ✓
sleightofmath.com
373
A math 360 sol (unofficial)
Ex 13.3
17(ii) Why? R2 = [Bsin (c)]2
18(v) In △ ABC,
+[A + B cos(c)]2
= B 2 sin2 (c)
In △ OBN,
+A2 + 2AB cos(c)
cos θ =
ON
AM = AC = AC = 2 cos θ = 6 sin θ
A
6
θ C
2 cm
sin θ =
6
C
B
M
N
θ
+CM +BN +6 sin θ +2 cos θ ✓
⇒ AM = R sin(θ + α) ✓ 18(vi) △ OAM area = 1 (base)
M
2 1
N
(height)
= OM
⋅ AM
2 1
⇒ ON = 6 cos θ In ⊿ ABC,
BN
2 cm
B
θ
O
sin θ =
θ
O
= A2 + B 2 + 2AB cos c [shown] ✓ In ⊿ OBN,
A
2
⇒ BN = 6 sin θ
= B 2 [sin2 (c) + cos 2 (c)] +A2 + 2AB cos(c)
18(i)
AC
⇒ AC = 2 cos θ
+A2 + 2AB cos(c) +B 2 cos 2 (c)
= B 2 [1]
cos θ =
= R cos(θ + α)⋅ R sin(θ + α)
BC
2 1
1
= R2 ( ) [2 sin(θ + α) cos(θ + α)]
2
2 1
⇒ BC = 2 sin θ
2
2
= R sin 2(θ + α) 4
1 2 (√40) sin 2(θ + α) 4 = 10 sin 2(θ + α) [shown] ✓
OM = ON −MN = ON −BC = 6 cos θ −2 sin θ [shown] ✓ 18(ii)
=
R = √62 + 22 = √40 = √4 × 10 = 2√10 2 α = tan−1 ( )≈ 18.4°
18(vii) −1 ≤ sin 2(θ + α) ≤1 −10 ≤ 10 sin 2(θ + α) ≤ 10
6
∴ OM = 2√10 cos(θ + 18.4°)
⇒ max 10 sin 2(θ + α) sin 2(θ + α)
18(iii) OM =5 2√10 cos(θ + 18.4°) = 5 cos(θ + 18.4°)
=
0° < θ < 90° 36.9° < 2(θ + 18.43) < 216.9°
5 2√10
α ≈ 37.8° ⇒ 1st or 4th quadrant 0° < θ < 90° 18.4° < θ + 18.4° < 108.4°
= 10 = 10 =1
S T
A α α C
𝑦 1
90° 180° 270° 360°
2(θ + 18.43) = 90° θ ≈ 26.6° ✓
𝑥
−1
θ + 18.4° ≈ α, 360 − α ≈ 37.8°, 322.2° θ ≈ 19.3° ✓ 18(iv) OA = R cm [pythagoras thm] ✓ ∡AOB = α ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
374
A math 360 sol (unofficial) 19
Ex 13.3
P = (k − 1) sin 4t + (2 + k) cos 4t R = √(k − 1)2 + (2 + k)2 = √(k 2 − 2k + 1) + (4 + 4k + k 2 ) = √2k 2 + 2k + 5 ✓ ⇒ max = √2k 2 + 2k + 5 = √2(k 2 + 1) + 5 1 2
1 2
2
2
= √2 [(k + ) − ( ) ] + 5 1 2
1
2
2
= √2 (k + ) − + 5 1 2
9
2
2
= √2 (k + ) + ≥√
9
2
≥
1 2
∵ (k + ) ≥ 0 2
3 √2 3
≥ √2 2 3
∴ max cannot be less than √2 ✓ 2
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
375
A math 360 sol (unofficial)
Rev Ex 13 A1(b) y = 2 cos (3π − 2x) + 3
Rev Ex 13
2
A1(a) cos 105° = cos(60° + 45°) = cos 60° cos 45° 1
√2 ( ) 2 2 1−√3 √2 ( )( ) 2 2 √2−√6 ✓ 4
=( ) = =
− sin 60° sin 45° √3 2
−( )
√2 2
= 2(− sin 2𝑥) + 3 = −2 sin 2𝑥 + 3 i.e. 𝑎 = −2, 𝑏 = 2, 𝑐 = 3
( ) Amplitude
= |𝑎| = |−2| = 2
Period
=
2
5 3π 2 3π
− 2x) + sin ( ) sin(2x)
= cos ( ) cos(2x)
+ [− sin ( )] sin 2x
= (0) cos 2𝑥 = − sin 2x = RHS [shown] ✓
+(−1) sin 2𝑥
2
2𝜋 2
=𝜋
𝑦 = −2 sin 2𝑥 + 3
2
π
1 𝑂
𝜋
𝑥 ✓
2
Workings Domain 0≤x≤π Axis with y=3±2 Amplitude Shape −sin
Cycle
© Daniel & Samuel A-math tuition 📞9133 9982
=
3 3π
= cos ( ) cos(2x) 2 π
𝑏
𝑦
A1(b) Show: cos (3π − 2x) = − sin 2x LHS = cos (
2𝜋
sleightofmath.com
π−0 π
=1
376
A math 360 sol (unofficial) A2(i)
Rev Ex 13
Coordinates of 𝜶 90° < α < 180° ⇒ 2nd quad. 4
𝑥
5
𝑟
cos α = − = 𝑥 = −4, y=
√52
−
5 13
𝑦 = −5,
=
𝛼 -4
(−4)2
=3
sin x = −
Coordinates of 𝜷 180° < β < 270° ⇒ 3rd quad. sin β = −
5
𝑦
𝑟=5
A3(a) 4 cos 2x +2 sin x 4(1 − 2 sin2 x) +2 sin x 4 − 8 sin2 x +2 sin x 8 sin2 x − 2 sin x − 1 (4 sin x + 1)(2 sin x − 1)
𝑦
13
𝑟 = 13
0° < x < 360° S
tan α−tan 45°
tan(α − 45°) =
1+tan α tan 45°
=
−4
24
5
5
25
3 )−(1) −4 3 1+( )(1) −4
(
=
✓
cos 2β = 1 − 2 sin2 β = 1 − 2 (−
1
cos 2 β =
1 2 cos 2 ( β) 2 1+cos β
2
7( 5 2
119
13
169
) =
✓
1 2
S
A
sin 2x 2
sin 2x
)
1+cos β 2
α α T C x = α, 180 − α = 30°, 150° ✓
=2 =
4 7
−1
2
= −√
A
α ≈ 34.8° ⇒ 1st or 2nd quadrant
1
cos β
2
A3(b) 7 sin x cos x = 2
3
= 2( )( ) = −
=
1
0° < x < 360°
α α T C x = 180 + α, 360 − α ≈ 194.5°, 345.5° ✓
−7 ✓ A2(ii) sin 2α = 2 sin α cos α
A2(iv) cos β
4
sin x =
-5
𝑟
x = −√132 − (−5)2 = −12 Trigonometric ratio
A2(iii)
or
α ≈ 14.5° α = 30° ⇒ 3rd or 4th quadrant ⇒ 1st or 2nd quadrant
𝛽
x
1
=3 =3 =3 =0 =0
(
∵ cos β < 0 2 1
for 90° < β < 135°
)
0° < x < 360° 0° < 2x < 720°
S
A
α T
α C
2
= −√
−12 ) 13
1+(
2 1
= −√ 13 2
= −√ =−
1
26 1
√26
✓
2x ≈ α, 180 − α, ≈ 34.8,145.2, 𝑥 ≈ 17.4°, 72.6°,
360 + α, 540 − α 394.9, 505.2 197.4°, 252.6° ✓
A3(c) sin 2x = sin2 x 2 sin x cos x = sin2 x sin x (2 cos x − sin x) = 0 sin x = 0 or 2 cos x = sin x 𝑦 tan x = 2 1 α ≈ 63.4° 𝑥 ⇒ 1st or 3rd quadrant 90° 180° 270° 360° −1
0° < x < 360° x = 180° ✓
0° < x < 360° S
A α
α T C x = α, 180 + α = 63.4°, 243.4° ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
377
A math 360 sol (unofficial) A3(d) cot 2x
Rev Ex 13
= 1 + cot x
1
A5(i) 7 cos x + 24 sin x − 12
= 25 cos(x − 73.7°) − 12
= 1 + cot x
tan 2x 1
=1+
2 tan x 1−tan2 x 1−tan2 x
=
2 tan x
−1 ≤ cos(x − 73.7°) ≤1 −25 ≤ 25 cos(x − 73.7°) ≤ 25 −37 ≤ 25 cos(x − 73.7°) − 12 ≤ 13
1 tan x
tan x+1 tan x
1 − tan2 x = 2 tan x + 2 2 tan x + 2 tan x + 1 = 0 (tan x + 1)2 =0 tan x = −1 α = 45° S A ⇒ 2nd or 4th quadrant α α T C 0° < x < 360°
max = 13 ✓ ⇒ cos(x − 73.7°) = 1 x − 73.7° ≈ 0° x ≈ 73.7° ✓
=
sin A cos A
sin A cos A
cos(x − 73.7°)
(2 cos 2 A − 1)
1
= (cos 2 2A − sin2 2A)
−1
2 5
x > 0° x − 73.7° > −73.7°
sec 2 2A
= cos(2 ⋅ 2A)
=
α ≈ 66.4° ⇒ 1st or 4th quadrant
= tan A (cos 2A) = cos 2A tan A = RHS [proven] ✓ A4(b) LHS = cos 4A
𝑥
A5(ii) 7 cos x = 10 − 24 sin x 7 cos x + 24 sin x = 10 25 cos(x − 73.7°) = 10
− tan A
= 2 sin A cos A −
90° 180° 270° 360°
min = −37 ✓ ⇒ cos(x − 73.7°) = −1 x − 73.7° ≈ 180° x ≈ 253.7° ✓
x = 180 − α, 360 − α = 135°, 315° ✓ A4(a) LHS = sin 2A
𝑦 1
S
T
A α α C
x − 73.7° ≈ −360 + α, −α, ≈ −293.6, −66.4, x ≈ 7.3° ✓
cos2 2A 1 cos2 2A
2
= 1 − tan 2A = RHS [proven] ✓
α, 360 − α 66.4,293.6
A6(i) LHS = 1−cos θ+sin θ 1+cos θ+sin θ
A4(c) LHS =
sin(A+B) sin A cos B
=
sin A cos B+cos A sin B sin A cos B
=1+
cot A tan B = RHS [proven] ✓ A5(i) 7 cos x + 24 sin x = R cos(x − α) R = √72 + 242 = 25 ✓ 24
α = tan−1 ( ) ≈ 73.7° ✓ 7
=
θ 2
θ θ 2 2 θ θ θ 1+(2 cos2 −1)+(2 sin cos ) 2 2 2
=
θ θ θ 2 2 2 θ θ θ 2 cos2 +2 sin cos 2 2 2
=
θ θ θ 2 2 2 θ θ θ 2 cos (cos +sin ) 2 2 2
1−(1−2 sin2 )+(2 sin cos )
2 sin2 +2 sin cos
2 sin (sin +cos )
= tan
θ 2
= RHS [proven] ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
378
A math 360 sol (unofficial)
Rev Ex 13
A6(ii) 1 + sin θ = 2 cos θ sin θ − 2 cos θ = −1
B1(i)
=
cos(A+B) cos A cos B+sin A sin B
R = √12 + 22 = √5 2 α = tan−1 ( ) ≈ 1.11
7 5 7 5
5 cos A cos B + 5 sin A sin B = 7 cos A cos B −7 sin A sin B
1
=−
=
cos A cos B−sin A sin B
⇒ √5 sin(θ − 1.11) = −1 sin(θ − 1.11)
cos(A−B)
1 √5
α ≈ 0.464 ⇒ 3rd or 4th quadrant 0 <θ <π −1.11 < θ − 1.11 < 2.03
S
A
α T
α C
2 cos A cos B
= 12 sin A sin B
cos A cos B
= 6 sin A sin B [proven] ✓
tan A tan B
= ✓
1
B1(ii) tan(𝐴 + 𝐵) θ − 1.11 ≈ −π − α, −α, ≈ −2.68, −0.464, θ ≈ 0.644 ✓
π + α, 2π − α 3.61,5.82
= tan(45°)
tan 𝐴+tan 𝐵
=1
1−tan 𝐴 tan 𝐵 tan 𝐴+tan 𝐵 1−
−(1)
6
=1
1 6
5
tan 𝐴 + tan 𝐵 = ✓ 6
A7(i) 2.5
1 θ A m θ B
1.5
cos 2 A = θ
𝑥 = −1, y=
4 1
1
𝑥
4
2
𝑟
𝑦 𝑟
=
∴ √7.25 cos(θ − 68.2°) = 1.5
θ − 68.2° ≈ −360 + α, −α, ≈ −303.9, −56.1, θ ≈ 12.1° ✓
−1
1
2
2
√3 2
√3 2
= ( )( )− ( ) ( )
√7.25
0° <θ < 90° −68.2° < θ − 68.2° < 21.8°
-1
√3 2
1.5
α ≈ 56.1° ⇒ 1st or 4th quadrant
2 A
𝑦
− (−1)2 = √3
Trigonometric ratio cos(A + 60°) = cos A cos 60° − sin A sin 60°
1
=
𝑟=2
√22
sin 𝐴 =
R = √12 + 2.52 = √7.25 2.5 α = tan−1 ( ) ≈ 68.2°
cos(θ − 68.2°)
1
cos A = −√ = − =
A +B = 1.5 1 cos θ +2.5 sin θ = 1.5 cos θ + 2.5 sin θ = 1.5 [shown] ✓ A7(ii)
B2(i) Coordinates A is obtuse ⇒ 2nd quadrant
= −1 ✓ S T
A α α C
α, 360 − α 56.1, 303.9
B2(ii) Recap
sin 𝐴 =
√3 , cos 𝐴 2
sin 2A = 2 sin A cos A=
=−
1
2 −1 √3 2( )( ) 2 2
=−
√3 2
✓
B2(iii) cos 2A = 2 cos 2 A − 1= 2 (1) − 1 = − 1 ✓ 4
2
B2(iv) sin 3A = sin 2A cos A + cos 2A sin A −1 √3 )( ) 2 2 √3 √3 − 4 4
= (− =
1
√3 2
+ (− ) ( ) 2
=0✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
379
A math 360 sol (unofficial)
Rev Ex 13
B3(a) 4 sin 3x cos x − 4 cos 3x sin x + 1 = 0 4(sin 3x cos x − cos 3x sin x) = −1 4 sin(3x − x) = −1 sin(2x)
=−
B3(d) cos 2x − 3 cos x (2 cos 2 x − 1) − 3 cos x 2 cos 2 x − 3 cos x − 2 (2 cos x + 1)(cos x − 2)
1 4
cos x = −
α ≈ 14.5° ⇒ 3rd or 4th quadrant 0° < x < 180° 0° < 2x < 360°
α=
⇒ 2nd or 3rd quadrant
α T
α C
0≤x≤π S A α α T C x = π − α, π + α =
= 2 cos x = 2 cos x =0 =0 sin x = 1 0° < x < 360°
3(
1
𝑥
90° 180° 270° 360°
−1
−1
x = 90°, 270° ✓
x = 90° ✓
,
3
1 cos 2x
✓ = 8 sin 2x
) = 8 sin 2x
3
= 8 sin 2x cos 2x
3
= 8(
3
= 4(sin 4x)
sin 4x
=
1
1
0°
)
4
S
A
α T
α C
S
A
α T
α C
2π + α, 3π − α 7.13, 8.58 1.78, 2.14 ✓
B4(a) sin(x − y) =p (i) sin x cos y − cos x sin y = p q − cos x sin y = p q−p = cos x sin y cos x sin y =𝑞−𝑝 −(1)
√5
α ≈ 26.6° ⇒ 1st or 2nd quadrant
sin 𝑥 cos 𝑦 360 + α, 540 − α 386.6, 513.4 225°, 288.4° ✓
=𝑞
−(2)
sin(x + y) = sin(x) cos(y) + cos(x) sin(y) =q +q − p ∵ (2) & (3) = 2q −p ✓ B4(a) (ii)
tan x tan y
= = =
© Daniel & Samuel A-math tuition 📞9133 9982
2
4x = α, π − α, ≈ 0.848,2.29, x ≈ 0.212, 0.573,
√5 sin(2x − 63.4°) = 1
2x − 63.4° ≈ α, 180 − α, ≈ 26.6,108.4, x ≈ 45°, 108.4°,
sin 4𝑥
3
0≤x≤π 0 ≤ 4x ≤ 4π
R = √12 + 22 = √5 2 α = tan−1 ( ) ≈ 63.4° =
3
α ≈ 0.848 ⇒ 1st or 2nd quadrant
𝑥
B3(c) sin 2x = 2 cos 2x + 1 sin 2x − 2 cos 2x = 1
sin(2x − 63.4°)
2π 4𝜋
B3(e) 3 sec 2x
𝑦
1
3
A
𝑦
90° 180° 270° 360°
or
2
S
2x = 180 + α, 360 − α ≈ 194.5, 355.5 x ≈ 97.2°, 172.8° ✓ B3(b) sin 2x 2 sin x cos x sin x cos x − cos x cos x (sin x − 1) cos x = 0 or 0° < x < 360°
π
1
=1 =1 =0 =0 cos x = 2 (no solution)
sleightofmath.com
sin x cos x sin y cos y
sin x cos y cos x sin y q q−p
✓
380
A math 360 sol (unofficial)
Rev Ex 13 B5(b) cos 2 x = 1+cos 2x ✓
B4 (a) sin 2x sin 2y = 2 sin x cos x (2 sin y cos y) (iii) = 4 sin x cos y (cos x sin y) = 4q (q − p)✓
𝑦
2
y = 4 cos 2 x = 4(
B4(b) A + B + C = 90° C = 90° − (A + B)
1+cos 2x 2
)
𝑦 = 2 cos 2𝑥 + 1
3
−1
1
−1
O
180° 𝑥
-1
= 2 + 2 cos 2x −1 = 2 cos 2x + 1 ✓ i.e. 𝑎 = 2, 𝑏 = 2, 𝑐 = 1
Show: tan A tan B + tan B tan C + tan C tan A = 1 Amplitude = |𝑎| = |2| = 2 LHS = tan A tan B + tan B tan C + tan C tan A = tan A tan B + tan B tan[90° − (A + B)]
Period
90° ] tan A −(A + B) = tan A tan B + tan B cot(A + B) + cot(A + B) tan A = tan A tan B + cot(A + B) [tan B + tan A] + tan [
= tan A tan B + = tan A tan B +
1 tan(A+B) 1
= tan A tan B + (
tan A+tan B
𝑏
=
360 2
= 180°
Workings Domain 0° ≤ x ≤ 180° Axis with y=1±2 Amplitude Shape +cos
(tan A + tan B)
1−tan A tan B
360
max. = 1 + (2) = 3 ✓ min. = 1 + (−2) = −1 ✓
(tan A + tan B)
tan A+tan B 1−tan A tan B
=
) (tan A + tan B)
180−0
Cycle
= tan A tan B +1 − tan A tan B =1 = RHS [shown] ✓
180
=1
B5(a) For 2 cos x − 3 sin x, R = √22 + 32 = √13 3
α = tan−1 ( ) ≈ 56.3° 2
B6(a) LHS = cos(x+y)
(2 cos x − 3 sin x)2 = [√13 cos(x + 56.3°)] = 13 cos 2 (x + 56.3°) ≤ 13 [shown] ✓
2
∵ cos 2 (x + 56.3°) ≤ 1
0° < x < 360° 56.3° < x + 56.3° < 416.3° x + 56.3° ≈ α, 180 − α, 360 + α, 540 − α = 0,180, 483.7 x = 123.7°,
−sin(x−y)
(cos x cos y−sin x sin y)+(cos x cos y+sin x sin y)
= (sin
Trigonometric equation (2 cos x − 3 sin x)2 = 13 13 cos 2 (x + 56.3°) = 13 cos(x + 56.3°) = ±1
© Daniel & Samuel A-math tuition 📞9133 9982
+cos(x−y)
sin(x+y)
=
x cos y+cos x sin y)−(sin x cos y−cos x sin y)
2 cos x cos y 2 cos x sin y
= cot y = RHS [proven] ✓ 𝑦
B6(b) LHS
1
90° 180° 270° 360°
=
𝑥
1+sec 2θ tan 2θ
=
−1
= 180 + 𝛼, 360 − 𝛼,
=
1 cos 2θ sin 2θ cos 2θ
1+
(2 cos2 θ−1)+1 2 sin θ cos θ cos θ sin θ
=
=
cos 2θ+1 cos 2θ sin 2θ cos 2θ
=
cos 2θ+1 sin 2θ
2 cos2 θ 2 sin θcosθ
= cot θ = RHS [proven] ✓
360, 303.7° ✓
sleightofmath.com
381
A math 360 sol (unofficial)
Rev Ex 13
B6(c) LHS = sin2 2θ (cot 2 θ − tan2 θ) = sin2 2θ ( = sin2 2θ ( = sin2 2θ [ 2
cos2 θ
sin2 θ
−
sin2 θ cos2 θ 4 cos θ−sin4 θ
)
𝐴𝐵 >0 17 sin(𝜃 − 28.1°) > 0
)
sin2 θ cos2 θ (cos2 θ+sin2 θ)(cos2 θ−sin2 θ) (sin θ cos θ)2
= sin 2θ [
B7(iii) Given: 0° < θ < 90°
(1) cos 2θ 2
1 2
]
AB
AB = 17 sin(𝜃 − 28.1°) 118.1 θ O 28.1
]
( sin 2𝜃) cos 2θ
= sin2 2θ (1 4
sin2 2θ
= 4 cos 2θ = RHS [proven] ✓ B7(i) AB = OB −OA = 15 sin θ −8 cos θ
R = √152 + 82
= 17 ✓
8
α = tan−1 ( ) ≈ 28.1° ✓ 15 ∴ AB = 17 sin(θ − 28.1°) B7(ii) AB =5 17 sin(θ − 28.1°) = 5 sin(θ − 28.1°)
=
θ = 90
)
5 17
α ≈ 17.1° ⇒ 1st or 2nd quadrant
∴ 28.1° < 𝜃 < 90° B7(iv) shaded area = area of △ OPB 1
1
2
2
= (15 sin θ)(15 cos θ) − (8 sin θ)(8 cos θ) = = = =
225 2 161 2
sin θ cos θ sin θ cos θ
2 161 4
( sin 2𝜃) 2
sin 2θ ✓ ≤ sin 2θ
161 4
≤
161 4
⇒ max = 161 4
−32 sin θ cos θ
161 1
B7(v) −1 −
0° <θ < 90° [by inspection] −28.1° < θ − 28.1° < 61.9° S A θ − 28.1° ≈ α, 180 − α α α ≈ 17.1,162.9 T C θ ≈ 45.2° ✓
− area of △ OAQ
sin2θ =
sin 2θ
≤1
sin 2𝜃 ≤
161 4
161 4 161
𝑦 1
4
=1
90° 180° 270° 360°
𝑥
−1
0° < θ < 90° 0° < 2θ < 180° 2θ = α, 180 − α = 90 θ = 45° ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
382
A math 360 sol (unofficial)
Ex 14.1 3(a)
Ex 14.1 1(a)
d dx
(3x −7 ) = 3
d
(x −7 )
dx
d
55
5 d
( √x 2 ) =
dx 2
=
= d dx
(3x 2 d
d dx
√x3
3(c)
= −4
dx
d
d dx
= = = 2(d)
d dx
= = = 2(e)
d dx
=
dx
(1)
−0
d dx
(x 2 )
= −4(3x 2 ) +5(2x) = −12x 2 +10x ✓ 2(c)
d
(x) −
dx
+5
(
π2 x 2
3 π2 d
−
2x4 5
(x 2 )
3(d)
3 dx π2
(2x)
3 2π2 3
(
20 3 d
dx
(12)
−
πx9
11 8 (x )
d
100 x
2 d
d
3
(9x 2 − d dx
x2
a
b
dx 2
2
4(a) dx
(x 2 )
=
d
a
d
6
(
dx x3 d
d
d
6
✓
x3
1
− + 3) x
dx
(x −3 )
−
−4 )
d dx
+
x4
1
+
−2 )
d dx
(3)
+0
✓
x2
(3x + 2√x − 3) d dx
(x)
d
+2
1
(x 2 )
−
dx 1 1 +2 ( x −2 ) 2 1
+
√x
d dx
(3)
−0
✓
(8x 2 + 3x − √x) d dx
(x 2 ) +3
d dx
(x) −
+3(1)
= 16x
+3
d
(x −1 )
−(−x
18
(
2x2 +4x x
d dx
d
1
(x 2 )
dx 1 1 − ( x −2 ) 2 1
−
2√x
✓
)
(2x + 4) d
dx
(x)
= 2(1) =2✓
(x 3 ) 2 dx b 0 − (3x 2 ) 2 3b − x2 ✓ 2
(x −2 )
= 8(2x)
=
b d
d dx
+
=2
( ) −
✓
= 18x
dx d
=
x2
−3(−2x −3 )
=8
(x 9 )
11 dx π − (9x 8 ) 11 9 − πx 8 ✓ 11
( − x3 ) =
100
= 9(2x)
dx π d
(x −1 )
)
(x 2 ) −3
=3 3(f)
dx
−
= 3(1)
)
d
(x 2 ) +100
= 200x
=3
(x 4 )
5 dx 2 − (4x 3 ) 5 8 3
(3a) +b
)
+100(−x −2 )
dx
−
✓
= 100(2x)
=− 3(e)
(3a + bx 2 ) dx
d dx
2 x2
5
20 dx 3 (8x 7 ) 20 6 7 x 5
d
(100x 2 +
= 6(−3x
−0
=0 +b(2x) = 2bx ✓ 2(f)
d
=6
− x ✓
x
3x8
−
d
)
−
(x −1 )
−
=9
+4(1) +4 ✓
(x 3 )
d dx
=4
= 100
2
(x 5 )
(−4x 3 + 5x 2 − 12) d
(x) +2
+2(−x −2 )
dx
+ 4x − 1)
= 3(2x) = 6x
dx
✓
5
(x 2 ) +4
dx
x
d
= 4(1)
dx
=3
2(b)
( √x 2 )
2 dx 5 2 −3 ( x 5) 2 5 1
=
2(a)
3(b)
5
2 dx 5 d
2
(4x + )
=4
= 3(−7x −8 ) = −21x −8 ✓ 1(b)
d dx
+
d dx
(4)
+0
dx 2
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
383
A math 360 sol (unofficial) 4(b)
d dx
= =
(
Ex 14.1
x2 −6x+4
d
6(b)
)
x
4
dx d dx
(x − 6 + ) (x)
x d
−
=1
dx
(6)
+4
d dx
(
d dx
(x −1 )
4
−
= 1.5 t
✓
x2
6(c)
dx
=2
d
(x 2 )
dx
= 2(2x)
d dt
d
−
3
( )
dx
= =
(
( )
dx 2
−0
+
2x2
( +
5(a)
d dx
=
2 x2
✓
6(d)
dx 2
(
dx
d
dx
6(e) )
(3x1.5 d
dx
(x1.5 )
9
= √x 2 dx
=
(
2x
d dx
=3
(3x d
dx
(x)
= 3(1) =3 6(a)
d dt
d
+
1 2
(x )
−
dx 1 1 + ( x −2 ) 2 1
+
6x2 −√x+2
1
− x −2 )
+ x1.5
= 3(1.5x 0.5 )
d
d
−
dx
1 2
(x )
3 1 − (− x −2 ) 2 1
+
2√x
1
1
− x −2 −
2 1 d
−4(2.5t1.5 )
= 24t
−10t 2 ✓
2x√x
✓
1 − 2
(x )
+
d dx
6(f)
(x −1 )
−
1 x2
+
= 2(2t) = 4t
+1 +1 ✓
+t d
© Daniel & Samuel A-math tuition 📞9133 9982
d dt
d dt
(9)
+0
d dt
−3
(t) −
d dt
(3)
−0
− 2t −1 ) −2
d dt
(t −1 )
−2(−t −2 ) +
2 t2
✓
y = 4x 2 − 6x + 1 dx
− 1) (t) −
+12(1) +12 ✓
=2
dy
d = (2t 2 dt d = 2 (t 2 )
(2t
= 2(1)
7(a)
(t + 1)(2t − 1)
d dt
=2
✓
+
dt
d (2t + 1)(t − 2) [ ] dt t d 2t 2 − 3t − 2 = ( ) dt t =
+(−x −2 )
4x√x
d (2t + 3)2 dt d = (4t 2 + 12t + 9) dt d d = 4 (t 2 ) +12 (t) = 4(2t) = 8t
+ x −1 )
2 dx 3 1 1 − (− x −2 ) 2 2 1
dt
dt
= 12(2t)
dt
)
+
dt
[4t 2 (3 − √t)]
3
✓
√x
=3
5(b)
(x −2 )
3x2 +x−1
d
(1)
dt
d
+2(−2x −3 ) 4
dt
d (12t 2 − 4t 2.5 ) dt d d = 12 (t 2 ) −4 (t 2.5 )
)
( ) +2
x3
−
dt d
=
dx 2 d 1
=−
(1 + √t)(1 − √t)
= −1 ✓
)
=0
−2 ✓
=0
x2 +4
2x2 d 1
−2(1)
dt
dt d
(t)
d (1 − t) dt d d = (1) − (t)
dx 2x 3 d (x −1 ) − 2 dx 3 − (−x −2 ) 2 3
= 4x 4(d)
0.5
d dt
=
dx 2 d 5
−
−2
= √t 2
)
d 5 3 = (2x 2 − − ) dx 2 2x d d 5 2 = (2x ) − ( )
− 2t)
3
4x3 −5x−3 2x
t(√t − 2) d = (t1.5 dt d = (t1.5 ) dt
+4(−x −2 )
−0
=1 4(c)
d
dt
= 8x − 6
Gradient at (2,5):
(1)
dy
−0
|
dx x=2
= 8(2) − 6 = 10 ✓
sleightofmath.com
384
A math 360 sol (unofficial) 7(b)
Ex 14.1 8(b)
y = √x(2 − x) = 2√x −x√x = 2x dy
=
dx
=
1 2
−x
y = 2x 2 + 3x dy
= 4x + 3
dx
3 2
1 1 2 ( x −2 ) 2 1
Curve at y = 2: 2x 2 + 3x =2 2 2x + 3x − 2 = 0 (2x − 1)(x + 2) = 0
3 1
− x2 2 3
− √x 2
√x
1
x= dy
|
dx x=9
= =
1
3
− √9 2
√9 1
1
Gradients at x = , −2: 2
3
dy
2
dx x=1
− (3)
3
=−
or x = −2
2
Gradient at x = 9:
25 6
1
|
= 4( ) + 3 = 5✓ 2
2
✓
dy
= 4(−2) + 3 = −5 ✓
|
dx x=−2
7(c)
y= =
(x+1)(2x−3) x 2x2 −x−3
8(c)
x
= 2x −1 −
x
= x + 4x −1
= 2 −0 −3(−x =2
+
|
dx x=−1
=1−
3
Curve at y = 5:
=2+
x2 +4
3 (−1)2
dx
=5
x 2
x +4 = 5x 2 x − 5x + 4 = 0 (x − 1)(x − 4) = 0 x = 1 or x = 4
y = x 2 − 2x dy
4 x2
x2
=5✓ 8(a)
x
= x + 4(−x −2 )
dx
−2 )
Gradient at x = −1: dy
4
3
dy dx
x
=x+
= 2x −1 −3x −1 dy
x2 +4
y=
= 2x − 2 Gradients at x = 1,4:
Curve at y = −1: x 2 − 2x = −1 2 x − 2x + 1 = 0 (x − 1)2 =0 x=1
dy
dx
Gradient at x = 1: |
dx x=1
= 2(1) − 2
= 1 − (4)2 = ✓
4
3 4
= 4x − 5
Gradient at y − axis (x = 0): dy
=0✓
© Daniel & Samuel A-math tuition 📞9133 9982
|
y = 2x 2 − 5x + 1 dy
dy
= 1 − (1)2 = −3 ✓
dx x=4
9(a)
4
|
dx x=1 dy
|
dx x=0
sleightofmath.com
= 4(0) − 5 = −5 ✓
385
A math 360 sol (unofficial) 9(b)
y=
Ex 14.1
x−4
10(a) y = 3x 2 + 6x + 2
x
dy
4
=1 −
dx
x
= 1 −4x −1 dy
Gradient is 3: dy
= 0 −4(−x −2 )
dx
=
x
x
4
6x + 6 = 3
x2
x
dx x=4
y=
= (4)2
=−
1 2
1
2
2
1
1
2
4
1 4
10(b) y = ax 2 + b
=
x
1
= ax 2 +bx −1
✓
4
x+2
dy
x
dx
=1 +
2
⇒ (− , − ) ✓
4
|
1
2
=0
Gradient at x = 4:
9(c)
=−
y|x=−1 = 3 (− ) + 6 (− ) + 2
=4
dy
=3
dx
Curve crosses x − axis (y = 0): y =0 x−4
= 6x + 6
= a(2x) +b(−x −2 )
2
= 2ax
x
b
−
x2
= 1 +2x −1 Gradient is 2 at x = 1: dy
dy
= 0 +2(−x −2 )
dx
=−
2
=2
2a − b b
x2
Curve crosses y = x: x
|
dx x=1
=
=2 = 2a − 2
−(1)
Gradient is −1 at x = 4:
x+2
dy
x
2
|
dx x=4 b
x =x+2 2 x −x−2 =0 (x + 1)(x − 2) = 0 x = −1 or x = 2
8a −
16
= −1 = −1
−(2)
sub (1) into (2): 8a −
2a−2 16 1−a
= −1
Gradient at x = −1,2
8a +
dy
64a + 1 − a 63a
= −8 = −9
a
=− ✓
|
=
|
=
dx x=−1 dy dx x=2
2 − (−1)2 2 − (2)2
= −2 ✓ 1
=− ✓ 2
= −1
8
1
−(3)
7
sub (3) into (1): 1
16
7
7
b = 2 (− ) − 2 = −
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
✓
386
A math 360 sol (unofficial) 11
Ex 14.1
Line: 4y − 3x = 7 4y = 3x + 7 y
3
7
4
4
= x+
13
y=
3
5
8
8
x+
4 3 2 x 8 2
7
3
4 3
8 9
4
8
1
=9 − −(2)
x2
Tangent ∥ x − axis: dy
=0
dx
= x2 +
− x−
x −1
= 9 +(−x −2 )
dx
sub (1) into (2): 3
1
= 9x +x
−(1)
dy
= x2 +
x
= 9x +
Curve: 3x 2 − 8y = −5 −8y = −3x 2 − 5 y
9x2 +1
5
9−
8
1
1
=0
x2
=9
x2 2
=0
x
3x − 6x − 9 = 0 x 2 − 2x − 3 = 0 (x + 1)(x − 3) = 0 x = −1 or x = −3
= 1
1 9
1
(x + ) (x − ) = 0 3
3
1
x=−
or
3
x=
dy
y|x=1 = 6
1
1
= x 4
14 3
3
4
4
y=
9
4
4
= (3) = ✓
|
dx x=3
12
3
2 π 1
3
+
√x 1
2
dy dy
π√x
3
= x 2 +3x −2
= (−1) = − ✓
|
dx x=−1
⇒ ( ,6 ) ✓
3
Gradient at x = −1, −3: dy
3
⇒ (− , −6) ✓
3
dx
3
y|x=−1 = −6 3
Curve gradient:
1
1
π 1
1
3
= ( x −2 ) +3 (− x −2 )
dx
=
2 2 π
2
−
4√x
3 2x√x
2
y = x(x − 2) −3 2 = x(x − 4x + 4) −3 = x 3 − 4x 2 + 4x −3 dy dx
Gradient at x = 1: dy
|
dx x=1
=
= 3x 2 − 8x + 4 15(i)
Gradient is 7:
dx
=7
dx
3x 2 − 8x + 4 = 7 3x 2 − 8x − 3 = 0 (3x + 1)(x − 3) = 0 1
x=−
or
3
y|x=−1 = −4 3
22 27
1
22
3
27
⇒ (− , −4
)✓
π
−
3
4√(1) 2(1)√(1) π 3 4
− ✓ 2
y = x 3 + px + q dy
dy
=
= 3x 2 + p
Curve at (3,16): (16) = (3)3 + p(3) + q 16 = 27 + 3p + q q = −3p + 11
x=3 y|x=3 = 0
Gradient at (3,16) is 20:
⇒ (3,0)✓
dy
|
dx x=3 2
= 20
3(3) + p = 20 27 + p = 20 p = −7 ✓ q|p=−7 = 10 ✓ © Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
387
A math 360 sol (unofficial)
Ex 14.1
15(ii) Curve & its gradient with p = −7, q = 10: y = x 3 − 7x − 10 dy dx
19(i)
f(0) = 0 ∴x=0✓
= 3x 2 − 7
Gradient is 20: dy
= 20
dx
3x 2 − 7 = 20 2 3x − 27 =0 2 x −9 =0 (x + 3)(x − 3) = 0 x=3 or x = −3 (taken) y|x=−3 = (−3)3 − 7(−3) + 10 =4 ⇒ (−3,4) ✓ 16
f(x) = x[x 2 + kx + (2k − 3)]
19(ii) Observe quadratic factor [x 2 + kx + (2k − 3)] i.e. a = 1, b = k, c = 2k − 3 Discriminant For 2 non − real roots, b2 − 4ac <0 2 k − 4(1)(2k − 3) < 0 k 2 − 8k + 12 <0 (k − 2)(k − 6) <0 +
f(x) = √x
− 2
f(x + δx) = √x + δx
= lim
δx→0
= lim
19(iii) f(x) = x 3 + kx 2 + (2k − 3)x f ′ (x) = 3x 2 + 2kx + 2k − 3 i.e. a = 3, b = 2k, c = 2k − 3 Roots: α & β
δx
δx→0
6
2
f(x+δx)−f(x)
f ′ (x) = lim
+
√x+δx−√x √x+δx+√x δx √x+δx+√x x+δx−x
δx→0 δx(√x+δx+√x) δx
= lim
δx→0 δx(√x+δx+√x) 1
Sum of roots
= lim = = 17
y
δx→0 (√x+δx+√x) 1
Product of roots = αβ
= (−
= (x 3 + 1)(x 2 + 1)(x + 1)
=
= (x 5 + x 3 + x 2 + 1)(x + 1) +x 4 +x
5
+x 3 +x 3
=
+x +x
2
=
+1
= x 6 + x 5 + x 4 + 2x 3 + x 2 + x + 1 dy dx
c
b a
=− =
a
2k
3 2k−3 3
(α − β)2 = (α + β)2 −4αβ
✓
= x6
=
∵ √x + δx → √x as δx → 0
√x+√x 1 2√x
=α+β =−
3
)
4k2
−4 ( −
2k−3
3 8k−12
9 4k2 −24k+36
)
3
9 4 9 4
(k 2
− 6k + 6)
= (k − 3)2 ✓ 9
2 distinct roots ⇒ (α − β)2 ≠ 0
= 6x 5 + 5x 4 + 4x 3 + 6x 2 + 2x + 1 ✓
18 f(x) = (x − 1)(x + 1) (x 2 + 1) (x 4 + 1) = (x 2 − 1) (x 2 + 1) (x 4 + 1) (x 4 + 1) = (x 4 − 1) = (x 8 − 1) … = (x1024 − 1) = x 2048 − 1
2k 2
4 9
… (x1024 + 1) … (x1024 + 1) … (x1024 + 1) … (x1024 + 1)
k
(k − 3)2
≠0 ≠3✓
(x1024 + 1)
f ′ (x) = 2048x 2047 ✓ © Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
388
A math 360 sol (unofficial) 19(iv) |α − β|
≤
(α − β)2 4 9
≤
(k − 3)
2
≤
2
(k − 3) k 2 − 6k + 9 k 2 − 6k + 8 (k − 2)(k − 4) +
− 2
Ex 14.1
2
20
3 4
dy dx
9 4
= 5x 5
y = x2 ✓
9
y=
≤1 ≤1 ≤0 ≤0
21
+ 4
⇒2≤k≤4
2 5 2 x 2
Step 1: Step 2: Step 3: Step 4:
+1✓ x + x + ⋯ + x = x2 1 + 1 + ⋯ + 1 = 2x x = 2x [wrong] 1=2
The ‘number of x’ should not be disconnected from x and be excluded from being differentiated
Combine inequalities, 2 ≤ k ≤ 4 and k ≠ 3 and 2 < k < 6 and k ∈ ℤ
2
3
4
6
and k ∈ ℤ
⇒ k=4✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
389
A math 360 sol (unofficial)
Ex 14.2 2(b)
Ex 14.2 1(a)
d dx
) =2
dx
(x + 2)
= 2(c)
d 3 [ ]= dx (3−4x)3
d dx
(2x − 1)
=
3
= 4(2x − 1) ⋅ 2 = 8(2x − 1)3 ✓ 1
( x + 2)
3
d dx
= 2(d)
5
dx 4
4
1
= 5 ( x + 2) ⋅ 4
4
1
= 5 ( x + 2) ⋅ 4
d
d 6 [ ] dx (2−x)2
[(3 − 4x)−3 ]
( x + 2)
dx 4
=
1 4
=
= ( x + 2) ✓ 1(d)
d dx
d
12 − (2−x)3 12 ✓ (2−x)3
dx
(1 − 4x)10
= 10(1 − 4x)
9
⋅
d dx
(√2x − 3) =
=
d dx
= 3(b)
(2 − 3x 2 )4
= 4(2 − 3x 2 )3 ⋅
d dx
d dx
1
d dx 1
[(2x − 3)2 ] 1
1
(2 − 3x 2 )
√2x−3
1
d dx 1
dx
(−x + x
1
2 )3
= 3(−x + x 2 )2
⋅
d dx
3(c)
(−x + x 2 )
d
(
4
) =4
dx 2x+7
d dx
=
=
√5−3x2
1
1
−4 (2x+7)2 8 − (2x+7)2
= d dx
(2x + 7)
=
⋅2 ✓
3(d)
1
√x2 +2x+2
⋅ (−6x) ✓
d dx
(x 2 + 2x + 2)
✓
d (√x 2 − x + 1) dx 1 d = [(x 2 − x + 1)2 ] dx 1
1 2
= = sleightofmath.com
(5 − 3x 2 )
⋅ (2x + 2)
2√x2 +2x+2 x+1
= (x 2 − x + 1)−2 ⋅
© Daniel & Samuel A-math tuition 📞9133 9982
d dx
1 d [(x 2 + 2x + 2)2 ] dx
= (x 2 + 2x + 2)−2 ⋅
[(2x + 7)−1 ]
⋅
(√x 2 + 2x + 2)
2
= 4[−(2x + 7)−2 ] ⋅ =
d dx
= 3(−x + x 2 )2 ⋅ (−1 + 2x) = 3(−x + x 2 )2 (2x − 1) ✓ 2(a)
1
2√5−3x2 3x
=− d
[(5 − 3x 2 )2 ]
2
=
(2x − 3)
✓
= (5 − 3x 2 )−2
= 4(2 − 3x 2 )3 ⋅ (−6x) = −24x(2 − 3x 2 )3 ✓ 1(f)
d dx
⋅2
2√2x−3 1
(√5 − 3x 2 ) =
(2 − x)
⋅ (−1)
2
= 10(1 − 4x)9 ⋅ (−4) 9 = −40(1 − 4x) ✓ 1(e)
d dx
= (2x − 3)−2 ⋅
(1 − 4x)
(3 − 4x)
[(2 − x)−2 ]
4 4
3(a)
d dx
⋅ (−4)
= 6[−2(2 − x)−3 ] ⋅
1
4
5 1
d dx
(6x 2 + 5)
✓
9 − (3−4x)4 36 ✓ (3−4x)4
=6
d dx
⋅ 12x
+5)2 24x − (6x2 2 +5)
= 3[−3(3 − 4x)−4 ] ⋅
= 4(2x − 1) ⋅
d
[(6x 2 + 5)−1 ]
= − (6x2
(2x − 1)4 3
1(c)
d dx
2
d
= 5(x + 2)4 ⋅ 1 = 5(x + 2)4 ✓ d
2
(x + 2)5
= 5(x + 2) ⋅
dx
(
= 2[−(6x 2 + 5)−2 ] ⋅ 4
1(b)
d
dx 6x2 +5
1 2√x2 −x+1 2x−1 2√x2 −x+1
d dx
(x 2 − x + 1)
⋅ (2x − 1) ✓ 390
A math 360 sol (unofficial) 4(a)
Ex 14.2
y = (3x − 1)4 dy
4(d)
= 4(3x − 1)
dx
3
⋅
d dx
1
y = (4x−5)3 = (4x − 5)−3
(3x − 1)
= 4(3x − 1)3 ⋅ 3 = 12(3x − 1)3 ✓
dy
= −3(4x − 5)−4 ⋅
dx
3
= − (4x−5)4 12
1
Curve at y = y = √5 − 2x = (5 − 2x) dy
1 2
1
1
= (5 − 2x)−2 ⋅
dx
2
1
=
⋅4
= 12(2)3 = 96 ✓
|
dx x=1
4(b)
(4x − 5)
= − (4x−5)4 ✓
Gradient at x = 1: dy
d dx
2√5−2x 1
=−
√5−2x
d dx
(5 − 2x)
⋅ (−2) ✓
:
27 1
1 (4x−5)3
=
(4x − 5)3 (4x − 5)3 4x − 5 x
= 27 = 33 =3 =2
27
Gradient at x = 2: dy
12
|
= − (4(2)−5)4 = −
dx x=2
1
Gradient at x = :
4
✓
27
2
dy
|
dx x=1
=−
2
4(c)
1 1 √5−2( ) 2
=−
1 √5−1
=−
1 2
✓
5(a)
2x−3
d
5
dx d
(2 − √x)
dx
5
= 6(2 − √x) ⋅ [0
= −(2x − 3)−2 ⋅
dx
5
= 6(2 − √x) ⋅ [
= (2x − 3)−1 dy
6
[(2 − √x) ]
= 6(2 − √x) ⋅
1
y=
d dx
1
= − (2x−3)2
d dx
5
= 6(2 − √x) ⋅ (−
(2x − 3)
=−
⋅2
(2) −
1
d
(x 2 )]
dx 1 −1 − x 2] 2 1 2√x
)
5
3 √x
(2 − √x) ✓
2
= − (2x−3)2 5(b) Curve at y = 1: 1 2x−3
2x − 3 x
d
1
dx [(1−1)3 ] x
d 1 −3 = [(1 − ) ] dx x
=1 =1 =2
1 −4
= −3 (1 − ) x
=−
Gradient at x = 2: dy
|
dx x=2
2
2
= − (2(2)−3)2 = − (1)2 = −2 ✓
=− =− =−
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
3 1 4 (1− ) x
3 1 4 (1− ) x
3 1 4 (1− ) x
⋅
d dx d
⋅[
1
(1 − )
dx
x
(1) −
d dx
(x −1 )]
⋅ [0 −(−x −2 )] ⋅
1 x2
3 1 4 x2 (1− ) x
391
A math 360 sol (unofficial) 5(c)
d
1
[
Ex 14.2 6(a)
2]
y = (x + 2)2 √x + 2 1
dx 2(3−2)
= (x + 2)2 (x + 2)2
x
=
−2 1 d 3 [( − 2) ] 2 dx x 1
3
2
x
5
= (x + 2)2
−3
d
= [−2 ( − 2) ] ⋅ =− =−
1
dy
dx x d
dx
⋅ [3
3 3 ( −2) x
1 3 x
3
( − 2) dx
(x −1 ) −
3
⋅ [3(−x −2 ) −0]
3
⋅ (− 2 )
d dx
2 5
(2)]
1
3
3 x
= 5(d)
d dx
3 3 x
3
x2 ( −2)
2
= =
6(b)
d dx
−
dy
1 2
⋅
1
d
2
1 (2−3x2 )2
(2√x + 2)
dx
⋅ [2
2√2√x+2 1
1 2
d
(x ) +
dx
d dx
= 1.5√2 − 3x 2 (2)]
1 − 2
1
⋅ [2 ( x ) +0] 2
2√2√x+2 1
⋅
2√2√x+2 1
d dx
(2 − 3x 2 )
⋅ (−6x)
= −9x√2 − 3x 2 ✓ 7(i)
x 1+x
1
=
(1+x)−1 1+x 1
=1−
√x
[shown] ✓
1+x
✓ 7(ii)
d
(
x
dx 1+x d
=
1 3
[(x − ) ] x
1 2
d
x
dx
=
1
(x − )
d
x
dx
(x) −
d dx
(x −1 )]
=
x
1 2
1
x
x2
8(i) [(√x + 2x) ]
= 4(√x + 2x)
3 3
⋅
d dx d
1 2
(x ) +2
dx 1 3 1 2x) ⋅ [ x −2 2 3 1 2√x
(1) −
dx
) [(1 + x)−1 ]
− [−(1 + x)−2 ⋅ −[−(1 + x)
1 (1+x)2
−2
d dx
(1 + x)]
⋅ 1]
✓
d dx
2x−1 (x−1)2
≡
A
B
x−1
+ (x−1)2
Cover-up rule:
(√x + 2x)
⋅[
= 4(√x + 2x) (
1+x d
)✓
4
= 4(√x + 2x)
dx
1
(1 −
=0
= 3 (x − ) ⋅ [1 −(−x −2 )] = 3 (x − ) (1 +
dx d
)
=0
x
1 2
= 4(√x +
= 1.5(2 − 3x 2 )0.5 ⋅
dx
1 2
d
(2−3x2 )
[(2√x + 2) ]
= 3 (x − ) ⋅ [
dx
√2−3x2
3
= 3 (x − ) ⋅
5(f)
2
= (2 − 3x 2 )2
1 2
2√x(2√x+2)
5(e)
(2−3x2 )
y= =
= (2√x + 2) 2
=
3
= (x + 2)2 ✓
✓
1
=
(x + 2)
3 2
2 5
x
( −2)
d dx
= (x + 2) ⋅ 1
( −2)
=−
3
5
= (x + 2)2 ⋅
x = 1:
(x)]
+2(1)]
1 ( )2
Substitution:
+ 2) ✓
x = 0:
−1
= −A + B
1
=2✓
A 2x−1
∴ (x−1)2 =
© Daniel & Samuel A-math tuition 📞9133 9982
⇒ B=1✓
=B
sleightofmath.com
2 x−1
1
+ (x−1)2
392
A math 360 sol (unofficial)
Ex 14.2
8(ii)
10
y = (1 − x)4
d 2x−1
dy
dx (x−1)2
dx
=
d
[
2
d dx
[(x − 1)−1 ]
= 2[−(x − 1)
−2 ]
⋅
+ d dx
d dx
[(x − 1)−2 ]
(x − 1) +2[−2(x − 1)
= 2[−(x − 1)−2 ] ⋅ 1
−3 ]
2
(1 − x)
Gradient is −4: ⋅
d dx
dy
(x − 1)
= −4
dx 3
−4(1 − x) = −4 1−x =1 x =0 y|x=0 = 1 ⇒ (0,1) ✓
+2[−2(x − 1)−3 ] ⋅ 1 2
= − (x−1)2
d dx
= 4(1 − x)3 ⋅ (−1) = −4(1 − x)3
1
+ (x−1)2 ]
dx x−1
=2
= 4(1 − x)3 ⋅
− (x−1)3
2
= − (x−1)3 [(x − 1) +1] 2
= − (x−1)3 (x)
11
3
y = √x 2 − 2x + 5
2x
1
= − (x−1)3 ✓ 9(a)
= (x 2 − 2x + 5)3
y = (x 2 − 2x − 4)3
dy
dy
= 3(x 2 − 2x − 4)2 ⋅
dx
d dx
3
At
y=
1 1
3
= − (1 + x)−2 ⋅
dx
2
=− =−
1
d dx
(1 + x)
12
3
2(1+x)2 1
dy
3 2(1+x)2
|
dx x=3
=−
3
=−
2(4)2
1
3
= (a − x)2 ⋅
dx
1
=0
= (a − x)2
2 3
d dx
(a − x)
1 2
= (a − x) ⋅ (−1) 2
Gradient at x = 3: dy
= 0:
dx 2x−2
y = √(a − x)3
⋅1
3
dy
x =1 3 y|x=1 = √1 − 2 + 5 3 = √4 3 ⇒ (1, √4) ✓
√1+x
1
2
2
= (1 + x)−2 dy
2x−2
3(x2 −2x+5)3
= −12 ✓ 9(b)
(x 2 − 2x + 5)
3(x2 −2x+5)3
= (−12)(1 + 2 − 4)2
|
d dx
⋅ (2x − 2)
2 3(x2 −2x+5)3
=
Gradient at x = −1: dx x=−1
1
=
(x 2 − 2x − 4)
= 3(x 2 − 2x − 4)2 ⋅ (2x − 2) = (6x − 6)(x 2 − 2x − 4)2
dy
2
1
= (x 2 − 2x + 5)−3 ⋅
dx
1 16
3
= − √a − x 2
✓
Gradient of − dy
|
dx x=2 3
1
at x = 2:
3
=−
1 3 1
− √a − 2 = − 2 3
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
√a − 2
=
a−2
=
a
=
2 9 4 81 166 81
✓
393
A math 360 sol (unofficial)
Ex 14.2
13 y = [(x 2 − 1)2 + 4]5
16(i)
y = (x 2 + 1)n dy
dy
= 5[(x 2 − 1)2 + 4]4 ⋅
dx
d dx
= 5[(x 2 − 1)2 + 4]4 ⋅ [
[(x 2 − 1)2
d dx
+4]
[(x 2 − 1)2 ]
= 5[(x 2 − 1)2 + 4]4 ⋅ [2(x 2 − 1) ⋅
dx
d dx
+
= n(x 2 + 1)n−1 (2x) = 2nx(x 2 + 1)n−1 [shown] ✓
d dx
(4)]
(x 2 − 1) +0]
16(ii) d2 y dx2
= 2nx [(n − 1)(x 2 + 1)n−2 ⋅
= 5[(x 2 − 1)2 + 4]4 ⋅ [2(x 2 − 1) ⋅ 2x]
d dx
(x 2 + 1)]
= 20x(x 2 − 1)[(x 2 − 1)2 + 4]4 ✓
+
14 y=
(4−√16−x2 )
2
−2
= 4nx 2 (n − 1)(x 2 + 1)n−2
dy
+2n(x 2 + 1)n−1
= 2n(x 2 + 1)n−2 [2x 2 (n − 1) + (x 2 + 1)]
dx −3
= −2(4 − √16 − x 2 ) =− =− =− =−
15
(2nx) ⋅ (x 2 + 1)n−1
= 2nx[(n − 1)(x 2 + 1)n−2 ⋅ 2x] +2n ⋅ (x 2 + 1)n−1
1
= (4 − √16 − x 2 )
=
d dx
2 (4−√16−x2 )
d dx d
(4 − √16 − x 2 )
⋅[
3
dx
2
(4)
−
d dx
⋅ [0 − (16 − x 2 )−2 ⋅
3
⋅ [0 − (16 − x 2 )−2 ⋅ (−2x)]
3
⋅
2
dx
2
√16−x2 (4−√16−x2 )
3
dy
−(1)
|
dx x=1 n)
n(2 1 3
1
= − (x 2 + 3)−2 ⋅ 2
=−
|
dx2 x=1
✓
√x2 +3
=−
d2 y
√16−x2
1
=−
= 2n(2n−1 ) = n(2n )
1
d dx
(x 2 + 3)
17
⋅ 2x
3 2(x2 +3)2
= 2n[(1)2 + 1]n−2 [2(1)2 (n − 1) +((1)2 + 1)] = 2n(2)n−2 [2(n − 1) + 2] = n(2)n−1 [2n] = n2 (2n )
1
dx
]]
= 2n(1)[(1)2 + 1]n−1
|
dx x=1
x
= (x 2 + 3)−2 dy
1 2
(16 − x 2 )]
1
1
(4−√16−x2 ) −2x
d
2)
3
2 (4−√16−x2 ) 2
dy
[(16 − x
1
1
(4−√16−x2 )
y=
⋅
:
d2 y
|
dx2 x=1 2 (2n )
:n : n [shown] ✓ f(x) = √1 + √x = (1 + √x)
1 2
x 3
(x2 +3)2 x 1
2
−(2)
x2 +3 √x2 +3
=
sub (1) into (2): dy
=−
dx
(x 2 + 3) (x 2 + 3)
dy dx dy dx
−
1
f ′ (x) = (1 + √x)
x x2 +3
= y =
= −xy
=
+ xy = 0 [shown] ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
1 2√1+√x 1 2√1+√x 1 2√1+√x 1 4√x+x√x
1 2
⋅
d dx d
(1 + √x)
⋅[
dx
(1) + 1
d dx
1
(x 2 )]
1
⋅ [0 + x −2 ] 2
⋅
1 2√x
[shown] ✓
394
A math 360 sol (unofficial) 18
Ex 14.2
x2 + y2 = 1 y2 = 1 − x2
19 1
y=
1 1 1 + + x2 +1 x2 +2 x2 +3
= ±√1 − x 2
y
=( dy
=±
dx
=± =±
1 2√1−x2 1 2√1−x
⋅
d dx
1 x2 +1
1
+
+
x2 +2
1
)
−1
x2 +3
(1 − x 2 ) dy
⋅ (−2x) 2
dx
= −(
x √1−x2
1 x2 +1
+
1 x2 +2
+
1
1
=−
1
1
1
2
( 2 + 2 + 2 ) x +1 x +2 x +3
1
Gradient at x = :
)
−2
x2 +3
⋅
d
|
dx x=1 2
=±
d
1 ( ) 2 2 √1−(1) 2
1
√4
2
√3
=± ×
(
=±
=±
1 2 3 √ 4
1 √3
=±
1 2 √3 √4
=−
1
✓ 1 1
1
1
2
( 2 + 2 + 2 ) x +1 x +2 x +3
⋅ +
1
(
+
=−
1
1
1
2
dx d
=
dy
1 2 1 1 1 ( 2 + 2 + 2 ) x +1 x +2 x +3
2x 2 1 1 1 ( 2 + 2 + 2 ) x +1 x +2 x +3
1
+
)
)
x2 +3
(x 2 + 2)−1
2 −1 [+ dx (x + 3) ]
[−(x 2 + 1)−2 ][2x] ⋅ [+[−(x 2 + 2)−2 ][2x]] +[−(x 2 + 2)−2 ][2x]
⋅{
[− (x2
2x
+1)2
2x
⋅ (−2x) [(x2 ⋅ [(x2
] + [− (x2
+ [− (x2
( 2 + 2 + 2 ) x +1 x +2 x +3
=−
+
x2 +2
2x
1
1
+
(x 2 + 1)−1
dx d
2 1 1 1 ( 2 + 2 + 2 ) x +1 x +2 x +3
=−
d
dx x2 +1 x2 +2 x2 +3 1 1 1
dx x2 +1
2
dy
⋅
1 +1)2
1 +1)2
+2)2
] }
]
+ (x2
1
+ (x2
+3)2
+2)2
1 +2)2
+ (x2
+ (x2
1 +3)2
1 +3)2
]
]
|
dx x=1
= = = =
© Daniel & Samuel A-math tuition 📞9133 9982
2(1) 2 1 1 1 ( 2 + 2 + 2 ) (1) +1 (1) +2 (1) +3
2 1 1 1 2 ( + + ) 2 3 4
2 13 2 ( ) 12
1
⋅ [((1)2
1
+1)2
+ ((1)2
1
1
1
+2)2
1
+ ((1)2
+3)2
]
⋅ [(2)2 + (3)2 + (4)2 ] 1
1
1
4
9
16
⋅( + +
)
122 169
sleightofmath.com
395
A math 360 sol (unofficial)
Ex 14.3 2(a)
Ex 14.3 1(a)
d dx
d dx
d dx
[(2x − 1)3 ]
= x ⋅ 3(2x − 1)2 ⋅ 2 = 6x(2x − 1)
2
+
d dx
(x) ⋅ (2x − 1)3
+1 ⋅ (2x − 1)3 +(2x − 1)
3
= −2√x(1 − x)
+
=
= (2x − 1)2 (8x − 1) ✓ 1(b)
dx
= [(x − 1)(x + 2)2 ]
= (x − 1) ⋅
d dx
[(x + 2)2 ] +
d dx
2(b)
⋅ (x + 2)2
= (x − 1) ⋅ 2(x + 2) ⋅ 1
+1
= 2(x − 1)(x + 2)
+(x + 2)2
= (x + 2) [2(x − 1)
=
(x − 1) ⋅ (x + 2)2
= (x + 2) (2x − 2
dx
+x + 2)
=
= 3x(x + 2) ✓
= =
= (1 − 2x) ⋅
d dx
4]
[(3x + 2)
= 4]
+
d dx
2√x 1−x 2√x 1−x
(1 − 2x) ⋅ (3x + 2)
4
2(c)
d
d
d
1
= (x 2 + 1) ⋅
d dx
[(1 + x)2 ]
+
d dx
(x 2 + 1) ⋅ (1 + x)2
=
⋅ (1 + x)2
=
= (x 2 + 1) ⋅ 2(1 + x) ⋅ 1
+2x
= 2(x 2 + 1)(1 + x)
+2x(1 + x)2
= 2(1 + x) [(x 2 + 1)
+x(1 + x)]
= 2(1 + x) (x 2 + 1
+x + x 2 )
[x
1 1+3x √1+2x
+1
⋅ √1 + 2x
+(1 + 2x)]
(1 + 3x)
√1+2x
✓
(x 2 √1 − 2x 2 )
=−
=
⋅2
+√1 + 2x
√1+2x
−3x − 2)
[(x 2 + 1)(1 + x)2 ]
(√1 + 2x) + (x) ⋅ √1 + 2x dx
x
= x2 ⋅
dx
✓
√1+2x
−(3x + 2)]
1(d)
+(1 − x)]
1
= 2(3x + 2)3 [6(1 − 2x)
=
2√x
[−4x
2√1+2x
= x2 ⋅
= 2(3x + 2) (4 − 15x) ✓
(1−x)2
d
dx
−2(3x + 2)4
3
⋅ (1 − x)2
(x√1 + 2x)
= 12(1 − 2x)(3x + 2)3
= 2(3x + 2) (6 − 12x
1 2√x
+(1 − x)2 ]
2√x
+(−2) ⋅ (3x + 2)4
3
(√x) ⋅ (1 − x)2
[−4x(1 − x)
(1−x)(1−5x)
= (1 − 2x) ⋅ 4(3x + 2)3 ⋅ 3
dx
d dx
(1 − 5x)
2√x
=x⋅
= (x + 2) 3x
[(1 − 2x)(3x + 2)
1
=x⋅
1(c) d
d dx
+(x + 2)]
+ +
=
= (2x − 1) [6x +(2x − 1)]
[(1 − x)2 ]
dx
= √x ⋅ 2(1 − x) ⋅ (−1)
2
d
d
= √x ⋅
[x(2x − 1)3 ]
=x⋅
[√x(1 − x)2 ]
d dx
(√1 − 2x 2 ) 1
2√1−2x2
⋅ (−4x)
2x3 1 2x
√1−2x2 2x √1−2x2
d dx
+2x
(x 2 ) ⋅ √1 − 2x 2 ⋅ √1 − 2x 2
+2x√1 − 2x 2
√1−2x2
√1−2x2
+
[−2x 3
+2x(1 − 2x 2 )]
[−x 2
+(1 − 2x 2 )]
(1 − 3x 2 )
2x(1−3x2 ) √1−2x2
✓
= 2(1 + x) (2x 2 + x + 1) ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
396
A math 360 sol (unofficial)
Ex 14.3
2(d) d dx
3(a) 1)√3x 2
[(4x −
d
= (4x − 1) ⋅
dx
= = = = =
2√3x2 +1
+
⋅ 6x
1 √3x2 +1 1 √3x2 +1
dx
=
d
x
1
1
= (x + 2)2 (3 +
3
d
1 2√x+1
d
+
d dx 3
⋅1
2
dx
3 2
(x + 1) ⋅ √x + 1
+ x
3 x2 +1
1 2
=
⋅ √x + 1
1
[x 2 + 1
+3√x(x + 1)]
=
(x√x + 1
+3x√x + 3√x)
=
(4x√x + 3√x + 1)
2√x+1
4x√x+3√x+1 2√x+1
= =
✓
=
[(2√x + 3)√1 − 4x]
= (2√x + 3) ⋅ = (2√x + 3) ⋅
= = = =
d dx
1 −2 √1−4x
√1−4x
1 √x√1−4x 1 √x√1−4x 1−6√x−8x √x√1−4x
d dx
(2√x + 3)
⋅ (−4) + [2 (
−2(2√x+3)
√1−4x√x
=
(√1 − 4x) +
2√1−4x
2
2
x
x2
+ +
1 2√x
) + 0]
1 √x
⋅ √1 − 4x
=
⋅ √1 − 4x
=
⋅ √1 − 4x
d dx
(x + 2)]
1
2
x
x2
)
1
+(3x 2 − 2x) ⋅ √5 + 6x
2√5+6x
⋅6
x √5+6x x √5+6x x √5+6x x √5+6x
+x(3x − 2)√5 + 6x
[3x 2 (x − 1)
+x(3x − 2)(5 + 6x)]
[3x(x − 1)
+(3x − 2)(5 + 6x)]
(3x 2 − 3x
+(3x − 2)(6x + 5)]
(3x 2 − 3x
+18x 2 + 3x − 10)
(21x 2 − 10)
x(21x2 −10) √5+6x
4
dx
+(3x 2 − 2x)√5 + 6x
√5+6x 1
(x 3 − x 2 ) ⋅ √5 + 6x
+
3x2 (x−1)
√5+6x
d
(√5 + 6x)
√5+6x
✓
y = x√3 + x 2
[typo in question]
√1−4x dy
√x
dx
=x⋅ =x⋅
+1 − 4x)
= =
(1 − 6√x − 8x)
=
✓
© Daniel & Samuel A-math tuition 📞9133 9982
(x + 2)3
)✓
3(x3 −x2 )
[−2√x(2√x + 3) +(1 − 4x)] (−4x − 6√x
1 x2
) ⋅ (x + 2)3
[(x 3 − x 2 )√5 + 6x]
= (x 3 − x 2 ) ⋅
3
1
d dx
= (x 3 − x 2 ) ⋅
3
2√x+1
1 x2
x2
[x 2 (x − 1)√5 + 6x]
+ √x√x + 1 2
2√x+1
2√x+1
x
1
3(b)
(√x + 1)
dx
1
(1 + ) ⋅ (x + 2)3
− −
x
= (x + 2)2 (3 + −
✓
1
3
d dx
+ (0 −
−
x
(24x 2 − 3x + 4)
+
−
x
[(x 2 + 1) √x + 1]
1
[(x + 2)3 ]
= (x + 2)2 [3 (1 + )
= (2√x + 3) ⋅
=
dx
1
2(f) dx
d
x
+12x 2 + 4)
= (x + 1) ⋅
=
1
= (1 + ) ⋅
(12x 2 − 3x
3 2
=
x
= 3 (1 + ) (x + 2)2
= (x + 1) ⋅
=
1
[(1 + ) (x + 2)3 ]
+4(3x 2 + 1)]
3 2
=
⋅ √3x 2 + 1
d dx
[3x(4x − 1)
√3x2 +1 d
=
= (1 + ) ⋅ 3(x + 2)2 ⋅ 1
24x2 −3x+4
2(e)
(4x − 1) ⋅ √3x 2 + 1
+4√3x 2 + 1
√3x2 +1 √3x2 +1
d dx
+4
3x(4x−1) 1
1
[ (x + 1)(x + 2)3 ]
dx x
√3x 2 + 1 1
= (4x − 1) ⋅
d
+ 1]
=
sleightofmath.com
d dx
(√3 + x 2 ) + 1
2√3+x2
⋅ 2x
x2 √3+x2 1 √3+x2 1 √3+x2 3+2x2 √3+x2
d dx
(x) ⋅ √3 + x 2
+1 ⋅ √3 + x 2 +√3 + x 2
[x 2
+(3 + x 2 )]
(2x 2 + 3) ✓
397
A math 360 sol (unofficial) 5
Ex 14.3 7
y = x√x − 1 dy
=x⋅
dx
=x⋅ = = = = =
d
(√x − 1) +
dx
1 2√x−1
⋅1
x
2√x−1 1 2√x−1 1 2√x−1
dy
(x) ⋅ √x − 1
+1
d
[(x − 4)4 ]
+
= √x ⋅ 4(x − 4)3 ⋅ 1
+
= 4√x(x − 4)3
+
= √x ⋅
dx
⋅ √x − 1
+√x − 1
2√x−1 1
d dx
y = √x(x − 4)4
[x
+2(x − 1)]
=
(x
+2x − 2)
=
(3x − 2)
=
3x−2 2√x−1
=
dx
1 2√x (x−4)3 2√x (x−4)3 2√x
d dx
(√x) ⋅ (x − 4)4
1 2√x
⋅ (x − 4)4
(x−4)4 2√x
[8x(x − 4)3
+(x − 4)4 ]
[8x
+(x − 4)]
(9x − 4)
(x−4)3 (9x−4) 2√x
✓
Gradient at (5,10): dy
|
dx x=5
=
3(5)−2 2√5−1
=
13 2(2)
=
13 4
dy
At
✓
dx
1 2√x
6
= 0:
(x − 4)3 (9x − 4) = 0 4
x = 4 or x = ✓
y = (x + 1)3 (x − 1)
9
dy dx 3
= (x + 1) ⋅
d dx
(x − 1)
+
d dx
[(x + 1)
3]
8 ⋅ (x − 1)
y=
x2 −1 x2 +1 (x2 +1)−2
= (x + 1)3 ⋅ 1
+3(x + 1)2 ⋅ 1 ⋅ (x − 1)
=
= (x + 1)3
+3(x + 1)2 (x − 1)
=1 −
= (x + 1)2 [(x + 1)
+3(x − 1)]
= 1 −2(x 2 + 1)−1
= (x + 1)2 (x + 1
+3x − 3) dy
= (x + 1)2 (4x − 2)
dx
= (x2 at
dy dx 4x
x
(x 2 + 1)
⋅ 2x ⋅ 2x
+1)2
=0 =0 (0)2 −1
y|x=0 = (0)2
sleightofmath.com
d dx
= 0:
(x2 +1)2
=8✓
© Daniel & Samuel A-math tuition 📞9133 9982
2
+1)2 4x
Gradient at x = −1,1: dy | =0✓ |
= −2[−(x 2 + 1)−2 ] ⋅ = (x2
Curve cross x − axis: y =0 2 (x 2(x + 1) − 1) = 0 x = −1 or x = 1
dx x=1
2 x2 +1
= 2(x 2 + 1)−2
= 2(x + 1)2 (2x − 1)
dx x=−1 dy
x2 +1
+1
= −1 ✓
398
A math 360 sol (unofficial) 9
Ex 14.3 11
y = x√4 − x 2 dy
d
=x⋅
dx
dx
(√4 − x 2 ) 1
=x⋅ = = = = =
2√4−x −x2
√4−x2 1
+
⋅ (−2x) 2
d dx
y = (x − a)√x − b
(x) ⋅ √4 − x 2
dy
⋅ √4 − x 2
+1 +√4 −
= (x − a) ⋅
dx
= (x − a) ⋅
x2
=
[−x 2 +(4 − x 2 )]
√4−x2 1
=
(4 − 2x 2 )
√4−x2 1 √4−x2 2(2−x2 )
=
2(2 − x 2 )
=
x√4 − x 2
=x
x(√4 − x 2 − 1)
=0
or √4 − x 2 = 1 4 − x2 = 1 3 − x2 = 0 x2 =3 x = −√3 or
x=0
|
=
dx x=√3 dy
|
2(2)
=
dx x=−√3
10
dx
d dx
(x − a) ⋅ √x − b
+1
⋅ √x − b
+√x − b
2√x−b x−a +(2x−2b) 2√x−b 3x−a−2b 2√x−b
Curve intersects x-axis (y = 0) with x = b + 1: 0 = (b + 1 − a)√b + 1 − b 0 = (b − a + 1)√1 0=b−a+1 a=b+1 Gradient at A: dy
|
dx x=b+1
= =
x = √3
√4 2(2−3)
=
=
=2✓
√4−3 √4−3
2√(b+1)−b (3b+3)−a−2b 2√1 b+3−a 2 b+3−(b+1) 2
∵a=b+1
2 2 = 1 [shown] ✓
= − = −2 ✓
2(2−3)
3(b+1)−a−2b
=
2 1
= −2 ✓
Curve & its gradient y = 3x 2 − 7x + 2 dy
(1)
2√x−b x−a +2(x−b)
= dx x=0 dy
1 2√x−b
x−a
Gradient at x = 0, −√3, √3: |
(√x − b) +
√4−x2
Curve cross y = x: y =x
dy
d dx
= 6x − 7
mtan = 6x − 7 Line & its gradient 5x − y = 0 y = 5x mline = 5 Tangent ∥ Line: mtan = mline 6x − 7 = 5 x =2 y|x=2 = 3(2)2 − 7(2) + 2 =0 ⇒ (2,0) ✓
© Daniel & Samuel A-math tuition 📞9133 9982
12 d dx
=
[f(x)g(x)h(x)] d dx
f(x)[g(x)h(x)]
= f(x) ⋅
d dx
[g(x)h(x)]
+
d dx
f(x)[g(x)h(x)]
= f(x) ⋅ [g(x)h′ (x) + g ′ (x)h(x)]
+f ′ (x)
= f(x)g(x)h′ (x) +f(x)g ′ (x)h(x)
+f ′ (x)g(x)h(x) ✓
13(i)
[g(x)h(x)]
f(a) = 0 By factor theorem, (x − a) is a factor ✓
13(ii) The gradient of f(x) at x = a is 0
sleightofmath.com
399
A math 360 sol (unofficial)
Ex 14.4 1(d)
Ex 14.4 1(a)
d
(
5x
d 3x 2 ( ) dx 1 − 4x
)
dx 2x+1
=
=
6x − 24x 2 + 12x 2 (1 − 4x)2
5 = (2x + 1)2 ✓
=
6x − 12x 2 (1 − 4x)2
d
(
1−x
dx 1−2x
(1 − 4x) ⋅ 6x − 3x 2 ⋅ (−4) = (1 − 4x)2
✓ 1(e)
)
1 (1 − 2x)2
= (
x2
d 2 d (x ) − x 2 ⋅ (x + 3) dx dx = (x + 3)2 (x + 3) ⋅ 2x − x2 ⋅ 1 = (x + 3)2 2x 2 + 6x − x2 = (x + 3)2 =
x(x + 6) (x + 3)2
✓
)
2x−1
2(x 2 − x − 1) (2x − 1)2
✓
)
dx x+3
(x + 3) ⋅
x2 +1
(2x − 1) ⋅
✓ d
(
d 2 d (x + 1) − (x 2 + 1) ⋅ (2x − 1) dx dx = (2x − 1)2 (2x − 1) ⋅ 2x − (x 2 + 1) ⋅ 2 = (2x − 1)2 2 4x − 2x − 2x 2 − 2 = (2x − 1)2 2x 2 − 2x − 2 = (2x − 1)2
d d (1 − x) − (1 − x) ⋅ (1 − 2x) dx dx = (1 − 2x)2 (1 − 2x) ⋅ (−1) − (1 − x) ⋅ (−2) = (1 − 2x)2 2x − 1 + 2 − 2x = 2 (1 − 2x) =
d dx
(1 − 2x) ⋅
1(c)
d d (3x 2 ) − 3x 2 ⋅ (1 − 4x) dx dx (1 − 4x)2
d d (5x) − 5x ⋅ (2x + 1) dx dx = (2x + 1)2 (2x + 1) ⋅ 5 − 5x ⋅ 2 = (2x + 1)2 10x + 5 − 10x = (2x + 1)2 (2x + 1) ⋅
1(b)
(1 − 4x) ⋅
1(f)
d 2x 3 ( ) dx 1 − x =
(1 − x) ⋅
d d (2x 3 ) − 2x 3 ⋅ (1 − x) dx dx (1 − x)2
=
(1 − x) ⋅ 6x 2 − 2x 3 ⋅ (−1) (1 − x)2
=
6x 2 − 6x 3 (1 − x)2
=
6x 2 − 4x 3 (1 − x)2
+ 2x 3
2x 2 (3 − 2x) = (1 − x)2 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
400
A math 360 sol (unofficial) 2(a)
Ex 14.4
=
1 2√x (1 + x)2
1 (1 + x 2√x = (1 + x)2
=
2
(√1 − x) √1 − x ⋅ 1
−x⋅
=
1−x +
√1 − x
=
=
1 2√1 − x 1 2√1 − x
1 ⋅ (−1) 2√1 − x
x 2√1 − x
1−x [2(1 − x) + x]
+ x)
− 2x + 1
d
(
x+1
dx √1−4x
© Daniel & Samuel A-math tuition 📞9133 9982
− 2x]
− 2x)
=
)
d √1 − 4x ⋅ dx (x + 1)
− (x + 1) ⋅ 2
d − 4x dx √1
(√1 − 4x) √1 − 4x ⋅ (1)
− (x + 1) ⋅
= √1 − 4x =
1 − 4x
1 [(1 − 4x) − 4x = √1 1 − 4x 1 (1 − 4x − 4x √1 = 1 − 4x 1 (3 − 2x) − 4x √1 = 1 − 4x 3 − 2x = (1 − 4x)√1 − 4x ✓
sleightofmath.com
1 ⋅ (−4) 2√1 − 4x
1 − 4x 2(x + 1) + √1 − 4x
1−x
1 (2 − x) 2√1 − x = 1−x 2−x = 2√1 − x(1 − x) ✓
2x 2x √ +1
2(d)
1−x (2 − 2x
1 ⋅ (2) 2√2x + 1
− 2x ⋅
1 [2(2x + 1) 2x +1 √ = 2x + 1 1 (4x + 2 2x + 1 √ = 2x + 1 1 (2x + 2) 2x + 1 √ = 2x + 1 2x + 2 = (2x + 1)√2x + 1 ✓
d (√1 − x) dx
2
d 2x + 1 dx √
2x + 1
=
2√x(1 + x)2
−x⋅
− 2x ⋅
2√2x + 1
− 2x)
d x ( ) dx √1 − x d √1 − x ⋅ dx (x) =
d √2x + 1 ⋅ dx 2x
=
1−x
=
)
√2x + 1 ⋅ 2
− √x ⋅ 1
✓ 2(b)
2x
(√2x + 1)
1 (1 − x) 2√x = (1 + x)2 =
(
dx √2x+1
d d (1 + x) ⋅ (√x) − √x ⋅ (1 + x) dx dx = (1 + x)2 (1 + x) ⋅
d
2(c)
d √x ( ) dx 1 + x
+ 2(x + 1)]
+ 2x + 2)
401
A math 360 sol (unofficial)
Ex 14.4
2(e) d 3x 2 ( ) dx √2x 2 − 3 √2x 2 − 3 ⋅
=
3
y= dy
d (3x 2 ) dx
− (3x 2 ) ⋅ 2
d √2x 2 − 3 dx
=
dx
=
(√2x 2 − 3)
= 6x√2x 2 − 3 =
=
1 − 3x 2 ⋅ [ ⋅ (4x)] 2√2x 2 − 3 2x 2 − 3
√2x 2 − 3 ⋅ (6x)
−
=
6x 3 √2x 2 − 3
dy
6x
=
4
− 6x 3 ]
dy
− x2]
−(3x2 )⋅
d (1−4x2 ) dx
(1−4x2 )2 (1−4x2 )⋅(6x)
−3x2 ⋅(−8x)
(1−4x2 )2 6x−24x3 +24x3 2 2 (1−4x ) 6x (1−4x2 )2
= (1−4)2 =
2 3
✓
1−x
= =
(1−x)⋅
d (x−2) dx
−(x−2)⋅
d (1−x) dx
(1−x)2 −(x−2)⋅(−1) (1−x)2 +x−2 (1−x)2
(1−x)⋅1 1−x −1
= (1−x)2
(x 2 − 3) Curve cross x − axis: y =0
✓
x−2 1−x
2(f) d 5x ( ) dx √1 − x 2 √1 − x 2 ⋅
x
=0 =2
Gradient at x = 2:
d 5x dx
− (5x) ⋅ (√1 − x 2 )
2
dy
d √1 − x 2 dx
|
dx x=2
−1
= (1−2)2 = −1 ✓
1 − 5x ⋅ [ ⋅ (−2x)] 2√1 − x 2 1 − x2
√1 − x 2 ⋅ (5) = 5√1 − x 2 =
d (3x2 ) dx
x−2
=
dx
√2x 2 − 3(2x 2 − 3)
=
y=
(1−4x2 )⋅
6
|
dx x=1
2x 2 − 3
1 [6x(2x 2 − 3) 2−3 √2x = 2x 2 − 3 6x [(2x 2 − 3) 2−3 √2x = 2x 2 − 3 6x (x 2 − 3) 2−3 √2x = 2x 2 − 3
3x2 1−4x2
+
5x 2 √1 − x 2
1 − x2
1 [5(1 − x 2 ) 2 √1 − x = 1 − x2 5 [(1 − x 2 ) 2 √1 − x = 1 − x2 5 (1) 2 √1 − x = 1 − x2 5 = (1 − x 2 )√1 − x 2 ✓ © Daniel & Samuel A-math tuition 📞9133 9982
+ 5x 2 ]
+ x2 ]
sleightofmath.com
402
A math 360 sol (unofficial) 5
y=
Ex 14.4
x+2
6
√3x+1
dy dx
y=(
5x+3 4 10x−6
)
dy dx
d √3x + 1 ⋅ dx (x + 2) = √3x + 1 ⋅ 1 = √3x + 1 =
d − (x + 2) ⋅ 3x + 1 dx √ 3x + 1 1 − (x + 2) ⋅ ⋅ (3) 2√3x + 1 3x + 1 3(x + 2) − 2√3x + 1 3x + 1
1 [2(3x + 1) 2√3x + 1 = 3x + 1 1 (6x + 2 2√3x + 1 = 3x + 1 1 (3x − 4) 2 3x + 1 = √ 3x + 1 3x − 4 = 2√3x + 1(3x + 1)
= 4( = 4( = 4( = 4( = 4(
− 3(x + 2)] =− − 3x − 6)
5x+3 3
d
10x−6
dx 10x−6
5x+3 3
(10x−6)⋅
) ⋅ ) ⋅
(
5x+3
10x−6
5x+3 3
) ⋅
d d (5x+3) −(5x+3)⋅ (10x−6) dx dx (10x−6)2
(10x−6)⋅5
10x−6
5x+3 3
) ⋅
)
−(5x+3)⋅10 (10x−6)2
50x−30
−50x−30 (10x−6)2
10x−6
5x+3 3
−60
) ⋅ (10x−6)2
10x−6
240(5x+3)3 (10x−6)5
Curve at y = 16: y = 16 (
5x+3 4
) = 16
10x−6 5x+3
10x−6
=2
5x+3
or
10x−6
= −2
5x + 3 = 20x − 12 15x = 15
5x + 3 = −20x + 12 25x =9
x
x
=1
=
9 25
Gradient at x = 1: dy
|
dx x=1
=
3−4 2√4(4)
=−
1 2(2)4
=−
1 16
✓
Gradient at x = 1, dy
|
dx x=1 dy
|
dx x= 9
25
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
= =
9
:
25 −240(5(1)+3)3 (10(1)−6)5 9 25
−240(5( )+3) 9 25
(10( )−6)
5
= −120 ✓ 3
=
1000 3
✓
403
A math 360 sol (unofficial) 7
y=√
Ex 14.4 8
1−x
x2 +3
y=√ dy
dy dx
1−x
⋅
2√ 2 x +3
= = = = = = =
At
1
=
dy
1 √1−x √x2 +3
2
√x2 +3 2√1−x √x2 +3 2√1−x √x2 +3 2√1−x √x2 +3 2√1−x 1 2√1−x
⋅
d
⋅ ⋅ ⋅
1−x
)
dx x2 +3 (x2 +3)⋅
d (1−x) dx
−(1−x)⋅
d 2 (x +3) dx
=
(x2 +3)2
⋅[ ⋅
(
=
dx
(x2 +3)⋅(−1)
−(1−x)⋅2x
(x2 +3)2
−x2 −3
x−a b−x 1 x−a 2√ b−x
1
2
d
⋅
⋅ √x−a
(
x−a
dx b−x
(b−x)⋅
)
d (x−a) dx
−(x−a)⋅
d (b−x) dx
(b−x)2
√b−x
]
=
√b−x 2√x−a
⋅
=
√b−x 2√x−a
⋅
(b−x)⋅(1)
−(x−a)⋅(−1) (b−x)2
−2x+2x2 (x2 +3)2
x2 −2x−3
b−x
+x−a (b−x)2
(x2 +3)2
=
(x−1)(x−3) (x2 +3)2
=
(x−1)(x−3)
b−a √b−x ⋅ 2√x−a (b−x)2 b−a 3
2√x−a(b−x)2
3 (x2 +3)2
(x−3)(x+1) 3
2√1−x(x2 +3)2
Gradient at x = dy
= 0:
|
dx x=a+b
dx (x−3)(x+1) 3
2√1−x(x2 +3)2
2√(
=0 2√
= =
=
3 a+b a+b 2 )−a(b−( )) 2 2
3 a+b 2a 2b a+b 2 − ( − ) 2 2 2 2
b−a 3 b−a b−a 2 2√ ( ) 2 2
b−a 2(
=
:
b−a
=
x = −1 or x = 3 ✓
2
b−a
=
2
a+b
b−a 2 ) 2
b−a (b−a)2 2 22
b−a (b−a)2 2
2
= (b − a) ⋅ (b−a)2 =
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
2 b−a
[shown] ✓
404
A math 360 sol (unofficial) 9(i)
Ex 14.4
1 3
x+h
y= √ dy dx
=
x−k
1 x+h
= (
3 x−k
= =
=
=
)
x+h 3 ( ) x−k 2 − 3
1
⋅ ⋅
2 x+h 3 3( ) x−k
1 1 2 x+h 3 3[( ) ] x−k
1 1 2 x+h 3 3[( ) ] x−k
1
⋅
⋅
d
−(1) (
x+h
dx x−k (x−k)⋅
d (x+h) dx
−(x+h)⋅
d (x−k) dx
dy
(x−k)2 (x−k)⋅1
k
=
dx
mtan =
−(x+h)⋅1
x−k
9(ii)
dy dx
−1
2√x
−1
Tangent & its gradient
−x−h
y=
(x−k)2
25 4
mtan = 0 ⋅ (x−k)2
−(2)
Using intersection, k√x − x =
25
−(1)
4
Using gradients, 1 3y2
⋅
−(k+h) (x−k)2
k 2√x k
− 1= 0 =1
2√x
3y 2 (x − k)2
− 1)
2√x k
(x−k)2
=
dx
k √x
= k√x − x
sub (1) into (2): dy
y = x(
)
−k−h
1 2 x+h 3 3[( ) ] x−k
10(i) Curve & its gradient
= −(k + h) [shown] ✓
k
= 2√x
−(2)
Tangent ∥ to y − axis:
sub (2) into (1):
dy
⇒∞
(2√x)√x − x =
⇒∞
2(x) − x
=
x
=
dx 1 1 2 x+h 3 3[( ) ] x−k
⋅
−k−h (x−k)2
⇒ x = −h or x = k (rej ∵ k > x > h) y|x=−h = 0 ⇒ (−h, 0)
k|x=25 = 2√ 4
25 4
25 4 25 4 25 4 5
= 2( ) = 5✓ 2
10(ii) Curve gradient with = k = 5: dy dx
=
5 2√x
−1
As x → ∞, ⇒
dy dx
5 2√x
→0
→ −1
∴ gradient of l is − 1 l passes through O and gradient is −1 ⇒ y = −x ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
405
A math 360 sol (unofficial) 11(i)
Ex 14.4
1 + x + x 2 + ⋯ + x n−1 + x n
=
xn+1 −1 x−1
Diff wrt x, 0 + 1 + 2x + ⋯ + (n − 1)x n−2 + nx n−1 1 + 2x + 3x 2 + ⋯ + (n − 1)x n−2 + nx n−1
= = =
(x−1)
d (xn+1 −1) dx
−(xn+1 −1)
d (x−1) dx
(x−1)2 (x−1)[(n+1)xn ]
−(xn+1 −1)(1)
(x−1)2 (x−1)(n+1)xn
−xn+1 +1
(x−1)2
✓
11(ii) x = 3, n = 10: 1 + 2(3) + 3(3)2 + ⋯ + (10 − 1)(3)10−2 + 10(3)10−1 = 1 + 2(3) + 3(3)2 + ⋯ + 9(3)8 + 10(3)9
=
(3−1)(10+1)310
−310+1 +1
(3−1)2 2(11)310
−311 +1 4
= 280483 ✓ 12
y=
y
′
u2 v3
= = =
v3 ⋅
d (u2 ) dx
−u2 ⋅
d (v3 ) dx
(v3 )2 v3 ⋅(2u⋅u′ ) 2uu′ v3
−u2 ⋅(3v2 ⋅v′ ) v6 −3u2 v2 v′
v6
© Daniel & Samuel A-math tuition 📞9133 9982
✓
sleightofmath.com
406
A math 360 sol (unofficial)
Rev Ex 14 A3
Rev Ex 14 A1(a)
d dx
=
(√1 − 3x 2 )
= (1 − 3x 2 ) 2
=
A1(b)
d dx
1 − 2
⋅
1 2√1−3x2 3x
=−
dx
[(1 − 3x 2 )2 ]
dx 1
√1−3x2
d dx
=x⋅
dx
=
=
[(1 + 2x)
4]
+
d dx
(x) ⋅ (1 + 2x)
+1 ⋅ (1 + 2x)
= 8x(1 + 2x)3
+(1 + 2x)4
4
= (1 + 2x)3 (8x +1 + 2x) = (1 + 2x)3 (10x + 1) ✓ d
(
1+2x √x
)= =
d
(
1
=− x 2
=− A2
+ 2√x)
dx √x 1 d (x −2 ) dx 1 −3 2
1
+2
(x 2 )
dx 1 1 +2 ( x −2 ) 2 1
+
2x√x
√x
A4
9
y = (2x−5)2 = 9(2x − 5)−2
✓
dy
y = (2x + 3)√5x − 9
= 9[−2(2x − 5)−3 ] ⋅
dx
= 9[−2(2x − 5)
dy
=
dx
= (2x + 3) ⋅ = (2x + 3) ⋅ = = = = =
d dx
(√5x − 9) + 1
2√5x−9
⋅5
5(2x+3) 1 1 2√5x−9 1 2√5x−9
−3 ]
d dx
(2x − 5)
⋅2
36 − (2x−5)3
(2x + 3) ⋅ √5x − 9
+2
Gradient at x = −1: ⋅ √5x − 9
dy
|
dx x=−1
36
= − (2(−1)−5)3 =
36 343
✓
+2√5x − 9
2√5x−9 2√5x−9
d dx
+ (x + 1)]
⇒ n=0✓
1
d
1 ⋅ (−2) 2√1 − 2x
1 − 2x
1 [(1 − 2x) − 2x √1 = 1 − 2x 1 (2 − x) − 2x √1 = 1 − 2x 2−x = √(1 − 2x)3
4
d − 2x dx √1
1 − 2x x+1 + √1 − 2x
√1 − 2x
= x ⋅ 4(1 + 2x) ⋅ 2
dx
− (x + 1) ⋅
√1 − 2x ⋅ 1
✓
− (x + 1) ⋅
1 − 2x
⋅ (−6x)
3
A1(c)
d √1 − 2x ⋅ dx (x + 1)
=
(1 − 3x 2 )
[x(1 + 2x)4 ] d
x+1 √1−2x
dy 1
d
y=
[5(2x + 3)
+4(5x − 9)]
(10x + 15
+20x − 36)
(30x − 21)
30x−21 2√5x−9
⇒ k = 30 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
407
A math 360 sol (unofficial) A5
y=
Rev Ex 14
x2 −1
B1(b)
x2 +1
dx
dy dx =
=
=
=
(x 2 + 1) ⋅
d 2 d (x + 1) − (x 2 − 1) ⋅ (x 2 − 1) dx dx (x 2 + 1)2
(x 2 + 1) ⋅ 2x
=− =−
− 2x 3 + 2x
=−
(x 2 + 1)2
(x 2
=−
4x + 1)2
B2
4x
x
y|x=0 = (0)2
1
dx 9(8−7)2
5 33 5
−
(4√x − 1)
8 5
⋅ [4
8 5
(4√x − 1)
66 5√x
(4√x − 1)
−
d dx
⋅ [4 (
8 − 5
⋅ 8 5
d
(√x) − (1)] dx 1
2√x
)−0]
2 √x
✓
1
2
4
1 2
Curve
+1
y = 4x +
= −1
dx
]
8
9
x
−3
d
9
2 3
8 ( −7) x
]
2
( − 7)
4x +
dx x
2
d dx
(x −1 ) −
d dx
2
(7)]
3
16 3
9x2 ( −7)
x2
1
1
2 1
4
= x+ c
x 8
= c
x
4
= 14x +
32 x
−(1)
Equate gradients: 1
8
8 x
x+
8
c
⋅ (− 2 )
=4−
2 8
x
9( −7)
8 x
⋅ [8
⋅ [8(−x −2 ) −0]
3 8 9( −7) x
8 x2 8
Tangent intersects curve:
8
7 1
= 4 +8(−x −2 )
mtan = 4 −
= [−2 ( − 7) ] ⋅ = [−
x
=4 −
−2 1 d 8 [( − 7) ] 9 dx x 1
8
= 4x +8x −1
x
=
33
1
dy
=−
5
−
(4√x − 1)
= x+ c
⇒ (0, −1) ✓
=−
33
mtan =
=0 (0)2 −1
=
d
=0
(x2 +1)2
[
8
Tangent 4y = 2x + c y
=0
dx
−
3
(x 2 + 1)2
dy
d
3 d − [(4√x − 1) 5 ] dx
= 11 [− (4√x − 1) 5 ] ⋅ (4√x − 1) 5 dx
− (x 2 − 1) ⋅ 2x
2x 3 + 2x
3
[11(4√x − 1) 5 ]
= 11
tangent ∥ x − axis:
B1(a)
−
d
=
x2 x2
✓
=
8
8 x2
7 2 2 7 16
x
= ±√
7
−(2)
sub (2) into (1): c| 16 = 16√7 ✓ x=√
c|
7
x=−√
16 7
= −16√7 ✓
Note: Consider the discriminant approach © Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
408
A math 360 sol (unofficial) B3
Rev Ex 14
Curve y = x 3 − 3x 2 − 9x + k dy dx
B5(i)
y= dy
2
= 3x − 6x − 9
ax2 x−b (x−b)⋅
=
dx
mtan = 3x 2 − 6x − 9
Using intersection: x 3 − 3x 2 − 9x + k = 0 k = −x 3 + 3x 2 + 9x
−ax2 ⋅
d (x−b) dx
(x−b)2 −ax2 ⋅1
(x−b)⋅2ax
=
Tangent x − axis ⇒ y = 0 mtan = 0
d (ax2 ) dx
(x−b)2
=
2ax2 −2abx (x−b)2
=
ax2 −2abx (x−b)2
=
ax(x−2b) (x−b)2
−ax2
1
Curve at ( , 6): 3
Using gradients: 3x 2 − 6x − 9 = 0 x 2 − 2x − 3 =0 (x − 3)(x + 1) = 0 x=3 or x = −1 k|x=3 = 27 ✓ k|x=−1 = −5 ✓
6
=
2 − 6b = a
1 2 3
a( )
1 −b 3
a 9
= 18 − 54b 1
tangent at ( , 6) is horizontal: 3
B4
dy
y = x√a − 3x 2 dy
=x⋅
dx
=x⋅ = = = =
d dx
(√a − 3x 2 ) 1
2√a−3x −3x2
√a−3x2 1 √a−3x2 1 √a−3x2 a−6x2
+
d dx
+√a − 3x 2
[−3x
2
+(a − 3x
2 )]
1
a|b=1 = 18 − 54 ( ) = 9 ✓
(a − 6x 2 )
6
B5(ii) Curve & its gradient with a = 9, b = 1: 6
√a−3x2
y= dy dx
9x2 x−
=
1 6
1 3 1 2 (x− ) 6
9x(x− )
For horizontal tangent:
Tangent at (1, b) ∥ to y = 2x + 1: mtan = mline
√a−3
6
6
b = √a − 3
|
1
or b = ✓
(rej ∵ a ≠ 0)
(b) = (1)√a − 3(1)2
dx x=1 a−6
=0
a=0
Curve at (1, b):
dy
=0
3 1 1 a( )( −2b) 3 3 2 1 ( −b) 3
⋅ √a − 3x 2
⋅ (−6x) +1 2
|
dx x=1
(x) ⋅ √a − 3x 2
dy dx 1 9x(x− ) 3 1 2 (x− ) 6
=2 =2
=0 =0
x = 0 or x =
a−6 = 2√a − 3 2 a − 12a + 36 = 4(a − 3) a2 − 12a + 36 = 4a − 12 a2 − 16a + 48 = 0 (a − 12)(a − 4) = 0 a = 12 or a = 4 (rej)
1 3
(taken)
y|x=0 = 0 ⇒ (0,0) ✓
b|a=12 = 1√12 − 3 = 3 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
409
A math 360 sol (unofficial)
Ex 15.1 2(a)
Ex 15.1 1(a)
y = x 3 − 5x + 8 dy dx
y = x 3 + 3x 2 dy dx
= 3x 2 + 6x
Tangent Point:
= 3x 2 − 5
Normal Point:
y|x=1 = 13 − 5(1) + 8 =4
(−1,2) dy
Gradient:
⇒ (1,4) 2
|
= 3(−1) + 6(−1)
dx x=−1
−1
Gradient:
dy | dx x=1
= −3 Tangent: y − y1 =
dy
|
dx x=−1
Normal:
(x − x1 )
y − y1
y=x +
2
Gradient:
=2−
2
= −1 dy
|
dx x=1
7
2
2
y
= 10 8
= 10
x
2x 2 + 8 = 10x x2 + 4 = 5x 2 x − 5x + 4 = 0 (x − 4)(x − 1) = 0 x = 4 or x = 1 (rej ∵ x > 1) ⇒ (4,10)
= 1 − (1)2
Tangent: y − y1 =
2
1
x2
(1,3) |
1
x 8
Normal Point:
x2
dx x=1
[x − (1)]
8
y = 2x + dy
2
dy
2
= x+ ✓
y
2x + Tangent Point:
1
(x − x1 )
2
2
= 1 +2(−x −2 ) =1 −
=
−2
1
1
dx dx
−1
|
y−4 = x−
= x +2x dy
=
−1
= dy
y − (4) =
2(b)
x −1
−1 3(1)2 −5
dx x=1
y − (2)= (−3)[x − (−1)] y − 2 = −3 (x − x1 ) y − 2 = −3x − 3 y = −3x − 1 ✓ 1(b)
=
(x − x1 )
y − (3)= (−1)[x − (1)] y − 3 = −(x − 1) y − 3 = −x + 1 y = −x + 4 ✓
Gradient:
Normal:
−1 dy | dx x=4
=
y − y1
−1 2−
=−
8 (4)2
−1
= dy
|
2 3
(x − x1 )
dx x=4
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
2
y − 10
=−
y − 10
=− x+
y
=− x+
3 2
(x − 4) 8
3 2
3 38
3
3
✓
410
A math 360 sol (unofficial) 3(a)
y= dy dx
Ex 15.1
x2 +5
3(b)
x+1
= = = =
(x+1)⋅
d (x2 +5) dx
−(x2 +5)⋅
y = √1 − 2x dy
d (x+1) dx
dx
(x+1)2
=
−(x2 +5)⋅1
(x+1)⋅2x (x+1)2 2x2 +2x
=
1
2√1−2x 1
=−
−x2 −5
⋅
d
2√1−2x dx 1
(1 − 2x)
⋅ (−2)
2√1−2x
(x+1)2
Tangent & Normal Point: y =3 √1 − 2x = 3 1 − 2x = 9 −2x =8 x = −4 ⇒ (−4,3)
x2 +2x−5 (x+1)2
Tangent & Normal Point:
y|x=3 =
32 +5
=
3+1
7 2
7
⇒ (3, ) 2
Gradient:
dy
|
dx x=3
Tangent: y − y1
=
32 +2(3)−5 (4)2
=
7
dy
|
dx x=3 5
=
5
Gradient:
8
(x − x1 )
2
y−
8 5
8 13
8
8
= x−
2
y Normal:
15
= x+
y − y1
= − dy
1
dy
1 √1−2(−4)
✓
4
3 1
3 5
3
y − y1
3
= − dy
7
1
2
( )
y− y− y
7 2 7 2
=−
5 8
8 5 8
[x − (3)]
y − (3) = −
(x − 3)
y−3 y−3 y
=− x+
24
5 8
5 83
5
10
=− x+
1
(x − x1 )
|
dx x=−4
dx x=3
y−( ) =−
3
=− x+ ✓
y Normal:
1
[x − (−4)]
1
y−3 =− x−
=−
(x − x1 )
|
dx x=−4 1 3
(x − x1 )
|
=−
y − 3 = (− )
8
5
|
dx x=−4
Tangent: y − y1 =
y − ( ) = ( ) [x − (3)] 7
dy
1 −
1 3
[x − (−4)]
(x + 4) =3 = 3x + 12 = 3x + 15 ✓
✓ 4(i)
dy dx
=
2−x √4x−x2 +1
Tangent Point: Gradient:
P(1,2) dy
|
dx x=1
Tangent: y − y1
=
2−(1) √4−1+1
=
dy
=
|
dx x=1 1
1 2
(x − x1 )
y − (2) = ( ) [x − (1)] 2
4(ii)
Normal:
1
1
2 1
2 3
2
2
y−2
= x−
y
= x+ ✓
y − y1
= − dy
1 |
(x − x1 )
dx x=1
y − (2) = − y−2 y © Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
1 1 2
[x − (1)]
= −2x + 2 = −2x + 4 ✓ 411
A math 360 sol (unofficial) 5
y= dy dx
Ex 15.1
3x+1
6
1−x
= = =
(1−x)⋅
d (3x+1) dx
(1−x)⋅3 3−3x
−(3x+1)⋅
dy
d (1−x) dx
dx
(1−x)2 −(3x+1)⋅(−1) (1−x)2 +3x+1 (1−x)2
= 6x − 2
Line & its gradient 4y + x = 2 4y = −x + 2
4
= (1−x)2 Normal Point:
Curve & its gradient y = 3x 2 − 2x + 5
y
mline = − At x-axis, y =0 3x+1 1−x
x
1 3
⇒ (− , 0)
Normal:
−1
y − y1
1
=
4 4 2 ( ) 3
y
=
= − dy
1 4(9) 16
=−
1 |
dx x=−1 3
y − (0) = − y
4
mtan ⋅ (− )
= −1
mtan
=4
4
3
dy | dx x=−1 3
2
1
1
1
Gradient:
1
4
Tangent Gradient: ∵ Tangent ⊥ line m1 ⋅ m2 = −1 mtan ⋅ mline = −1
=0 =−
1
=− x+
=−
4 9 4 9 4
Point:
9
(x − x1 ) 1
[x − (− )] 3
6x − 2 =4 6x =6 x =1 2 y|x=1 = 3(1) − 2(1) + 5 =6 ⇒ (1,6)
1
(x + )
=− x− 9
4
3
4 27
Tangent: y − y1 y − (6) y−6 y
✓
7
= mtan (x − x1 ) = (4)[x − (1)] = 4x − 4 = 4x + 2 ✓
1st curve & its gradient y = x 3 + 2x 2 − 4x + 5 dy dx
= 3x 2 + 4x − 4
2nd curve & its gradient 2
y = x 3 + 3x 2 − x − 1 3
dy dx
= 2x 2 + 6x − 1
tangents are ∥: m1 = m2 2 3x + 4x − 4 = 2x 2 + 6x − 1 x 2 − 2x − 3 = 0 (x − 3)(x + 1) = 0 x = 3 or x = −1 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
412
A math 360 sol (unofficial) 8(i)
Ex 15.1
y = ax 5 dy
= 5ax
dx
9(b) 4
y
Curve at (1, b): b = a(1)5 =a dy dx dy
=
3 2
=
5a
=
a
=
b|a= 3 = 10
dy
2 3
dx
10 3 10
Tangent Point: Gradient:
✓
1
l
2
2
− x + = x 2 − 2x + 3
=0 =
dy
2
= 2x 2 − 3x + 6
l
Origin (0,0)
Tangent: y − y1
Using gradients, |
dx x=0
(x − x1 )
−
y − (0) = (0)[x − (0)] y =0✓ 9(a)
3
= x2 − x + 3
2
|
2x−2
Using intersection,
✓
dx x=0
2
−1
mnorm =
dy
2
= 2x − 2
l
8(ii)
l
2 1
Curve y = x 2 − 2x + 3
3
2 3
1
=− x+
mnorm = −
at (1, b):
|
dx x=1
Normal 2y + x = l 2y = −x + l
1 2
2x − 2 2x x
=−
1 2x−2
=2 =4 =2
Note: Consider the discriminant approach Tangent y = 3x + k mtan = 3
l|x=2 = 2(2)2 − 3(2) + 6 =8✓ 10(i) y = px 3
Curve y = 2x 2 − 5x + 3 dy dx
y B(0,8) 2 𝑂 A
= 4x − 5
mtan = 4x − 5
y = px 3 dy
Using intersection, 3x + k = 2x 2 − 5x + 3 k = 2x 2 − 8x + 3
dx
= 3px 2
Gradient at A mtan =
Using gradients, 4x − 5 = 3 4x =8 x =2
dy
|
dx x=2
= 3p(2)2 = 12p ✓
10(ii) Point A At A, y = px 3 has coordinate of x = 2 y|x=2 = p(2)3 = 8p ⇒ A(2,8p)
k|x=2 = 2(2)2 − 8(2) + 3 = −5 ✓
Gradient of AB A(2,8p) B(0,8) mAB =
© Daniel & Samuel A-math tuition 📞9133 9982
x
sleightofmath.com
8p−8 2−0
= 4p − 4 ✓
413
A math 360 sol (unofficial)
Ex 15.1
10(iii) Equate gradients: mtan = mAB 12p = 4p − 4 8p = −4 1
=− ✓
p 11(i)
12(ii) Tangent at P(2, −3): (−3) = (1 + 2a)(2) − a2 −3 = 2 + 4a − a2 a2 − 4a − 5 =0 (a − 5)(a + 1) = 0 a = 5 or a = −1 ✓
2
y = 2x 2 − kx + 3 dy dx
Tangent at a = 5: y = (1 + 2(5))x −(5)2
= 4x − k
mtan =
dy
|
dx x=1
=4−k ✓
Tangent at a = −1: y = (1 + 2(−1))x −(−1)2
11(ii) Point A y|x=1 = 2(1)2 − k(1) + 3 =5−k ⇒ A(1,5 − k)
13(i)
Gradient of AB A(1,5 − k) B(5,1) (5−k)−(1) (1)−(5)
=
y=
dy dx
4−k
4
=
dx
4−k
Gradient:
8 x3
4
y|x=a = ⇒ (a,
−4
a2
4 a2
Gradient: mtan =
+1
+ 1) dy
|
dx x=a
8
=−
a3
Tangent: y − y1
= mtan (x − x1 )
4
+ 1) = (− 3 ) [x − (a)]
y−(
a2
8
a
a2 y − 4 − a2 = −
= 1 + 2x
Tangent Point:
+1
= 4(−2x −3 ) +0
Point:
Curve & its gradient y = x + x2 dy
−2
Tangent
4k − 16 = 4 − k 5k = 20 k =4✓ 12(i)
+1
x2
=−
−4
Equate gradients: mtan = mAB 4−k
−1 ✓
= −x
= 4x
mAB =
−25 ✓
= 11x
Gradient at A
8 a 8
(x − a)
a2 y − 4 − a2 = − x + 8 2
2
y|x=a = a + a ⇒ (a, a + a2 ) dy
|
dx x=a
a 8
a y
= − x + a2 + 12
y
=−
a 8
a3
x+1+
12 a2
✓
= 1 + 2a
Tangent: y − y1
=
dy
|
dx x=a
(x − x1 )
y − (a + a2 ) = (1 + 2a)[x − (a)] y − (a + a2 ) = (1 + 2a)x −a − 2a2 y = (1 + 2a)x −a2 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
414
A math 360 sol (unofficial)
Ex 15.1
13(ii) Gradient of PQ P(b, 0),Q(0, b) mPQ =
0−b b−0
14(ii) Normal Point: A(−1,6) or C Gradient: ∵ AC ⊥ BD
= −1
mAC =
Equate gradients: mtan = mPQ − −
8
=
a3 8
Normal:
a3 a
5 1
0−b
y − 6 = − (x + 1)
b−0
y
1
5 1
5 29
5
5
=− x+
Point C 29
5
5
)
meets −axis (y = 0). y =0 1
29
5
5
− x+ 1
Tangent at (b, 0): (0) = −(b) + 4 b =4✓ B(−2.2,0) D(0,11) F(−1,0)
1
At C, normal (y = − x +
12
= − (2)3 x + 1 + (2)2 = −x + 1 + 3 = −x + 4
14(i)
5 1
y−6 =− x−
=8 =2✓
8
5
y − y1 = mAC (x − x1 ) 1
Tangent with a = 2: y
−1
=
y − 6 = − [x − (−1)]
= −1
a3
−1 mBD
5
x
=0 =
29 5
x = 29 ⇒ C (29,0) ✓ 14(iii) Area △ ABC = 1 (BC)(AF) 2 1
y = x + 7x + 12
= [29 − (−2.2)][6]
dy
= 3(31.2) = 93.6 ✓
2
dx
2
= 2x + 7
mtan = 2x + 7 (11)−(0)
mBD = (0)−(−2.2) = 5 Equate gradients: mtan = mBD 2x + 7 = 5 2x = −2 x = −1 y|x=−1 = (1)2 + 7(1) + 12 = 6 ⇒ A(−1,6) ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
415
A math 360 sol (unofficial) 15
Ex 15.1
𝐂𝐮𝐫𝐯𝐞 & its gradient (y − 2)2 = x y−2 = ± √x y = 2 + √x or 2 − √x dy dx
1
=
2√x
or −
Line & its gradient x − 2y = 4 2y =x−4
=
= x−2 2
=
2
Point:
⇒
1
=
2
=
1
=
2√x
=
1
=
2
x =1 y|x=1 = 2 + √1 =3 ⇒ (1,3)
y−3
16
dy
=
y
1
(x − 1)
2 1
1
2 1
2 5
2
2
y−3
= x−
y
= x+ ✓
16
5−x3 2√ x
1 5−x3 2√ x
1 5−x3 2√ x
|
=
at (1,2):
5−x3
(1,2) lie in y = √
x
© Daniel & Samuel A-math tuition 📞9133 9982
⋅
−(5−x3 )⋅
x⋅(−3x2 )
d (x) dx
−(5−x3 )⋅1 x2
⋅ ⋅
−3x3
−5+x3 x2
−x3
−5 x2
⋅ (−2x −
1
5 x2
)
5
5−(1)3 2√ (1)
1
⋅ [−2(1) − (1)2 ] ⋅ (−2 − 5)
2√4
4
d dx
(y 2 ) + dy dx
dy dx
dy
1
(1,2) does not lie in
d dx
+1 +y 2
(x) ⋅ y 2
=0
⋅ y2
=0 =0 = −3x 2 − y 2
dx
=
dx
5−(1)3
2 = −2 [inconsistent]
y = −√
)
d (5−x3 ) dx
dy
−3x2 −y2 2xy
At (1,2), dy
5−x3
x
Method 2 (Without subjecting y)
2xy
x
(2) = −√
2 = 2 [consistent]
5−x3
(x)2
3x 2 +x ⋅ 2y ⋅
at (1,2):
5−(1)3 (1)
x⋅
(
7
3x 2 +x ⋅
or y = −√
x
(2) = √
1
3x 2 +2xy
5−x3
⋅
d dx
x 3 +xy 2 =5 Differentiating with respect to x:
x
y=√
3
5−x 2√
=−
5−x3
=
1
=
Method 1 (Subjecting y) xy 2 = 5 − x 3 2
3
5−x 2√
dx x=1
= mtan (x − x1 )
Tangent: y − y1
1
⋅
x
Tangent Gradient: ∵ tangent ∥ line, mtan = mline mtan
1 5−x3 2√ x
x
1
mline =
2√x
=
dx
1
y
1
dy
dx
=
−3(1)2 −(2)2 2(1)(2) 7
=− ✓ 4
5−x3 x
sleightofmath.com
416
A math 360 sol (unofficial) 17(i)
Ex 15.1
Curve & its gradient y = x3 + 5 dy dx
= 3x 2
Tangent Point: Gradient:
y|x=1 = 6 ⇒ (1,6) dy
|
dx x=1
Tangent: y − y1
=3 =
dy
|
dx x=1
(x − x1 )
y − (6) = (3)[x − (1)] y−6 = 3x − 3 y = 3x + 3 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
17(ii) Point At point where curve meets tangent, x3 + 5 = 3x + 3 3 x − 3x + 2 =0 (x − 1)( ) (x − 1)(x 2 ) 2 (x − 1)(x −2) 2 (x − 1)(x + x − 2) = 0 (x − 1)(x + 2)(x − 1) = 0 x=1 or x = −2 (taken) y|x=−2 = 3(−2) + 3 = −3 ⇒ (−2, −3) ✓
sleightofmath.com
417
A math 360 sol (unofficial) 4
Ex 15.2 1(a)
Ex 15.2
y = 4x − 1
y= dy
=
dx dy dx
2x x+1
=4✓
=
>0 ⇒ y is increasing ✓
= =
1(b)
y = x 2 + 2x dy dx
1(c)
5
y= dy
3
dx
= 𝑥2 − 1
(x+1)2 −2x(1) (x+1)2 2x+2 −2x (x+1)2 2 (x+1)2 2 (x (x+1)(2)
x
=
3
= √x ✓ 2
=
> 0 for x > 0 ⇒ y is increasing ✓ 2(a)
(x2 +1)⋅
x2 +1
−2x2 (x2 +1)2
1−x2 +1)2
For decreasing function:
+ − + −1 1
f ′ (x) = −3x 2 ✓ < 0 for 𝑥 > 0 ⇒ f(x) is decreasing ✓
x < −1 or x > 1 [shown] ✓ 6(a)
y = x 2 + 2x − 4 dy
′ (x)
5
= 6x − 5 ✓ < 0 for x < 0 ∵ x 5 < 0 ⇒ f(x) is decreasing ✓ f
dx
y = x 3 + 3x dy dx
3(ii)
dy dx
= 2x + 2
For increasing function: dy dx
3(i)
<0
⇒ 1 − x2 < 0 ∵ (x 2 + 1)2 > 0 x2 − 1 >0 (x + 1)(x − 1) > 0
f(x) = −(x 3 + 1)
f(x) = x 6 − 5x
<0
dx 1−x2 (x2 +1)2
′ (x)
= −1 ✓ <0 ⇒ f(x) is decreasing ✓
2(c)
−x⋅2x
(x2 +1)2
dy
2(b)
d d (x) −x⋅ (x2 +1) dx dx (x2 +1)2
(x2 +1)⋅1
= (x2
f(x) = −9 − x f
d (x+1) dx
x2 +1
= dx
−(2x)⋅
+ 1) > 0 for all x values except x ≠ −1 ⇒ y is increasing for all real values of x [shown] ✓
y = √x 3 − 1
dy
d (2x) dx
>0 ∵
= 2x + 2 ✓
> 0 for x > 0 ⇒ y is increasing ✓
(x+1)⋅
>0
2x + 2 > 0 x > −1 ✓
= 3x 2 + 3 ✓ > 0 for all x values ∵ x 2 ≥ 0
⇒ y increases for all real values of x
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
418
A math 360 sol (unofficial) 6(b)
y = 2x 3 − 3x 2 + 6 dy dx
Ex 15.2 9(i)
dy
−2x3 +2x (x2 +1)2
4x +1)2
For increasing function: f ′ (x) > 0
y = 3x 2 + 4x − 3 = 6x + 4
4x (x2 +1)2
>0
4x x
> 0 ∵ (x 2 + 1)2 > 0 >0✓
9(ii)
For decreasing function: f ′ (x) < 0 ⇒x <0✓
10
T = −5x 2 + 90x + 65
<0
dx
2x3 +2x
= (x2
x < −1 or x > 1 ✓
dy
−(x2 −1)⋅2x (x2 +1)2
=
+ − + −1 1
For decreasing function:
d d (x2 −1) −(x2 −1)⋅ (x2 +1) dx dx (x2 +1)2
(x2 +1)⋅2x
=
6x 2 − 6 >0 x2 − 1 >0 (x + 1)(x − 1) > 0
dx
(x2 +1)⋅
f ′ (x) =
>0
dx
dy
x2 +1
= 6x 2 − 6x
For increasing function:
7(a)
x2 −1
f(x) =
6x + 4 < 0 2
<− ✓
x 7(b)
3
3
dT dx
2
y = 2x − 9x + 12x − 3 dy dx
= 6x 2 − 18x + 12
For cooling: dT
+
− 1
+
−10x + 90 < 0 10x > 90 x >9✓ 11(a)
𝑦
2
10 3 4(x + 1) > 0 x+1 >0 x > −1 ✓ 8(ii)
<0
dx
For decreasing function: 6x 2 − 18x + 12 < 0 x 2 − 3x + 2 <0 (x − 1)(x − 2) < 0
8(i)
= −10x + 90
𝑥
𝑂
11(b)
𝑦
𝑦 = (𝑥 + 1)3
−1 𝑂
11(i)
𝑥
y = f(x)
(a) y = x 3
For decreasing function: f ′ (x) < 0 ⇒ x < −1 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
𝑦 = 𝑥3
(b) y = (x + 1)3
sleightofmath.com
Interval Nature
Sign of
x>0 x<0 x > −1 x < −1
+ + + +
Increasing Increasing Increasing Increasing
dy dx
419
A math 360 sol (unofficial)
Ex 15.2
11(ii) No.
12(ii) For decreasing function:
By Definition, if
dy dx
≥ 0 for all x, then the function is
(non-strictly) increasing. If function is increasing, necessarily
dx
for x >
√2x−1
= = = =
d √2x−1⋅dx(3x+4)
could be 0, not
𝑥<
−
7 3
1
7
2
3
1
dy
−(3𝑥+4)]
dx
2𝑥−1 (6𝑥−3 −3𝑥−4)
= = =
For increasing function:
=
>0 3
3
>0
=
=
2𝑥−1 (3𝑥−7)
3 (2x−1)2
dx 3x−7
∵ (2x − 1)2 > 0 for x >
(2x−1)2
3x − 7 > 0
2
x≠a
x−a
3x+4 √2x−1
2𝑥−1 3x−7
dy
1
13(i) y = x2 −2ax−2,
2x−1 [3(2𝑥−1)
and x >
⇒
1 (2) −(3x+4)⋅ 2√2x−1
3√2x−1
= √2𝑥−1
3
Combining inequalities:
d −(3x+4)⋅ √2x−1 dx 2
2
<0
2
2x−1
1
x>
<
1
7
1
√2x−1⋅3
1 √2𝑥−1
3
∵ (2x − 1)2 > 0 for x >
<0
3x − 7 x
(√2x−1)
= √2𝑥−1
=
dx
<0
dx 3x−7 3 (2x−1)2
>0
dx
3x+4
12(i) y = dy
dy
dy
dy
(x−a)⋅
d (x2 −2ax−2) dx
−(x2 −2ax−2)⋅
d (x−a) dx
(x−a)2 −(x2 −2ax−2)⋅1
(x−a)⋅(2x−2a)
(x−a)2 2x2 −4ax+2a2 −x2 +2ax+2 2 (x−a) (x2 −2ax)
+2a2 +2
(x−a)2 [(x−a)2 −a2 ]
+2a2 +2
(x−a)2 (x−a)2
+a2 +2 (x−a)2
a2 +2
1
= 1 + (x−a)2 ✓
2
13(ii) For increasing function:
7
dy
3
>0
dx a2 +2
Combine inequalities: 𝑥>
7 3
⇒x>
and x >
1 2
7 3
© Daniel & Samuel A-math tuition 📞9133 9982
1 + (x−a)2 > 0 2+a2 (x−a)2
> −1
⇒ all ℝ values of a ∵ a2 + 2 > 0 and (x − a)2 > 0 for x ≠ a ✓
sleightofmath.com
420
A math 360 sol (unofficial)
Ex 15.3 4(i)
Ex 15.3 1(i)
h(t) = =
t(10−t)
r =3+
5 4
= t − t2
4(ii)
dr
−1
= 0 +2 [(1+t)2 ] ⋅ (1)
dt 5
5
2 5
4 5
2
2
−2
= (1+t)2
h′ (t) = − (2t) = − t
dr
|
5
2 3
2
42 1
h′ (2) = − (2)
= − cm s −1 ✓
−1
The balloon is deflating.
= km s 2
1(ii)
2
=−
dt t=3 5
1+(0)
= 5 cm ✓
4 2
2
r|t=0 = 3 +
4 10t−t2 5
2 1+t
5
8
✓ 5(i)
5
h′ (6) = − (6) 2
1
f(t) =
10 000 000
2
(6t 2 + 5)2
1
= − km s −1 ✓
11am: t = 60
2
2(i)
l = dl
t3 3
− 4t + 10
= t2 − 4
dt
dl
5(ii)
6(i)
v
s= + 8
ds
ds
v 40 1
|
= + 8
60 40
5
=1 h ✓ 8
= 2t 6(ii) |
dt t=2
= 2(2)
7(i)(a)
= 4cm s −1 ✓ 3(ii)
80
8
r =t +2
dr
v2
= +
dv
2
dt
10 000 000
1
dv v=60 dr
144(60)3 +120(60)
= 3.11 ≈ 3 people per min ✓
t − 4 = −4 t2 =0 t =0✓ 3(i)
[2(6t 2 + 5)][12t]
10 000 000
f ′ (60) =
= −4
dt 2
(6(60)2 + 5)2
10 000 000 144t3 +120t
=
For length is decreasing at 4 mm/s: dl
1
f ′ (t) =
=5
t −4 =5 2 t −9 =0 (t + 3)(t − 3) = 0 t = −3 (rej ∵ t ≥ 0) or t = 3 ✓ 2(ii)
10 000 000
≈ 46 ✓
For length is increasing at 5 mm/s: dt 2
1
f(60) =
C(x) =
=
t
The initial radius is 2 cm and is increasing at an increasing rate. © Daniel & Samuel A-math tuition 📞9133 9982
8
19 200 x
Annual gasoline costs if car gets 3km l−1 = C(3)
r r = t2 + 2 2 𝑂
5
The time taken to stop at v = 60km h−1 is 1 h ✓
sleightofmath.com
19 200 3
= $6400 ✓
421
A math 360 sol (unofficial) 7(i)(b) Annual gasoline costs if car gets 8km l−1 = C(8) =
Ex 15.3 7(ii)
19 200
Average rate of change in Ben’s annual gasoline costs =
8
= $2400 ✓
=
C(8)−C(3) 8 2400−6400 8−3
= −$800 per km/l ✓ 7(iii)
C ′ (x) = − C
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
′ (5)
=−
19200 x2 19200 52
= −$768 per km/l ✓
422
A math 360 sol (unofficial)
Ex 15.4 1(c)
Ex 15.4 1(a)
dx dt
dx dt
= 2,
dy
|
dt x=1
=?
= 2,
dy dx dy dt
x 1
dy
x2
dt
dy
×
dx
= (4x −
1
x2 2
= 8x −
dx dt
) ×2
|
dt x=1
dx dt
dy
= 2,
|
dt x=2
dy
dx
×
dx
dt
At y = 10, x 3 + 2 = 10 x3 =8 x =2
= 8(1) −
2 12 −1
= 6 units s 1(b)
=
= 3x 2 × 2 = 6x 2
x2 dy
At x = 1,
=?
= 3x 2
dx
1
= 4x − =
|
dt y=10
y = x3 + 2 dy
y = 2x 2 +
dy
dy
✓
=?
= 6(2)2
|
dt x=2
= 24 units s −1 ✓ 1(d)
dx dt
= 2,
dy
|
dt y=2
=?
3
y = (2x−3)3 y=
= 3(2x − 3)−3
dy dy dx
= dy dt
dx
= 3[−3(2x − 3)−4 ] ⋅ 2
= = =
=
18 − (2x−3)4 dy 18 − (2x−3)4 36 − (2x−3)4
At x = 2,
= ×
dx
dy
|
dt x=2
x x+1 (x+1)(1) −x(1) = (x+1)2 x+1 −x (x+1)2 1 (x+1)2
dx dy
dt
=
dt
×2
dy
×
dx
dx dt
1
= (x+1)2 × 2 2
= (x+1)2 36
= − [2(2)−3]4
At y = 2,
= −36 units s −1 ✓
x x dy
|
dt x=−2
© Daniel & Samuel A-math tuition 📞9133 9982
x x+1
sleightofmath.com
=2 = 2x + 2 = −2 2
= (−2+1)2 = 2 units s −1 ✓
423
A math 360 sol (unofficial) 2(a)
dy dt
= 4,
dx
|
dt x=3
Ex 15.4 2(c)
=?
dt
y = x 3 − 2x 2 dy
= 4,
dy
= 3x − 4x =
dt
dy dx
=
dt
dt dx
dy
dt
4
dx
=
dt x=3
dt
= 4,
y= dy dx
=
= =
4 = dx dt
dt x=2
4
1
15
×
√2x+7
dx dt dx dt
= 4√2x + 7
dt
✓
At y = 3, √2x + 7 = 3 2x + 7 = 9 x =1
=?
1+x
=
dt
|
=
×
dx
3x2
=
dy
dx
4 3(3)2 −4(3)
⋅2
dy
4 =
3x2 −4x
At x = 3, | dy
=?
√2x+7
=
dt
dx
2(b)
2√2x+7 1
=
dx
×
4 = (3x 2 − 4x) × dx
|
dt y=3
1
=
dx
dy
dx
y = √2x + 7
2
dx
dy
=
dx
(1+x)⋅
d (3x2 ) dx
−3x2 ⋅
d (1+x) dx
|
dt x=1
= 4√2(1) + 7 = 12 unit s −1 ✓
(1+x)2
2(d)
−3x2 ⋅1
(1+x)⋅6x
dt
(1+x)2 6x+6x2
dy
dx
|
dt y=5
=?
−3x2 (1+x)2
y = x(x − 4) = x 2 − 4x
6x+3x2 (1+x)2 dy dx 6x+3x2 (1+x)2
× ×
dx
dy
dt dx
dx
dt
dy
4(1+x)2
dt
6x+3x2
4
dx
At x = 2, |
= 4,
dt x=2
=
4(1+2)2 6(2)+3(2)2
3 2
unit s −1 ✓
=
dy
×
dx
= (2x − 4) ×
dx
=
= 2x − 4
=
dt
=
dx dt dx dt
4 2x−4 2 x−2
At y = 5, x 2 − 4x =5 2 x − 4x − 5 = 0 (x − 5)(x + 1) = 0 x = 5 or x = −1 (rej) dx
|
dt x=5
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
=
2 5−2
=
2 3
units s −1 ✓
424
A math 360 sol (unofficial) 3(i)
y= dy
2x−1
= = = 3(ii)
4(ii)
x+1
=
dx
Ex 15.4
dt dy
(x+1)⋅
d (2x−1) dx
−(2x−1)⋅
dx dy
d (x+1) dx
(x+1)2 (x+1)⋅2 −(2x−1)⋅1 (x+1)2 2x+2 −2x+1 (x+1)2 3 ✓ (x+1)2
y|x=0 =
−1 1
dy
|
dx x=0
=3
dt
dt dx dt
=3 =3
= −1 5(a) 3
=
⋅
dx
dx
(x + 1)2 =4 2 x + 2x + 1 =4 2 x + 2x − 3 =0 (x + 3)(x − 1) = 0 x = −3 or x = 1 ✓
⇒ A(0, −1) Gradient:
=3
dx 12 (x+1)2
Tangent Point:
dy
((0)+1)
2
=3
Let A ≡ area of circle & r ≡ radius dA dr = 2π, | =? dt dt r=6 A = πr 2 [area of circle]
Tangent: y − y1
=
dy
|
dx x=0
dA
(x − x1 )
dr
y − (−1) = 3 [x − (0)] y = 3x − 1 ✓ 3(iii)
dx dt
= 0.03,
dy dt
dA dt
=
dt
= =
dy
×
dx 3 (x+1)2 0.09 (x+1)2
dr
y= dy dx
dr
dr
×
dt dr
=
dt
1 r
dt
At r = 6,
× 0.03 5(b)
dr
|
dt r=6
=
1 6
cm s −1 ✓
Let A ≡ area of circle & r ≡ radius dA dr = 10π, | =? dt dt r=2
0.09
|
dt x=0
4(i)
dA
dx
At A(0, −1), dy
=
2π = 2πr ×
at A(0, −1) = ?
dt dy
= 2πr
= (0+1)2 = 0.09 units s −1 ✓
A = πr 2 [area of circle] dA
2x−10
dr
x+1
= = =
(x+1)⋅
d (2x−10) dx
(x+1)⋅2 2x+2
−(2x−10)⋅
dA
d (x+1) dx
dt
(x+1)2 −(2x−10)⋅1 (x+1)2 −2x+10 (x+1)2
= 2πr =
dA dr
×
10π = 2πr × dr dt
12
=
dt dr dt
5 r
At r = 2,
= (x+1)2
dr
dr
|
dt r=2
5
= = 2.5 m s −1 ✓ 2
2
> 0 [shown] ∵ (x + 1) > 0 for x ≠ −1 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
425
A math 360 sol (unofficial) 6(i)
Ex 15.4
dV dx = 3, = ? dt dt
7(b)
Let A be Surface Area, V be Volume & x be length of side dA
2
dt
V = x + 3x [given] dV dx dV dx
= 2x + 3 ×
dx
3 = (2x + 3) × dx
=
dt
6(ii)
dx
3 2x+3
|
dt x=3
=
|
dt x=6
=
A=x dA dx dA dt
3
=
1 3
cm s −1
3
=
1 5
dx
5
=
× ×
cm s −1 ✓
dV
=
=
3 A 2 ( ) 2 6
⋅
dV
dA
×
dA
=
1
A
4
6
1
√
1
1
A
4
6
= √
6
dt
20
A 6 A
At x = 1, 1 = √
dV
dt dx
dt A=6
8(i)
x
At A = 4, x 2 = 4 ⇒ x = 2
dt x=2
−(2)
= √ × 0.2
dx
dt
6
1
dV
[area of square]
dA
A
A 2 ( ) 6
= 2x =
⇒x=√
3
A 6
2(6)+3
= 2x
|
= x2
6
V = (√ ) =
3
dx
dx
A
sub (2) into (1):
dt
✓
2(3)+3
10 dt
−(1)
dt dx
Let A be area & x be side dA dx = 10, | =? dt dt A=4 2
=?
A = 6x 2 ⇒
dt
7(a)
|
dt x=1
dx
dA dx
dV
V = x3
dV
=
= 0.2,
|
=
1 20
6
⇒1=
A 6
⇒A=6
6
√ = 0.05 cm3 s −1 ✓ 6
Let y ≡ Length & x ≡ Breadth dx dy = 4, =? dt dt y = 2x [given] dy =2 dx
5
= = 2.5 cm s −1 ✓ 2
dy dt
=
dy dx
⋅
dx dt
= (2) ⋅ (4) = 8 cm/s
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
426
A math 360 sol (unofficial) 8(ii)
Ex 15.4
Let A ≡ Area of rectangle dx dt
= 4,
dA
|
10(ii)
dt
=?
dt x=8
dx
= 2,
da
|
dt x=4
=?
1
a = x(x + 1) A = xy −(1) y = 2x −(2) sub (2) into (1): A = x(2x) = 2x 2
= da dx
da dA
=
dt
dA
×
dx
dt
dx
At x = 8,
dA
11(i)
dp
dA
|
dt p=3
1
3
2
2
dt
=
dt
× 3
2
2
=( + p =
2)
dp dt
dA dx dA
|
dt p=3
10(i)
dt 3
4
4
dt
=? −(1)
Let a be area of triangle 1
a = (2x)(x + 1) sin 150° 2
1 2
= 8x + 1 =
dA
×
dx
dx dt
= (8x + 1) × 1.2 = 9.6x + 1.2
= + (3)2 = 7 units 2 s −1 ✓
= x (x + 1)
dA
× 0.5
1 3 2 + p 4 4
1
= 1.2,
sub (2) into (1): A = x(4x + 1) = 4x 2 + x
At p = 3, dA
= 2(4) + 1 = 9 cm2 s −1
Q(2x, y) lies on y = 2x + 1: y = 2(2x) + 1 = 4x + 1 −(2)
=?
dA dp 1
dt
×2
A = xy
= + p2
dA
dx
Let A ≡ Area of parallelogram OPQR dx
= p + p3 ✓ = 0.5,
×
dx
dt x=4
(1 + p2 ) 2
da
da
= (p) 1
2
At x = 4, |
= 16(8) = 128 cm2 s −1 ✓
|
2 1
2
2
1
= 2x + 1
dt x=8
2 1
=
1
2
1
dA
2
= (x + )
A = (height) (sum of bases)
dt
1
1
dt
= 4x × 4 = 16x
dp
2
= (2x) +
= 4x
dx
9(ii)
1
+ x
=x+
dA
9(i)
2 1 2 x 2
C
At x = 1.5,
dA
|
dt x=1.5
= 9.6(1.5) + 1.2 = 15.6 units/s
x+1 150° A 2x B
1
= x (x + 1) [shown] ✓ 2
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
427
A math 360 sol (unofficial)
Ex 15.4
11(ii) Let z be length of diagonal OQ dx dz = 1.2, | =? dt dt x=1.5
13
dx dt
By distance formula,
= 0.6,
−(1)
dy
=
dx
= sub (2) into (1): = √4x 2 + (4x + 1)2
dy
=
dt
= √4x 2 + (16x 2 + 8x + 1)
=
= √20x 2 + 8x + 1 dz dx
= =
dz dt
= = =
1 2√20x2 +8x+1 20x+4
dz
√20x2 +8x+1 24x+4.8
dt
dy
× 1.2
dt x=1.5
≈ 5.36 units per sec ✓
14
dP dt
dt
z dz
dI
dx
×
dP
×
dx −x
dx dt
× 0.6
√36−x2 −0.6x √36−x2
=
= −50,
−0.6(3.6) √36−3.62
= −0.45
dz
|
dt x=144
=?
𝑥 𝑧
270
= √x 2 + 72900 =
dz dt
= = =
|
dy
1 2√x2 +72900 x
⋅ 2x
√x2 +72900
dI dt
= 800I × 2 = 2400I At I = 3,
⋅ (−2x)
√36−x2
|
= dP
2√36−x2 −x
By Pythagoras’ Theorem, z 2 = x 2 + 2702
= 800I =
𝑥
Let z be distance between helicopter & lorry dx
P = I2 R = 400I 2 ∵ R = 400
dI
𝑦
∴ The rate at which the ladder is sliding down is 0.45m s −1
dI dP = 2, | =? dt dt I=3
dP
1
dt x=3.6
√20x2 +8x+1 dz
6
dx
× 20x+4
=?
At y = 4.8, x 2 + 4.82 = 62 x2 = 12.96 x = 3.6
√20x2 +8x+1
At x = 1.5, | 12
=
⋅ (40x + 8)
dx
|
dt y=4.8
= √36 − x 2
y
Q(2x, y) lies on y = 2x + 1, y1 = 2(2x) + 1 = 4x + 1 −(2)
z
dy
By Pythagoras’ Theorem, x 2 + y 2 = 62 y2 = 36 − x 2
z = √(0 − 2x)2 + (0 − y)2 = √4x 2 + y 2
Let x be distance from wall & y be distance from ground
dt I=3
= 2400(2) = 4800 W s −1 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
dz dx
× x
√x2 +72900 −50x
dt
× (−50)
√x2 +72900
At x = 144,
sleightofmath.com
dx
dz
|
dt x=144
= −23
9 17
m s −1 ✓
428
A math 360 sol (unofficial) 15(i)
Ex 15.4
Let x ≡ top of man′ s shadow from the lamp y ≡ man from the lamp By similar triangles, 2
=
7
|
1
1
1
2
3
6
≈ 11.1 kmh−1
6
y 17(a)
x
d dr
= x✓
(πr 2 ) = 2πr
𝛿𝐴 𝑟 𝛿𝑟
7
dy dt dy dx dy dt 5 3 dx dt
16(i)
h after B reaches P
dt t=−1
5
y
3
dx
2
x
1
⇒ t = (− ) + = −
7
x−y
2x = 7x − 7y 7y = 5x
15(ii)
16(ii)
5 dx
= ,
3 dt
=
LHS =?
=
=
dx 5 7 7
× ×
= ms
dx dt dx dt −1
3
= lim ✓
δr→0
= 2πr = RHS
B (0,30) at t = 0
17(b)
P A (0,0) at t = 0
+ (3600t 2 + 3600t + 900)
=
1 2√9225t2 +3600t+900 9225t+1800
d
4
( πr 3 ) = 4πr 2
dr 3
𝑟 𝛿𝑟 = =
⋅ (18450t + 3600)
√9225t2 +3600t+900
d
4
( πr 3 )
dr 3 d dr
dt
=
9225t+1800
δV δr→0 δr
= lim
= lim
√9225t2 +3600t+900
−1
≈ 87.2 kmh
(4πr2 )δr δr
𝛿𝑟
δV ≈ (Surface Area) (breadth) (δr) ≈ (4πr 2 )
∵ δV = (4πr 2 )δr
dx | ≈ 87.2 kmh−1 dt t=1
= lim 4πr 2 δr→0
3
© Daniel & Samuel A-math tuition 📞9133 9982
4𝜋𝑟 2 𝛿𝑉
(V)
δr⇒0
dx
𝛿𝑉
LHS
= √9225t 2 + 3600t + 900 =
δr
= lim 2πr
x = √[(−75t) − 0]2 + [0 − (30 + 60t)]2
dt
δA ≈ (length) (breadth) ≈ (2πr) (δr)
∵ δA = (2πr)δr
A(−75t, 0) B(0,30 + 60t)
= √5625t 2
𝛿𝑟
(2πr)δr
δr→0
t ≡ time after A reaches P x ≡ distance between the two motorists
dx
2𝜋𝑟 𝛿𝐴
=
7 dy
(πr 2 )
d (A) dr δA = lim δr⇒0 δr
5
=
d dr
= RHS
sleightofmath.com
429
A math 360 sol (unofficial)
Rev Ex 15 A2(ii) For ⊥ tangents: m1 ⋅ m2
Rev Ex 15 A1(i)
10
y= dy
x
( |
−x
=−
dx
dy
10 x2
dx x=−3 1
−1
10 3
1
−3=
3
⇒ (3, ) 3
−1 dy | dx x=3
=
=1
=
10
− 2 −1 3
9
A3(i)
19
dy
−1
y − y1
= dy
(x − x1 )
|
1
y−
=
3 1
y−
=
3
y
=
9 19 9 19 9 19
(x − 3) x− x−
Gradient:
27 19 62 57
2
−
x2
−1 =−
10
=
x2 2
7 2 7
5
dy
2
10 −2
dx
−2
y|x=2 =
10 2
−2
=3 ⇒ (2,3) ✓
8y = x 2 − kx + 17 1
1
17
8
8
8
= x 2 − kx +
y dy
1
1
4
8
= 9(1)2 − 5 = 4
|
dx x=1
=
dy
|
dx x=1
(x − x1 )
=
dy
|
dx x=1
9x 2 − 5 =4 2 x −1 =0 (x − 1)(x + 1) = 0 x=1 or x = −1 (taken) y|x=−1 = 3(−1)3 − 5(−1) + 4 =6 ⇒ (−1,6) ✓
x=2
= −3 ⇒ (−2, −3)✓ A2(i)
dy
A3(ii) tangent ∥ tangent at A: m1 = m2
2
x =4 x = −2 or y|x=−2 =
A(1,2)
y − (2) = (4)[x − (1)] y−2 = 4x − 4 y = 4x − 2 ✓
A1(ii) Tangent has gradient − : =−
= −64 = −64 =0 =0 =2✓
Tangent: y − y1
✓
7
10
8
= 9x 2 − 5
Tangent Point:
dx x=3
dx
= −1
y = 3x 3 − 5x + 4 dx
dy
)
(k + 6)(k − 10) k 2 − 4k − 60 k 2 − 4k + 4 (k − 2)2 k
1
Normal:
dx x=5 1
8
y|x=3 =
Gradient:
) ( |
[− (6 + k)] [ (10 − k)] = −1
Normal Point:
= −1
dy
= x− k
dx
Tangent gradient at x = −3, x = 5: dy
1
1
= (−3) − k
|
dx x=−3
4
=−
8 1
6
− k
8 1
8
= − (6 + k) ✓ 8
dy
|
dx x=5
1
1
4 5
8 1
= (5) − k =
4 1
− k 8
= (10 − k) ✓ 8
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
430
A math 360 sol (unofficial) A4(i)
Rev Ex 15
Curve
A5
y = ax + dy dx
b
=a−
b
dy
x2
dx
−1
mnorm = dy
|
=
dx x=2
−1 b a− 2 2
=
−1 b a− 4
=
−4 4a−b
> 0 [shown] ✓ for x > 2 ∵ 2x > 0, (x − 2) > 0, (x − 1)2 > 0 A6(i)
V= dp
b (2)
A6(ii)
dp
b = 14 − 4a
−(1)
dV
=
= 3,
dV dp 60
=−
=1
p2
dV
|
dt p=20
× ×
=?
dp dt dp dt
At p = 20, dV
= 2x + 6 x
=−
60 202
×3
= −0.45 units 3 s −1 ✓ A7(i)
Let A ≡ area of circular patch r ≡ radius Equate area of circle, πr 2 =
for a = 2, b = 6
−2x + 11
|
dt p=20
A4(ii) Point Q At Q, normal (y = −2x + 11) meets y = 2x +
−4x + 11 −
✓
p2
= −2
2 = 4a − b −(2) (1) sub into (2): 2 = 4a − (14 − 4a) 2 = 4a − 14 + 4a 2 = 8a − 14 16 = 8a a =2✓ b|a=2 = 14 − 4(2) =6✓
x
60
|
Equate gradients,
6
p
=−
dt
4a−b
60
dt p=20
= 7 − 2a
4a−b 2
2x2 −4x (x−1)2 2x(x−2) (x−1)2
=
Curve at P(2,7):
−4
(x−1)2 4x2 −4x −2x2 (x−1)2
=
dV
(7) = a(2) +
(x−1)(4x) −(2x2 )(1)
= =
Normal y + 2x = 11 y = −2x + 11 mnorm = −2
2
x−1
x
Gradient of normal at P(2,7)
b
2x2
y=
6
dA dt
(t)
πr 2 = (4)(16) = 64 64
r2
=
r
=√
π 64 π
x
=0
4x 2 − 11x + 6 = 0 (x − 2)(4x − 3) = 0 x = 2 (taken) or x =
3 4 3
6
4
3 4
y|x=3 = 2 ( ) + 4
=
19
2 3 19
⇒ Q( , ) 4
© Daniel & Samuel A-math tuition 📞9133 9982
2
sleightofmath.com
431
A math 360 sol (unofficial) A7(ii)
dA dt
dr
= 4, |
dt t=16
Rev Ex 15 B1(i)
=?
y= dy
A = πr 2 dA dr
dx
x √x−2 d
=
dt
=
dA
×
dr
4 = 2πr × dr
=
dt
dr dt dr
=
dt
=
2 πr
= 64
At t = 16, r = √ ,
=
π
dr
|
dt t=16
A8(i)
dθ dt
2
=
π√
π ds
= ,
2 dt
= 64 π
2 π(
8 √π
)
=?
=
2 8√π
=
1
ds
(√x−2)
4√π
x−2
=
−
√x−2
dt
d (√x−2) dx
=
[2(x−2)
−x]
x−2 1 2√x−2 1 2√x−2
(2x−4
−x)
x−2 (x−4)
x−2 x−4 2(√x−2)
3
[proven] ✓
Point:
y|x=4 =
(4) √(4)−2
⋅
=
4 √2
= 2√2
⇒ (4,2√2) Gradient: − dy
dθ
x 2√x−2
B1(ii) Normal
=8 ds
1 ⋅1 2√x−2
x−2 1 2√x−2
1 |
dx x=4
ds
2
−x⋅
√x−2⋅1
cm s −1 ✓
s = rθ [arc length] = 8θ ∵ r = 8
dθ
−x⋅
= 2πr =
dA
√x−2⋅dx(x)
dθ
Normal:
=
−1
⇒ −∞
(4)−4 2(√(4)−2)
3
x=4✓
dt π
= (8) ⋅ ( ) 2
= 4π cm s −1 ✓ A8(ii)
dθ dt
π dA
= ,
2 dt
=?
1
A = r 2 θ[sector area] 2 1
= (8)2 θ
∵r=8
2
= 32θ dA dθ dA dt
= 32 =
dA dθ
⋅
dθ dt π
= (32) ⋅ ( ) 2
= 16π cm2 s −1 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
432
A math 360 sol (unofficial)
Rev Ex 15
B2(a) 1st curve y = ax 2 + bx + 2 dy dx
B2(b) Tangent y = 2x − 16 mtan = 2
= 2ax + b
Curve y = ax 3 + bx
1
Tangent gradient at (1, ): 2
dy
= 2a + b
dy
1st curve at (1, ):
1
Gradient of tangent at x = 2
1
mtan =
mtan =
|
dx x=1
dx
2
2
= a(1)2 + b(1) + 2
= 3ax 2 + b
dy
|
dx x=2
= 3a(2)2 + b = 12a + b
3
a=− −b
At point of contact, y|x=2 = 2(2) − 16 = −12 ⇒ (2, −12)
2
2nd curve y = x 2 + 6x + 4 dy dx
= 2x + 6 (2, −12) lies on curve: −12 = a(2)3 + b(2) −12 = 8a + 2b −12 − 8a = 2b b = −6 − 4a
Normal gradient at (−2, −4): mnorm = − dy
1 |
=−
dx x=−2
1 2(−2)+6
=−
1 2
1
Tangent to 1st curve at (1, ) ∥ normal to 2nd curve 2
at (−2, −4): mtan
= mnorm
2a + b
=−
3
2 (− − b) + b
=−
−3 − 2b + b
=−
−3 − b
=−
2
=
b
=− 5
2
2
1 2 1 2 1 2 1 2
5
−b 3
Using gradients, 12a + b =2 12a + (−6 − 4a) = 2 8a − 6 =2 8a =8 a =1 b|a=1 = −6 − 4(1) = −10 ✓
2 5 2
a|b=−5 = − − (− ) = 1 ✓ 2
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
433
A math 360 sol (unofficial) B3
Rev Ex 15
Curve y = (x + 1)2 dy
B4
Curve y=
= 2(x + 1)
dy
mtan = 2(x + 1)
dx
dx
1
3
4
4
= x+
mline =
P(a, b) dy
|
dx x=a
=− =
ab a2 dy
=−
b a
(x − x1 )
|
dx x=a b
y − (b) = (− ) [x − (a)] a
∵ Tangent ⊥ line, mtan ⋅ mline = −1 1
mtan ⋅ ( )
= −1
mtan
= −4
4
Tangent:
x2
Tangent: y − y1
4
Point:
ab
=−
Gradient:
1
Tangent Gradient:
x
Tangent Point:
Line 4y = x + 3 y
ab
dy
|
dx x=−3
(x − a)
y−b
=−
y−b
=− x+b
y
= − x + 2b
a b a b a
Point Q At Q, tangent meets x-axis (y = 0) y =0
2(x + 1) = −4 x+1 = −2 x = −3 (−3 y|x=−3 = + 1)2 =4 ⇒ (−3,4) y − y1 =
b
b
− x + 2b = 0 a b
− x
= −2b
a
x = 2a ⇒ Q(2a, 0)
(x − x1 )
[x − (−3)] y − (4)= (−4) (x + 3) y − 4 = −4 y − 4 = −4x − 12 y = −4x − 8 ✓
Point R At R, tangent meets y-axis (x = 0) b
y|x=0 = − (0) + 2b a
= 2b ⇒ R(0,2b) Distance PQ & RP P(a, b) Q(2a, 0)
R(0,2b)
PQ = √(a − 2a)2 + (b − 0)2 = √a2 + b 2 RP = √(0 − a)2 + (2b − b)2 = √a2 + b 2 ∴ PQ = RP [shown] ✓ B5(i)
v
v2
4
60
s= + ds
ds
1
v
4
30
= +
dv
|
dv v=45
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
✓
1
(45)
4
30
= +
=
7 4
km2 h−1 ✓
434
A math 360 sol (unofficial)
Rev Ex 15
B5(ii) If one is travelling at 45km h−1 , for every 1km h−1 increase in speed, the stopping distance increases by 1.75 km ✓ B6(i)
dp dt dA dp
22
y=√ dy
x
22 2√ −x x
1
=
22 2√ −x x
(− (
22 x2
− 1)
x2
1 x
) =
= 2,
dt dy
=
dt
= =
dy
|
dt x=2
−22−x2 22 2x2 √ −x x
−22−x2
=
3
=
|
dt p=5
1
=? 1
= (2p) + (3p2 ) 2
=
−22−x2
=
22−x2 2x2 √ x
=
2 3 2 + p 2
dA
×
dp 3 (p + p2 ) 2 9 3p + p2 2
✓
2x2 √22−x2
2x2 √ √22−x2 dx
dA dt
−22−x2
−22−x2
=
dA
= 3,
=p
−x 1
=
dx
B6(ii)
B7(ii)
dA
At p = 5,
|
dt p=5
B8(i) ×
dx −22−x2 3
2x2 √22−x2
dt
×3
9
= 3(5) + (5)2 2
= 127.5 ✓
=?
dy
dp
dx
Let x ≡ man from lamp y ≡ shadow length
dt
dx dt
×2
dy
= 2,
dt
1.5
=? y
5
x
By similar triangles,
−22−x2
y
3
x2 √22−x2
1.5
=
x+y 5 3
3
2 3
2
5y = x + y At x = 2, dy
|
dt x=2
=
7 −22−22 3 22 √22−22
=
−26 2√2√18
=
−13 √36
=−
13 6
2
cm s −1
y = x
y
2 3
= x 7
✓ B7(i)
dy
y = x2 y|x=p = p2
dx dy dt
1
A = (RP)(PQ) 2 1
= [p − 2 1
= =
=
2 1 2 p 2
1
dy dx 3
⋅
dx dt
7
6
= ms −1 7
= (p + 1)p2 = (p2 + p3 )
7
= ( ) ⋅ (2)
(−1)](p2 )
2 1
3
B8(ii) z ≡ top of shadow from lamp z=x+y
+ p3 ✓ 2
Speed of the top of his shadow = = =
dz dt d dt dx dt
(x + y) +
=2 + =
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
20 7
dy dt 6 7 −1
ms
✓
435
A math 360 sol (unofficial)
Ex 16.1 3(i)
Ex 16.1 1(a)
y = x 2 − 5x + 1 dy dx
=
At stationary point, =0
dx
=
2x − 5 = 0 x
=
2
2
5 2
5
2
2
= −5
=
1
1
2
4
4
(x 2 − 4) ⋅ 2
− (2x − 5) ⋅ 2 (x 2
−
4)2
2x 2 − 8
− 4x 2 + 10x (x 2 − 4)2
=
−2(x 2 − 5x + 4) (x 2 − 4)2
=
−2(x − 4)(x − 1) (x 2 − 4)2
y = 5 − 6x + x 2 dx
d d (2x − 5) − (2x − 5) ⋅ (x 2 − 4) dx dx (x 2 − 4)2
−2x 2 + 10x − 8 = (x 2 − 4)2
1
⇒ (2 , −5 ) ✓
dy
(x 2 − 4) ⋅
5
y|x=5 = ( ) − 5 ( ) + 1
1(b)
x2 −4
dy dx
= 2x − 5 ✓
dy
2x−5
y=
= −6 + 2x ✓
✓ At stationary point, dy
3(ii)
=0
dx
dy
−6 + 2x = 0 x =3 y|x=3 = −6 + 2(3) = −4 (3, ⇒ −4) ✓ 2(i)
y=
At stationary point, dx −2(x−4)(x−1) (x2 −4)2
dx
4(i)
y = 2x 3 − 9x 2 + 12x − 4
2x+1 dy
x−1
= = =
(x−1)⋅
d (2x+1) dx
−(2x+1)⋅
(x−1)2 −(2x+1)⋅(1) (x−1)2 −2x−1 (x−1)2
(x−1)⋅(2) 2x−2
4(ii)
At stationary point, dy
=0
dx
−3
3
= 6x 2 − 18x + 12 = 6(x 2 − 3x + 2) = 6(x − 1)(x − 2) [shown]✓
d (x−1) dx
6(x − 1)(x − 2) = 0 x = 1 or x = 2 y|x=1 = 1 y|x=2 = 0 ⇒ (1,1) ✓ ⇒ (2,0) ✓
= (x−1)2 ✓ 2(ii)
=0
x = 4 or x = 1 ✓
dx dy
=0
3
− (x−1)2 ≠ 0 ∵ − (x−1)2 < 0 for x ≠ 1 ⇒ no stationary pt ✓ 4(iii)
d2 y dx2 d2 y
= 12x − 18 |
= −6 < 0 ⇒ max pt (1,1) ✓
|
=6 >0
dx2 x=1 d2 y dx2 x=2
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
⇒ min pt (2,0) ✓
436
A math 360 sol (unofficial) 5(i)
Ex 16.1 6(b)
y = (x − 5)√7 + x
y = x 4 − 8x 2 + 2 dy
dy
d
= (x − 5) ⋅
dx
dx
= = = = 5(ii)
d
√7 + x + dx (x − 5) ⋅ √7 + x 1
= (x − 5) ⋅
dx
2√7+x
(1) +(1)
At stationary point,
⋅ √7 + x
dy
dx 3x+9 2√7+x
x
+√7 + x
2√7+x x−5
4x 3 − 16x =0 x 3 − 4x =0 2 x(x − 4) =0 x(x + 2)(x − 2) = 0 x=0 or x = −2 or x = 2 y|x=0 = 2 y|x=−2 = −14 y|x=2 = −14 ⇒ (0,2) ⇒ (−2, −14) ⇒ (2, −24)
+2(7+x) 2√7+x
x−5
+14+2x 2√7+x
3x+9 2√7+x
✓
d2 y
=0 =0
d2 y
= −3
dy
−3
−3+
−
0
+
sign
dx
= 3x 2 − 24x + 36
dy
=0 2
3x − 24x + 36 = 0 x 2 − 8x + 12 =0 (x − 2)(x − 6) = 0 x=2 or x = 6 y|x=2 = 32 y|x=6 = 0 ⇒ (2,32) ⇒ (6,0)
At stationary point, =0 2
3x − 12 =0 2 x −4 =0 (x + 2)(x − 2) = 0 x = −2 or x = 2 y|x=−2 = 16 y|x=2 = −16 ⇒ (−2,16) ✓ ⇒ (2, −16) ✓ d2 y dx2
d2 y dx2 d2 y
= 6x
2|
dx x=−2 d2 y
|
dx2 x=2
= 6x − 24 |
= −12 < 0
⇒ max. pt (2,32) ✓
|
= 12 > 0
⇒ min. pt (6,0) ✓
dx2 x=2 d2 y
d2 y
⇒ min pt (2, −14) ✓
= 32 > 0
dx
dx
⇒ min pt (−2, −14) ✓
At stationary point,
= 3x 2 − 12
dy
⇒ max pt (0,2) ✓
= x(x − 6)2 = x(x 2 − 12x + 36) = x 3 − 12x 2 + 36x
y
dy
y = x 3 − 12x dx
= 32 > 0
|
dx
dy
|
dx2 x=2
⇒ min pt ✓ 6(a)
= −16 < 0
dx2 x=−2 d2 y
6(c) −3−
|
dx2 x=0 d2 y
Sign Test: x
= 12x 2 − 16
dx2
y|x=−3 = [(−3) − 5]√7 + (−3) = −16 ⇒ (−3, −16) ✓ 5(iii)
=0
dx
x−5
At stationary point, dy
= 4x 3 − 16x
= −12 < 0
= 12 > 0
© Daniel & Samuel A-math tuition 📞9133 9982
⇒ max pt (−2,16) ✓
dx2 x=6
⇒ min pt (2, −16) ✓
sleightofmath.com
437
A math 360 sol (unofficial) 7(a)
y = 2x +
Ex 16.1
18
7(b)
x
y = x2 +
= 2x + 18x −1 dy
dy
= 2x + 16(−x −2 )
dx
= 2 − 18x −2 =2−
x
= x 2 + 16x −1
= 2 + 18(−x −2 )
dx
16
= 2x − 16x −2
18
= 2x −
x2
16 x2
At turning point,
At stationary point,
dy
dy
=0
dx 18
2−
=0
x2
2
=
=0
dx
2x −
18
16
=0
x2
2x
x2
2
=
16 x2
3
x =9 x2 − 9 =0 (x + 3)(x − 3) = 0 x = −3 or x=3 y|x=−3 = −12 y|x=3 = 12 ⇒ (−3, −12) ✓ ⇒ (3,12) ✓
2x = 16 x3 − 8 =0 2 (x − 2)(x + 2x + 4) = 0 x=2 y|x=2 = 12 ⇒ (2,12) ✓
d2 y
d2 y
dx2
= −18(−2x −3 ) =
d2 y dx2 d2 y
| |
dx2
36
=2+
x3
x=−3
dx2 x=3
= 2 − 16(−2x −3 )
=
=
36 −27
36 26
<0
>0
© Daniel & Samuel A-math tuition 📞9133 9982
⇒ max pt (−3, −12) ✓
d2 y
|
dx2 x=2
32 x3
= 6 > 0 ⇒ min pt (2,12) ✓
⇒ min pt (3,12) ✓
sleightofmath.com
438
A math 360 sol (unofficial) 7(c)
Ex 16.1
4x2 +9
y=
7(d)
x
= 4x +
9
dy
x
dx
= 4x + 9x −1
x2
y=
x+1
= =
dy
= 4 + 9(−x −2 )
dx
=
= 4 − 9x −2 =4−
dx 9
4x 2
2
2
or
x=
y|x=−3 = −12
3
d2 y
2
3
3
2
2
dx2
⇒ (− , −12) ✓ ⇒ ( , 12) ✓
dx2
= −9(−2x =
d2 y
=
|
dx2 x=3 2
=0
(x+1)2 ⋅
d (x2 +2x) dx
−(x2 +2x)⋅
d (x+1)2 dx
(x+1)4 (x+1)2 ⋅(2x+2)
−(x2 +2x)⋅2(x+1) (x+1)4 −(x2 +2x)⋅(2)
(x+1)⋅(2x+2) (x+1)3 2x2 +4x+2
−2x2 −4x (x+1)3
2
=−
2
d2 y
=
−3 )
x3
|
= =
18
dx2 x=−3
=0
2
y|x=3 = 12
2
=0
x=0 or x = −2 y|x=0 = 0 y|x=−2 = −4 ⇒ (0,0) ⇒ (−2, −4)
3
(x + ) (x − ) = 0
d2 y
−x2
(x+1)2
dx x2 +2x (x+1)2 x(x+2) (x+1)2
=0
4 3
2
(x+1)2 2x2 +2x
dy
=9 9
x=−
(x+1)2 (x+1)(2x) −x2 (1)
At stationary point,
=0
x2
3
d (x+1) dx
x2 +2x
=0
x −
−x2 ⋅
x2
dy
2
d (x2 ) dx
= (x+1)2
9
At stationary point,
4−
(x+1)⋅
=
16 3
16 3
<0
>0
= (x+1)3
3
⇒ max pt (− , −12) ✓ 2
d2 y
3
⇒ min pt ( , 12) ✓ 2
|
dx2 x=0 d2 y
|
=2 >0
dx2 x=−2
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
= −2 < 0
⇒ min pt (0,0) ✓ ⇒ max pt (−2, −4) ✓
439
A math 360 sol (unofficial) 7(d)
Ex 16.1
x −1 2 x +1 x +0x +0 −(x 2 +x) −x +0 −(−x −1) 1
8(i)
y = 8x +
= 8x + x 2
dy
1
= 8 + (−2x −3 )
dx
2
= 8 − x −3
x2
y=
=8−
x+1
= (x − 1) +
At stationary point, dy
=0
dx dx
1
= 1 + [−(x + 1)−2 ](1)
8−
= 1 − (x + 1)−2
8
=
x3
=
x
=
1
= 1 − (x+1)2 At stationary point, dy
=0
x3
1 x3 1 8 1 2
y|x=1 = 6
=0
dx
1 x3
1 x+1
= (x − 1) + (x + 1)−1 dy
1 2x2 1 −2
2
1
⇒ ( , 6) ✓
1
1 − (x+1)2 = 0
2
1 = (x + 1)2 1 = x 2 + 2x + 1 0 = x 2 + 2x x(x + 2) = 0 x=0 or x = −2 y|x=0 = 0 y|x=−2 = −4 ⇒ (0,0) ✓ ⇒ (−2, −4) ✓
8(ii)
d2 y
= −(−3x −4 )
dx2
= d2 y
3 x4
|
dx2 x=1
= 48 > 0
2
1
d2 y dx2
⇒ min pt ( , 6) ✓ 2
= 0 −[−2(x + 1)−3 ](1) 9(i)
2
= (x+1)3
y = x 3 − 6x 2 + 3 dy dx
d2 y
|
dx2 x=0 d2 y 2|
=2 >0
dx x=−2
= −2 < 0
⇒ min pt (0,0) ✓
9(ii)
= 3x 2 − 12x ✓
At stationary point, dy
⇒ max pt (−2, −4) ✓
=0
dx 2
3x − 12x = 0 x 2 − 4x = 0 x(x − 4) = 0 x = 0 or x = 4 ✓ 9(iii)
dy
<0
dx
3x 2 − 12x < 0 x(x − 4) < 0 +
− 0
+ 4
⇒ 0 < x < 4 [shown]
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
440
A math 360 sol (unofficial) 10(i)
y=
Ex 16.1
2x−1
11(ii) At k = 12,
x2 +2
3
x = √− dy dx
=
(x 2 + 2)(2) (x 2
− (2x − 1)(2x) + 2)2
2x 2 + 4
dy
− 4x 2 + 2x
dx2 d2 y
(x 2 + 2)2
|
= 36 > 0
⇒ min pt (−1, −9) ✓ 12
y = ax +
b x2
= ax + bx −2
−2(x − 2)(x + 1) (x 2 + 2)2 ✓
dy
=
= a + b(−2x −3 )
dx
=a−
2b x3
Curve at (3,5):
10(ii) At stationary point, dx −2(x−2)(x+1) (x2 +2)2
= 36x 2
dx2 x=−1
−2(x 2 − x − 2) (x 2 + 2)2
dy
= −1
= 12x 3 + 12
dx d2 y
−2x 2 + 2x + 4 = (x 2 + 2)2 =
12
y = 3x 4 + 12x y|x=−1 = −9 ⇒ stationary pt (−1, −9)
d d (x 2 + 2) ⋅ (2x − 1) − (2x − 1) ⋅ (x 2 + 2) dx dx = (x 2 + 2)2 =
12
b
5 = 3a +
=0
b 9
=0
9
= 5 − 3a
b = 45 − 27a
−(1)
x = 2 or x = −1 ✓ 10(iii)
At stationary pt (3,5):
dy dx −2(x−2)(x+1) (x2 +2)2 (x−2)(x+1) (x2 +2)2
>0
dy
>0 <0
(x − 2)(x + 1) < 0
a− ∵ (x 2 + 2)2 > 0
+ − + −1 2
27
=0 =0 =0
−(2)
sub (1) into (2): a−
⇒ −1 < x < 2 [shown] ✓ 11(i)
|
dx x=3 2b a − (3)3 2b
a−
2(45−27a) 27 2(9)(5−3a) 27
=0 =0
2
y = 3x 4 + kx
a − (5 − 3a) = 0
dy
3a − 10 + 6a = 0 9a = 10
dx
3
3
= 12x + k
a
At stationary pt: dy
10 9
✓
b|a=10 = 15 ✓
=0
dx
= 9
3
12x + k = 0 x3 x
=− 3
= √−
k 12 k 12
⇒ only 1 stationary pt ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
441
A math 360 sol (unofficial) 13
1st curve & its gradient y = 2x 2 − 4x + 5 dy dx
Ex 16.1 14(ii) At a = 9, dy
= 4x − 4
dy
d2 y
=0
dx
15(i)
dy
= a − 2b(2x − 1)−2 2b
= a − (2x−1)2 (2,7) lies on curve, (7) = a(2) + 7
At turning pt (1,3):
dy
= 21 − 6a
|
a−
2b
=0
9
−(2)
sub (1) into (2): a− a−
2(21−6a) 9 2(7−2a) 3
=0 =0
3a − 14 + 4a = 0 7a = 14 a =2✓
=0
6(−3) + 2a(−3) = 0 54 − 6a =0 a =9✓ b|a=9 = −8 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
=0 2b
At stationary pt (−3,19): |
−(1)
a − (2(2)−1)2 = 0
= 6x 2 + 2ax
dx x=−3 2
b 3
= 7 − 2a
dx x=2
Curve at (−3,19): (19) = 2(−3)3 + a(−3)2 + b 19 = −54 + 9a + b b = 73 − 9a
dy
b 2(2)−1
At stationary pt (2,7):
y = 2x 3 + ax 2 + b dx
= 2a +
b 3 b
=0
3 + 2a + 1 = 0 2a = −4 a = −2 ✓ b|a=−2 = 3 ✓
dy
= a + b[−(2x − 1)−2 ⋅ (2)]
dx
= 3x + 2ax + 1
|
b 2x−1
= ax + b(2x − 1)−1
2nd curve at (1,3): 3=1+a+1+b b=1−a
14(i)
y = ax +
2
dx x=1
= −18 < 0
⇒ max pt (−3,19) ✓
2nd curve & its gradient y = x 3 + ax 2 + x + b
dy
|
dx2 x=−3
4x − 4 = 0 x =1 y|x=1 = 3 ⇒ turning pt (1,3)
dx
= 12x + 18
dx2
At turning point,
dy
= 6x 2 + 18x
dx d2 y
Put a = 2 into (1): b|a=2 = 9 ✓
sleightofmath.com
442
A math 360 sol (unofficial)
Ex 16.1 16(ii) Curve at (1,1): 1 = 12 (1 − k)2 1 = 1 − 2k + k 2 0 = k 2 − 2k k 2 − 2k = 0 k(k − 2) = 0 k=0 or k = 2 (rej ∵ k ≠ 0)
15(ii) At a = 2 & b = 9, y = 2x + dy dx
9 2x−1 18
= 2 − (2x−1)2
At stationary point, dy
=0
dx 18
2 − (2x−1)2
=0
2
= (2x−1)2
18
∴ y = x 2 (x − 2)2 dy
(2x − 1)2 =9 2 4x − 4x + 1 = 9 4x 2 − 4x − 8 = 0 x2 − x − 2 =0 (x − 2)(x + 1) = 0 x=2 or x = −1 (taken) y|x=−1 = −5 ⇒ (−1, −5) ✓
dx
At stationary point, dy
dx
=0
dx
2x(x − 2)(2x − 2) = 0 2x(x − 1)(x − 2) = 0 x=0 or x = 1 or y|x=0 = 0 y|x=1 = 1 ⇒ (0,0) ✓ ⇒ (1,1) ✓
15(iii) 1st derivative dy
16(iii) 1st derivative −2
dy
= 2x(x − 2)(2x − 2)
dx
= 2x(2x 2 − 6x + 4) = 4x 3 − 12x 2 + 8x
2nd derivative dx2
= −18[−2(2x − 1)−3 ] ⋅ = −18[−2(2x − 1) =
d2 y
|
d dx
(2x − 1)
−3 ]
. (2)
2nd derivative d2 y
72 (2x−1)3
dx2
8
dx2 x=2
d2 y
= >0 3
y=x dy dx
2 (x
2
− k)
=x ⋅
d dx
d2 y
[(x − k)
d2 y 2]
+
d dx
= x ⋅ 2(x − k) +2x = 2x(x − k)(2x − k) ✓
(x 2 )
=8 >0
|
= −4 < 0 ⇒ max pt (1,1) ✓
|
=8 >0
⋅ (x − k)
dx2 x=2
2
⋅ (x − k)2
⇒ min pt (0,0) ✓
|
dx2 x=1
2
2
= 12x 2 − 24x + 8
dx2 x=0
⇒ (2,7) is min pt ✓ 16(i)
x=2 y|x=2 = 0 ⇒ (2,0) ✓
18
= 2 − (2x−1)2 = 2 − 18(2x − 1)
d2 y
= 2x(x − 2)(2x − 2)
⇒ min pt (2,0) ✓
16(iv) 𝑦 𝑦 = 𝑥 2 (𝑥 − 2)2 (1,1) (0,0)
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
(2,0)
𝑥 ✓
443
A math 360 sol (unofficial) 17
y= dy dx
1 20
=
Ex 16.1
7
18(ii) 1st derivative
x 5 − x 3 + 3x 2 6
1 4 x 4
−
7 2 x 2
dy dx
+ 6x
At stationary point,
At stationary point, dy dx 1 4 x 4 4
dy
−
+ 6x
3x 2 − 12x + 9 = 0 x 2 − 4x + 3 = 0 (x − 1)(x − 3) = 0 x=1 or x=3 y|x=1 = 0 y|x=3 = −4 ⇒ (1,0) ⇒ (3, −4)
=0
x − 14x + 24x = 0 x(x 3 − 14x + 24) = 0 x(x − 18(i)
Curve y = x 3 + ax 2 + bx + c
2nd derivative d2 y dx2
touch x − axis at x = 1 & cross x − axis at x = 4 y = k(x − 1)2 (x − 4) Compare x 3 : k = 1 y = (x 2 − 2x + 1)(x − 4) = x 3 −2x 2 +x = −4x 2 +8x −4 = x 3 − 6x 2 + 9x − 4 Compare x 2 : a = −6 ✓ Compare x1 : b = 9 ✓ Compare x 0 : c = −4 ✓
=0
dx
=0 7 2 x 2 2
= 3x 2 − 12x + 9
d2 y
= 6x − 12 |
= −6 < 0
⇒ max pt (1,0) ✓
|
=6 >0
⇒ min pt (3, −4) ✓
dx2 x=1 d2 y
dx2 x=3
18(iii) Tangent Recall
y = x 3 − 6x 2 + 9x − 4 dy dx
Point: Gradient: Tangent:
&
2
= 3x − 12x + 9
y|x=0 = −4 ⇒ (0,4) dy
|
dx x=0
y − y1
=9 =
dy
|
dx x=0
(x − x1 )
(x − 0) y − (−4) = 9 y = 9x − 4 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
444
A math 360 sol (unofficial)
Ex 16.2 1(d)
Ex 16.2 1(a)
dy
dx
=
√1−2x
dy
=0
dx 1−3x
=4>0
=0 1
= ✓
x
3
⇒ min ✓
Sign test x
= x 2 + (2x − 1)2 = x 2 + (4x 2 − 4x + 1) = 5x 2 − 4x + 1
dy dx
dx
At stationary value, dy
y= dy
=0
dx
dx
10x − 4 = 0
dx2
= ✓ 5
−
(x2 +1)⋅
d d (x) −x⋅ (x2 +1) dx dx (x2 +1)2
(x2 +1)⋅1
−x⋅2x
(x2 +1)2 x2 +1
−2x2 (x2 +1)2
dy
= 4(x − 2) ⋅ (1)
4(x − 2)3 = 0 x =2✓
Sign test x dy
= 4[3(x − 2) = 12(x − 2) |
dx2 x=2
2]
=0
1−x =0 (x + 1)(x − 1) = 0 x = −1 or x = 1 ✓
=0
dx
=0
dx 1−x2 (x2 +1)2 2
3
dy
+1)2
At stationary value,
At stationary value,
d2 y
0
1−x2
= 4(x − 2)3
dx2
=
= (x2
= 10 > 0
y = (x − 2) + 3
d2 y
3
x
=
4
dx
1+
3
x2 +1
=
⇒ min ✓
dy
1
3
sign +
2
x
1−
⇒ max ✓
= 10x − 4 1(e)
d2 y
⋅ √1 − 2x
√1−2x
d2 y
dy
(x) ⋅ √1 − 2x
+ √1 − 2x
√1−2x 1−3x
At stationary value,
y
d dx
⋅ (−2) + 1
4x − 8 = 0 x =2✓
dx2
1(c)
2√1−2x x
+
=0
dx
1(b)
1
=−
At stationary value,
√1 − 2x
dx
=x⋅
= 4x − 8
dy
d
=x⋅
dx
y = 2x 2 − 8x + 3 dy
y = x√1 − 2x
dx
⋅ (1)
sign
−1− −
−1
−1+
0
+
⇒ min at x = −1 ✓
2
dy
=0
dx
⇒ not max/min ✓
© Daniel & Samuel A-math tuition 📞9133 9982
x
1−
1
1+
sign
+
0
−
⇒ max at x = 1 ✓
sleightofmath.com
445
A math 360 sol (unofficial) 2
Ex 16.2
2x + y = 10 y = 10 − 2x
4(iii)
dA
= 8 + 800(−x −2 )
dx
= 8 − 800x −2 =8−
At stationary value,
dA
dA
dx
= 10 − 4x
At stationary value, dA
800
dx
=
dx
d2 A
d2 A
Fence = 36 2x + y = 36 y = 36 − 2x [shown] ✓
3(ii)
A = xy = x(36 − 2x) = 36x − 2x 2 [shown] ✓
3(iii)
dA
|
5(i)
dx2
By Pythagoras Theorem, Height = √(5x)2 − [
=0
4(ii)
2
]
= √25x 2 − 9x 2 = 4x Area of trapezium
= −4 < 0
1
A = (height)(sum of bases) 2 1
= (4x)[(6x + y) + y] 2
Volume = 400 [given] x(8)h = 400 h
(6x+y)−y 2
= √(5x)2 − (3x)2
⇒ max 4(i)
= 1.6 > 0
Wire length = 104 y + 5x + 5x + (6x + y) = 104 16x + 2y = 104 2y = 104 − 16x y = 52 − 8x ✓
36 − 4x = 0 x =9✓ d2 A
x3
⇒ min ✓
At stationary value, dx
1600
dx2 x=10
= 36 − 4x
dA
= −800(−2x −3 ) =
<0
⇒ max ✓
dx
x2
x = 100 x = −10 or x = 10 ✓ (rej ∵ x > 0)
dx2 2 = −4
800
2
10 − 4x = 0 x = 2.5 A|x=2.5 = 12.5 d2 A
=0
x2
8
=0
x2
=0
dx
8−
3(i)
800
A = xy = x(10 − 2x) = 10x − 2x 2
=
50 x
= 2x(6x + 2y) ∵ y = 52 − 8x, A = 2x[6x + 2(52 − 8x)] = 2x(104 − 10x) = 208x − 20x 2 [shown]✓
✓
A = 8x + 2xh + 2(8)h 50
50
x
x
= 8x + 2x ( ) + 2(8) ( ) = 8x +
800 x
+ 10 ✓ [shown]
= 8x + 800x −1 + 10
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
446
A math 360 sol (unofficial) 5(ii)
dA dx
= 208 − 40x
Ex 16.2 7
y = 2x 3 − 12x 2 + x + 9 dy dx
= 6x 2 − 24x + 1
At stationary value, dA
Normal gradient (n)
=0
dx
1
= − dy
208 − 40x = 0 x
= =
y|x=5.2 d2 A dx2
dx
208
=−
40 52
= −(6x − 24x + 1)−1
10
= 5.2 ✓ = 10.4 ✓
dn dx
= −40 < 0
1
⋅ (12x − 24)
−24x+1)2 12x−24
= (6x2
−24x+1)2
x 4 y = 32 y
=
32
At stationary value,
x4
12x−24 (6x2 −24x+1)2
= x2 +
32 x4
[shown] ✓
2
= x + 32x −4
dz
= 2x + 32(−4x −5 )
dx
8(i)
= 2x − 128x −5 = 2x −
128
dx
2x −
128 x5
128 x5
d2 z
ℎ
400 πr2
=0 =0
= 2πr 2 + 2πr (
= 2x
= 2πr 2 +
800 r
400 πr2
)
[shown] ✓
= 2πr 2 + 800r −1
= 2 − 128(−5x −6 ) =2+
d2 z
=
𝑟
Area A = 2πr 2 + 2πrh
2x 6 = 128 6 x = 64 x = −2 or x=2 (rej ∵ x > 0) ✓
dx2
Volume V = 400 2 πr h = 400 h
x5
At stationary value, dz
=0
12x − 24 =0 x =2 y|x=2 = −21 ⇒ P(2, −21)✓
z = x2 + y
6(ii)
= −[−(6x 2 − 24x + 1)−2 ⋅ (12x − 24)] = (6x2
⇒ max A ✓ 6(i)
1 6x2 −24x+1 2
|
dx2 x=2
640 x6
= 12 > 0
⇒ min z ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
447
A math 360 sol (unofficial) 8(ii)
Ex 16.2
1st derivative dA dr
9(ii)
= 4πr + 800(−r
1st derivative dA
−2 )
dx
= 4πr − 800r −2 800 = 4πr − 2 r
= 4x − 108x −2
4πr −
800
dA
4x −
800
4x
r2
3
4πr
=
πr 3
= 200 3
=√
r
=0
dx
=0
r2
x2
At stationary value,
=0
dr
108
= 4x −
At stationary value, dA
= 4x + 108(−x −2 )
108 x2
=0 =
108 x2
x = 27 x =3✓ h|x=3 = 2 ✓
200 π
≈ 3.99cm ✓ 2nd derivative d2 A
2nd derivative d2 A dr2
dx2
= 4π − 800(−2r −3 ) = 4π +
=4+
1600 r3
d2 A
> 0 for r > 0 ⇒ min A 9(i)
Volume x(2x)h = 36 h
= =
ℎ 2𝑥 𝑥
2x2 18
By Pythagoras Theorem, 25x2
4
16
5
= x 4
Perimeter PQRST = 30 2x + 2y +2RS = 30 x+y + RS = 15 5
x + y + ( x) = 15 4
= 2x + 6x ( 2 )
9
y
x
x
= 12 > 0
3x 2
18
108
x3
RS = √x 2 + ( ) = √
x2
2
216
⇒ min 10
36
|
dx2 x=3
Area A = 2[x(2x) + xh + 2xh] = 2(2x 2 + 3xh) = 2x 2 + 6xh = 2x 2 +
= 4 − 108(−2x −3 )
= 15 − x 4
[shown] ✓ A = triangle STR
= 2x 2 + 108x −1
1
3x
2 3 2 x 4 3 2 x 4 3 2 x 4
4
= (2x) ( )
+2xy
=
+2xy
= =
= 30x −
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
+ rectangle PQRT
9
+2x (15 − x) +30x − 15x2 4
4 9 2 x 2
[shown]
448
A math 360 sol (unofficial) 10(i)
Ex 16.2
1st derivative dA dx
= 30 −
15
11(iv) At stationary value, dA
x
2
=0
dx
48x − At stationary value, dA
48x
=0
dx
30 −
15 2
=−
15 2
<0
4
9
4
Area A = xy = x(40 − x) = 40x − x 2
3 2
SN|x=4 = 9 ✓ By Pythagoras Theorem, 6x 2
AA′ = √(5x)2 − ( ) = 4x 2
2
A 5x
C
Volume = 4500 (△ area) h = 4500 1
x2
+ (15 − x)
= 15 − x
11(i)
6000
Perimeter 2x + 2y = 80 y = 40 − x
10(ii) SN = 3x +y =
=
12(a) Function x ≡ length y ≡ breadth
⇒ max 4 3x
=0
x = 125 x =5 A|x=5 = 1800 cm2 ✓
x= 0
2nd derivative dx2
x2
3
x =4 A|x=4 = 60 cm2
d2 A
6000
5x
A’ 6x
dA
B
h
=
x2
=0
dx
40 − 2x = 0 x = 20 A|x=20 = 400 m2 ✓
✓
11(ii) A = 2(triangle)
= 40 − 2x
dA
= 4500 375
dx
At stationary value,
(6x)(4x)h = 4500
12x 2 h
1st derivative
+sides
1
2nd derivative
2 2
d2 A
= 2 [( ) (6x)(4x)] +h(6x + 5x + 5x) = 24x + 16xh = 24x 2 + 16x ( = 24x 2 +
6000 x
dx2
⇒ max
375 x2
= −2 < 0
)
[shown] ✓
= 24x 2 + 6000x −1 11(iii)
dA dx
= 48x + 6000(−x −2 ) = 48x −
6000 x2
✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
449
A math 360 sol (unofficial) 12(b) Function x ≡ length y ≡ breadth
Ex 16.2 13
Function E2 R
W ∝ (r+R)2 E2 R (r+R)2 R kE 2 [(r+R)2 ]
W=k Area xy = 16 y
=
16
=
x
1st derivative dW
Perimeter P = 2x + 2y
dR 16
2
= kE [
= 2x + 2 ( ) x
= 2x +
32 x
r + R − 2R ] = kE 2 [ (r + R)3
1st derivative = 2x + 32(−x −2 )
dx
r−R ] = kE 2 [ (r + R)3
= 2 − 32x −2 =2−
32 x2
At stationary value,
At stationary value, dP
dW
2−
32 x2
32
r−R
kE 2 [(r+R)3 ] = 0
=0
=r✓
R
=2
x2
=0
dR
=0
dx
d d R − R ⋅ (r + R)2 dR dx ] (r + R)4
(r + R)2 (1) − R ⋅ 2(r + R) ] = kE 2 [ (r + R)4
= 2x + 32x −1
dP
(r + R)2 ⋅
x2 = 16 x = −4 or x = 4 (rej ∵ x > 0)
Sign Test R
P|x=4 = 16 cm ✓
⇒ work done is greatest when R=r
dW dR
r− sign +
r 0
r+ −
2nd derivative d2 P dx2
= −32(−2x −3 ) =
64 x3
>0 ∵x>0
⇒ min P
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
450
A math 360 sol (unofficial) 14
Ex 16.2
Perimeter
15 1
𝑦
x + 2y + ( ) πx = 6 x + 2y +
2 πx
𝑥
=6
2
2y
=6−
πx 2
−x
= 6 − x ( + 1)
y
= 3 − x ( + 1)
Area A = rectangle
+semicircle
x 𝑎
Rectangle area, A = xy
π
2y
x ≡ length y ≡ breadth A ≡ area of rectangle
y
−(1)
2
1
π
2
2
1
x 2
2 1
2 2
= xy
+ π( )
= xy
+ πx
−(1)
By Pythagoras Theorem, x 2 + y 2 = (2a)2 y 2 = 4a2 − x 2 y = √4a2 − x 2 or y = −√4a2 − x 2 (rej ∵ y > 0)
−(2)
8
−(2)
sub (2) into (1): sub (1) into (2): 1
π
1
2 1 π
2
8 1
A = x√4a2 − x 2
A = x [3 − x ( + 1)] + πx = 3x − ( + 1) x 2 2 π 1
= 3x − ( + ) x 4 1
2
+ πx
dx
2
8
1
= 3x + ( π − − ) x 4 1
=
2
2
= 3x + (− − ) x 2 = 3x − (
8 π+4 8
=
2
) x2
=
1st derivative dA
=3−(
dx
=3−(
π+4 8 π+4 4
dA
3−( (
4
)x
=
= 3(
π+4
= =
dx2
⋅ √4a2 − x 2
(−2x) +(1)
+√4a2 − x 2
−x2
+(4a2 −x2 ) √4a2 −x2
4a2 −2x2 √4a2 −x2
=0 =0
x = √2a or x = −√2a (rej ∵ x > 0)
12 π+4 12
)−(
π+4
36 π+4 18 π+4
−
y|x=√2a = √4a2 − (√2a)
✓ 12
) (
π+4
8
= −2 (
π+4 8
2
= √4a2 − 2a2 = √2a2 = √2a = x ∵ length = breadth, largest rectangle is square of side √2a
2 π+4
)
144 8(π+4)
Sign Test
[shown]
x dy
2nd derivative d2 A
(x) ⋅ √4a2 − x 2
=3
x
A|x= 12
d dx
⇒ 4a − 2x 2 = 0 −2x 2 = −4a2 x 2 = 2a2
)x = 0
π+4
1 2√4a2 −x2
−x2
√4a2 −x2 2
π+4 4
(√4a2 − x 2 )+
√4a2 −x2
dx 4a2 −2x2
)x
=0
dx
d dx
At stationary value,
) 2x
At stationary value, dA
=x⋅ =x⋅
+ πx 2
π
π
dA
8 1
2
2
8
2
dx
)<0
+
−
√2a
√2a
0
+
−
A is max when x = √2a i.e. when rectangle is a square
⇒ max ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sign
√2a
sleightofmath.com
451
A math 360 sol (unofficial) 16
Ex 16.2
y = 12 − x 2
17
A = 2xy = 2x(12 − x 2 ) = 24x − 2x 3 dA dx
= 24 − 6x
𝑦
𝑂
y 2 = 8x y = √8x or y = −√8x
2
At stationary value,
dy
dA
dx
=0
dx
24 − 6x 2 = 0 x2 − 4 =0 x = 2 or x = −2 (NA) A|x=2 = 32 units 2 ✓ d2 A dx2 d2 A
|
= −24 < 0
= 2√2 (
1 2√x
)=
√2 √x
Normal Point:
(4,2)
Gradient:
m⊥ = − dy
= − √2
dx
√x
1
1
=−
√x √2
y − y1 = m⊥ (x − x1 )
Normal:
= −12x
dx2 x=2
𝑦 2 = 8𝑥 (4,2) 𝑥
y − 2= −
⇒ max
y=−
√x √2
√x √2
[x − 4]
(x − 4) + 2
Point where y 2 = 8x & normal [y = − √8x
√x √2
(x − 4) + 2] meet.
=−
√x √2
(x − 4) +2
√16x = −√x(x − 4) +2√2 4√x = −x√x + 4√x +2√2 x√x = 2√2 ⇒x=2 −(3) sub (3) into (1): y|x=2 = √8(2) = 4 ⇒ (2,4) Minimum distance from (2,4) to (4,2) = √(2 − 4)2 + (4 − 2)2 = √22 + 22 = 2√2 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
452
A math 360 sol (unofficial) 17
Ex 16.2
Let P(a, b) be at point on y 2 = 8x, b2 = 8a a
18
b2
=
8
b2 ⇒ P ( , b) 8
Area is not the only factor of cost Most of the expense is incurred in joining the sides to the rims of the cans. Minimization of circumference must also be factored in.
b2
D = distance from P ( , b) to (4,2) 8
= √( = √( =√
b2 8 1 64
1
64
dD db
2
− 4) + (b − 2)2 b 4 − b 2 + 16) + (b 2 − 4b + 4)
b 4 − 4b + 20 1
=
1 2√ b4 −4b+20 64
1
=
1 2√ b4 −4b+20 64
⋅[
1 64
⋅(
1 16
(4b3 ) − 4] b3 − 4)
At min point: dD db 1 3 b 16 1 3 b 16 3
b b
a=
=0 −4 =0 =4 = 64 =4
42 8
=2
(2,4)
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
453
A math 360 sol (unofficial)
Rev Ex 16 A3
Rev Ex 16 A1
q
y = (x − 2)√5 − x dy
= (x − 2) ⋅
dx
= (x − 2) ⋅ = = = =
2−x
d dx
√5 − x 1
2√5−x
Function p2 q = 9
(−1)
+
d dx
(x − 2) ⋅ √5 − x
+(1)
2−x
9 p2
z = 16p + 3q 9
= 16p + 3 ( 2 )
⋅ √5 − x
p
= 16p +
+√5 − x
2√5−x
=
27 p2
= 16p + 27p−2 +2(5−x)
2√5−x 2−x
1st derivative
+10−2x
dz
2√5−x
dp
12−3x
= 16 + 27(−2p−3 ) = 16 − 54p−3
2√5−x
= 16 −
54 p3
At stationary value, dy dx 12−3x 2√5−x
x
=0
At stationary value,
=0
dp
=4
16 −
dz
y|x=4 = ((4) − 2)√5 − (4)
y = 4x +
x
2
= 4x + 27x
= 16
−1
=
p
= ✓
d2 z
27
dp2
x2
At turning point,
162 p4
>0∵p>0
⇒ min z
=0
dx
8x −
27 x2
8x 8x
3 2 2
( )
= −54(−3p−4 ) =
dy
9
=4✓ 2nd derivative
= 8x − 27x −2 = 8x −
8 3 2
q|p=3 =
= 8x + 27(−x −2 )
dx
27
p3
2
dy
=0
p3
p3
27
2
54
54
=2✓ A2(i)
=0
=0 =
3
A4(i)
27 x2
= 27
x
=
3 2
y|x=3 = 27
Wire length = 2400 4(length + breadth + height) = 2400 4(3x + x + h) = 2400 4(4x + h) = 2400 4x + h = 600 h = 600 − 4x ✓
2
3
⇒ ( , 27) ✓ 2
A2(ii)
d2 y dx2
= 8 − 27(−2x −3 ) =8+
d2 y
|
dx2 x=3
54 x3
= 24 > 0
2
A4(ii) Volume V = 3x(x)h = 3x 2 h = 3x 2 (600 − 4x) = 12x 2 (150 − x) ✓ = 1800x 2 − 12x 3
3
⇒ min pt ( , 27) ✓ 2
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
454
A math 360 sol (unofficial) A4(iii) 1st derivative dV dx
Rev Ex 16 A6(i)
= 3600x − 36x
2
Volume = 100 2x(x)h = 100 h
h
50
=
2x
x2
x
At turning value, dV
Total surface area S = 2[2x(x) + 2x(h) + x(h)] = 2(2x 2 + 2xh + xh) = 2(2x 2 + 3xh) = 4x 2 + 6xh
=0
dx
3600x − 36x 2 = 0 x 2 − 100x =0 x(x − 100) =0 x = 0 or x = 100 ✓ (rej ∵ x > 0) 2nd derivative d2 V
= 3600 − 72x
dx2
A6(ii)
= 4x
2
= 4x
2
dS dx
d2 V dx2
|
x=100
50
= 4x 2
+6x ( 2 ) x
+
300 x
[shown] ✓
+300x −1
= 8x + 300(−x −2 ) = 8x − 300x −2
= −3600 < 0
= 8x −
⇒ max V
300 x2
At stationary value,
A5(i)
dS
=0
dx
𝑦 𝑥 Wire length = 100 4x + 4y = 100 4y = 100 − 4x y = 25 − x✓
8x −
3
=
dx
3 75 2
x= √
2 75
d2 S
2
≈ 134 ✓
= 8 − 300(−2x −3 ) =8+
>0 ⇒ min ✓
= 2x −50 + 2x = 4x − 50
x2 75 3
dx2
= 2x +2(25 − x)(−1)
300
=√
x
A6(iii)
=0 =
x
A5(iii) 1st derivative dA
x2
8x
S| A5(ii) Total area A = x2 + y2 = x 2 + (25 − x)2 [shown] ✓
300
600 x3
∵x>0
At stationary value: dA
=0
dx
4x − 50 = 0 x
=
50 4
= 12.5 ✓ 2nd derivative d2 A dx2
=4>0
⇒ min
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
455
A math 360 sol (unofficial) A7(i)
Rev Ex 16
Perimeter
B1(i)
1
y = x2 +
x + x + (2πr) = 80 = 80 = 80 − πr
dy dx
1
x
= 40 − πr
= 2x −
Area A = semicircle + triangle 1
1
2 1
2 1
1
2
2
dy
+ (40 − πr)
2 1
1 1 2
2 πr2
2 2
2x −
A7(ii)
dA
=0
x3
=
16 x3
4
x = 16 x=2 or y|x=2 = 8 ⇒ (2,8)
+ (80 − πr)2 [shown] ✓ 8 1
= πr + [2(80 − πr)] ⋅ (−π)
dr
32
x
1
2
x3
=0
dx
2
= πr 2 + ( ) (80 − πr)2 =
32
At stationary point,
= πr 2 + x 2 = πr
= 2x + 16(−2x −3 ) = 2x − 32x −3
2
2
x2
= 2x + 16x −2
2
2x + πr 2x
16
8 π
x = −2 y|x=−2 = 8 ⇒ (−2,8)
= πr − (80 − πr) 4
= πr −20π + = (π +
π2 4
π2 4
r
B1(ii)
dx2
(π +
4 π
d2 y
=0
(1 + ) r
= 20
4 π 4
(
4+π 4
)r
= 20
r
=
80 π+4
≈ 11.2 ✓ A7(iii)
d2 A dr2
=π+
π2 4
>0
⇒ min ✓
|
dx2 x=2 d2 y
) r − 20π = 0
(1 + ) r − 20
= 2x − 32(−3x −4 ) =2+
) r − 20π
At stationary value, π2
d2 y
|
96 x4
=8>0
dx2 x=−2
= −4 < 0
⇒ min pt (2,8) ✓ ⇒ max pt (−2,8) ✓
B2(i) y=
4 2−x
= 4(2 − x)−1
+
9 x−3
+9(x − 3)−1
dy dx
= 4 [−(2 − x)−2 ⋅
d dx
(2 − x)] +9 [−(x − 3)−2 ⋅
= 4[−(2 − x)−2 ⋅ (−1)] = 4(2 − x)−2 4
d dx
(x − 3)]
+9[−(x − 3)−2 ⋅ (1)] −9(x − 3)−2 9
− (x−3)2 ✓
= (2−x)2 d2 y dx2
= 4 [−2(2 − x)−3 ⋅
d dx
(2 − x)] −9 [−2(x − 3)−3 ⋅
= 4[−2(2 − x)−3 ⋅ (−1)] 8
= (2−x)3
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
d dx
(x − 3)]
−9[−2(x − 3)−3 ⋅ (1)] 18
+ (x−3)3 ✓
456
A math 360 sol (unofficial)
Rev Ex 16
B2(ii) At stationary value, dy
B4(i)
AR =
=0
dx 4 (2−x)2 4 (x−2)2
9
− (x−3)2
=0 =
4(x − 3)2 4(x 2 − 6x + 9) 4x 2 − 24x + 36 5x 2 − 12x x(5x − 12) x=0
By Pythagoras’ Theorem,
=
9 (x−3)2
y|x=0 = −1
AS
− [ (10)]
S Q 13cm h
13cm P
2
2
B
C R 10cm
PQ BC x 10 6
12 − h = x 5
5
5
=
12
12
12
=
AR 12−h
6
h
5
⇒(
1
By similar triangles,
y|x=12 = −25
⇒ (0, −1)
−
√(13)2
A
BR2
= 12
= 9(x − 2)2 = 9(x 2 − 4x + 4) = 9x 2 − 36x + 36 =0 =0
or x =
√AB 2
= 12 − x 5
6
= (10 − x) ✓
h
, −25)
5
B4(ii) Area of △ PQR d2 y
1
|
dx2 x=0 d2 y dx2
B3
|
3
12 x= 5
=−
625 3
1
⇒ min pt (0, −1) ✓
= >0 <0
⇒ max pt (
12 5
A = xh 2 1
=
Function x ≡ length y ≡ breadth
dx
dA
2
dx
2
2
d2 A
1st derivative
dx2
1
= l − 2x
dA
B5(i)
BC 4−x
l − 2x= 0
4
y
1
2x
= l
x
= l 4
1
y|x=1l = l = x
6
=− <0 5
= =
4
A 3
AB y
𝑦
P
Y B
3 3
= (4 − x) ✓ 4
X
5 C
𝑥 4
3
= x ( ) (4 − x) 4
3
= x(4 − x) [shown] ✓ 4
3
= −2 < 0
= 3x − x 2 4
⇒ max A © Daniel & Samuel A-math tuition 📞9133 9982
XP
B5(ii) Area A = xy
⇒ square ✓ 2nd derivative dx2
=6
2 1
4
=0
5
By similar triangles, XC
=0
dx 1
5
⇒ max A
2
At maximum value,
6x
x =5✓ 2nd derivative
2
d2 A
6x
5
= x ( l − x) = lx − x
5
=0
6x 1
2
=6−
6−
Area A = xy 1
3x2
At maximum value,
1
= l−x
dx
(10 − x) [shown] ✓
5
B4(iii) 1st derivative dA
dA
2 5 3x
= 6x −
Perimeter 2x + 2y = l 2y = l − 2x y
6
= x [ (10 − x)]
, −25) ✓
sleightofmath.com
457
A math 360 sol (unofficial)
Rev Ex 16
B5(iii) 1st derivative dA dx
B6(ii)
3
dx
2
= (8 − x) ⋅
=3− x
At stationary value, dA
= (8 − x) ⋅
=0
dx
dA
= (8 − x)
3
3− x=0 2
3 2
x
x
=2
1 2√28x−28
⋅ 28 +(−1)
14
⋅ √28x − 28
−√28x − 28
√28x−28
√28x−28 140−42x
=
3
d
√28x − 28 + dx (8 − x) ⋅ √28x − 28
112−14x−28x+28
=
=3
d dx
√28x−28
A|x=2 = 3(2) − (2)2 4
= 3 cm2 ✓ 2nd derivative
At stationary value:
d2 A
dx
dx2
dA
3
=− <0
140−42x
2
√28x−28
⇒ max A B6(i)
x
P (6 + 𝑥)
=0
(6 + 𝑥)
Q R (16 − 2𝑥) By Pythagoras Thm
10 3
x dy sign dx ⇒ max
− (P ′ Q)2
= √(6 + x)2
=
✓
Sign Test
P’
PP′ = √PQ2
=0
1
− [ (16 − 2x)]
2
2
10
10+
3
3
3
+
0
−
= √(x 2 + 12x + 36) − (64 − 16x + x 2 )
Volume V = 250π πr 2 h = 250π
= √28x − 28
h
= √(6 +
x)2
B7(i)
10−
− (8 − x)2
=
250 r2
Area A = 2πr 2 + 2πrh
Area of triangle 1
A = (QR)(PP ′ )
= 2πr 2 + 2πr (
2 1
= (16 − 2x)√28x − 28
2
= 2πr +
2
= (8 − x)√28(x − 1) [shown] ✓
500π r
𝑟 ℎ 250 r
2 )
[shown] ✓
2
= 2πr + 500πr −1
= (8 − x)√28x − 28
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
458
A math 360 sol (unofficial) B7(ii) 1st derivative dA (a) = 4πr + 500π(−r −2 ) dr
Rev Ex 16 B7(ii) Cost 500π (b) (0.05) C = 2πr 2 (0.03) +
= 4πr − 500πr −2 = 4πr −
500π r2
+
= 0.06πr 2
+25πr −1
At stationary value,
1st derivative
dA
dC
=0
dr
4πr −
500π r2
dr
r3 r
= 125 =5✓ 52
r2
dC
= 10 ✓
= 4π + d2 A
|
dr2 r=5
r2
=0
dr 25π
0.12πr − 0.12πr
= 4π − 500π(−2r −3 )
dr2
25π
At stationary value,
2nd derivative d2 A
= 0.06πr 2 + 25πr −2 = 0.12πr −
500π
=
250
r
= 0.12πr − 25πr −2
=0
4πr
h|r=5 =
r 25π
= 0.06πr 2
= 25π 3
625
=√
h|
≈ 5.93 ✓ ≈ 7.11 ✓
r3
⇒ min
=0
r
1000π
= 4π + 8π > 0
r2
3
3 625 3
r= √
3
2nd derivative d2 C dr2
= 0.12 π − 25π(−2r −3 ) = 0.12π +
d2 C
|
dr2 r= 3√625
50π r3
≈ 1.13 > 0
3
⇒ min
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
459
A math 360 sol (unofficial)
Ex 17.1 2(d) d 1 − 2 sin x ( ) dx cos x d cos x ⋅ (1 − 2 sin x) dx =
Ex 17.1 1(a)
d dx
(4 sin x − 3)
=4
d dx
(sin x) −
d dx
(3)
= 4 cos x ✓ 1(b)
d dx
=
1(c)
(x 2 − 5 cos x) d dx
d dx
= 2x
+5 sin x ✓
d
d
(x 2 ) +3
d dx
(tan x)
−2 cos 2 x
+ sin x − 2 sin2 x cos 2 x
3(a)
d dx
= 8x
+3 sec 2 x ✓
[(1 − cos x)3 ]
d dx
(sin x) +3
(cos x)
dx
3(b)
d
[(2 + 3 sin x)2 ]
+3(− sin x)
= 2 cos x
−3 sin x ✓
= 2(2 + 3 sin x) ⋅
d dx
(tan x) +
d dx
(x) ⋅ tan x
= x ⋅ sec x
+1
= x sec 2 x
+ tan x ✓
(x 2 2
=x ⋅
d dx
(cos x)
⋅ tan x
=
+
d dx
(x 2 )
⋅ cos x
+2x
⋅ cos x
3(d)
−x sin x ✓
dx
(sin x)
= (x + 1)2 cos x
d dx
2
d
= =
+
d dx
(√2 − tan x) 1
[(x + 1)2 ]⋅ sin x
=
⋅
d
2√2−tan x dx 1 2√2−tan x
=−
[(x + 1)2 sin x]
= (x + 1)2 ⋅
d dx
cos x)
= 2x cos x d
3(c)
=
= x 2 ⋅ (− sin x)
dx
(2 + 3 sin x)
= 6 cos x (2 + 3 sin x) ✓
2
dx
d dx
= 2(2 + 3 sin x) ⋅ 3 cos x (x tan x)
=x⋅
d
(1 − cos x)
= 3 sin x (1 − cos x)2 ✓
d
= 2 cos x
dx
dx
= 3(1 − cos x)2 ⋅ sin x
dx
d
d
= 3(1 − cos x)2 ⋅
(2 sin x + 3 cos x)
=2
2(c)
cos x ⋅ (−2 cos x)
2
+3 sec x
d
cos 2 x − (1 − 2 sin x) ⋅ (− sin x) 2 cos x
sin x − 2(sin2 x + cos 2 x) cos 2 x sin x − 2 = cos 2 x ✓
(4x 2 + 3 tan x) dx
d (cos x) dx
=
= 4(2x)
dx
2(b)
=
(cos x)
−5(− sin x)
=4
2(a)
(x 2 )−5
= 2x
dx
1(d)
=
− (1 − 2 sin x) ⋅
(2 − tan x)
⋅ (− sec 2 x)
sec2 x 2√2−tan x
✓
(√sin x + 2 cos x) 1 2√sin x+2 cos x 1 2√sin x+2 cos x cos x−2 sin x 2√sin x+2 cos x
d
⋅
dx
(sin x + 2 cos x)
⋅ (cos x
− 2 sin x)
✓
+2(x + 1) sin x ✓ 4(a)
d dx
(3 tan 2x) = 3
d dx
(tan 2x)
= 3 sec 2 2x ⋅
d dx
(2x)
= 3 sec 2 2x ⋅ (2) = 6 sec 2 2x ✓ © Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
460
A math 360 sol (unofficial) 4(b)
d dx
Ex 17.1
1
d
2
dx
[4 sin ( x)] = 4
1
5(d) d cos(x + π) [ ] dx sin 3x
[sin ( x)] 2
1
d
2 1
dx 2 1
= 4 cos ( x) ⋅
1
( x)
= 4 cos ( x) ⋅ ( ) 2 1
d d cos(x + π) − cos(x + π) ⋅ sin 3x dx dx = sin2 3x (sin 3x) ⋅ [− sin(x + π)] − cos(x + π) ⋅ (3 cos 3x) = sin2 3x − sin(3x) sin(x + π) − 3 cos(x + π) cos(3x) = 2 sin 3x sin(3x) sin(x + π) + 3 cos(x + π) cos(3x) =− sin2 3x ✓
2
(sin 3x) ⋅
= 2 cos ( x) ✓ 2
4(c)
d dx
π
[cos (2x − )] 3 π
= − sin (2x − ) ⋅ 3 π
d
π
(2x − )
dx
3
= − sin (2x − ) ⋅ (2) 3
π
= −2 sin (2x − ) ✓ 3
4(d)
d dx
=
[sin 3x + cos(4x − 5)] d dx
sin 3x
+
= cos(3x) ⋅
d dx
d dx
6
cos(4x − 5)
+[− sin(4x − 5)] ⋅
(3x)
5) = cos(3x) ⋅ (3) = 3 cos 3x
d dx
y = sin 2x dy
(4x −
d dx
d dx
+ d dx
d dx
+ cos x cos 3x −3 sin x sin 3x ✓
d
d dx
tan 5x
+
d dx
2
7
y = sin x + 2 cos x dy
d dx
= (1 + x 2 ) ⋅ sec 2 5x ⋅ 5 = 5(1 + x 2 ) sec 2 5x 5(c)
(5x)
+2x
dy
=0
dx
cos x − 2 sin x = 0 2 sin x = cos x
⋅ tan 5x
+2x tan 5x +2x tan 5x ✓
tan x
=
1 2
α ≈ 0.464 ⇒ 1st or 3rd quadrant
d x ( ) dx cos 2x d d (x) − x ⋅ (cos 2x) dx dx = cos 2 2x (cos 2x) ⋅ (1) − x ⋅ (−2 sin 2x) = 2 cos 2x cos 2x + 2x sin 2x = 2 cos 2x 1 + 2x tan x = cos 2x
= cos x − 2 sin x
At stationary point, (1 + x 2 ) ⋅
tan 5x = (1 + x 2 ) ⋅ sec 2 5x ⋅
3
=1✓
[(1 + x 2 ) tan 5x]
= (1 + x 2 ) ⋅
π
1
dx dx
(2x)
= 2( )
(sin x) ⋅ cos 3x
(3x) + cos x ⋅ cos 3x
= sin x ⋅ (− sin 3x) ⋅ 3 = cos x cos 3x 5(b)
= 2 cos
6
(cos 3x)
= sin x ⋅ (− sin 3x) ⋅
|
dx x=π
(sin x cos 3x)
= sin x ⋅
d dx
= (cos 2x) ⋅ (2) = 2 cos 2x ✓
+[− sin(4x − 5)] ⋅ (4) −4 sin(4x − 5) ✓ dy
5(a)
= (cos 2x) ⋅
dx
0 ≤ x ≤ 2π x = α, π + α ≈ 0.464, 3.61 ✓
(cos 2x) ⋅
8(a)
d dx
(2 sin3 x) = 2
d dx
S α T
A α C
(sin x)3
= 2 ⋅ 3(sin x)2 ⋅
d dx
(sin x)
2
= 2 ⋅ 3 sin x⋅ cos x = 6 sin2 x cos x ✓
= sec 2x (1 + 2x tan x) ✓ © Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
461
A math 360 sol (unofficial) 8(b)
d dx
d
(cos 2 3x) =
Ex 17.1 9(a)
(cos 3x)2
dx
= 2(cos 3x) ⋅
dt d dx
d dx
d
dy dx
dx
dy
[(tan 5x)2 ] d
= 4 ⋅ 2 tan 5x ⋅
dx
d
+
dx
dt
(3)
d dx
=
|
=?
dt x=π 6
= 1 − sin x dy
=
dx
×
dx
dt
= (1 − sin x) × 0.2 = 0.2 − 0.2 sin x
(tan 5x) + 0
= 4 ⋅ 2 tan 5x ⋅ (5 sec 2 5x) = 40 tan 5x sec 2 5x ✓ 8(d)
dy
y = x + cos x
[4 tan2 (5x) + 3]
=4
= 0.2,
cos 3x
= 2(cos 3x) ⋅ (−3 sin 3x) = −6 sin 3x cos 3x ✓ 8(c)
dx
π
dy
6
dt x=π
At x = ,
π
|
d
(x) +3
d
1 = 0.2 − 0.2 ( ) 2 = 0.1 unit s −1 ✓
[(sin 2x)5 ]
dx
+3 ⋅ 5(sin 2x)4 ⋅
=1
d dx
(sin 2x)
9(b)
dx dt
+3 ⋅ 5(sin 2x)4 ⋅ (2 cos 2x) +30 sin4 2x cos 2x ✓
=1 =1
6
6
[x + 3 sin5 (2x)] dx
= 0.2 − 0.2 sin ( )
π dy
=
,
|
=?
30 dt x=π 3
y = √1 + sin x 8(e) d dx
dy
[(1 + x) cos 7 2x]
= (1 + x) ⋅
d dx
(cos 7 2x)
= (1 + x) ⋅ 7 cos 6 2x ⋅
d dx
+ (cos 2x)
d dx
dx
(1 + x) ⋅ cos 7 2x
= dy dt
= 2( = 2( = 2( =
=
d cos 2x 2 ( ) dx 1 − x
= 2(
cos 2x 1−x cos 2x 1−x cos 2x 1−x cos 2x 1−x
) ⋅ ) ⋅
d dx
(
cos 2x 1−x
(1−x)⋅
d dx
(1 + sin x)
2√1+sin x dy
×
dx cos x
)
×
2√1+sin x
dx dt π 30
π cos x 60√1+sin x π
dy
3
dt x=π
At x = ,
|
≈ 0.0192 unit s −1 ✓
3
10(a) y = x − 2 sin x
d (cos 2x) dx
−(cos 2x)⋅
dy
d (1−x) dx
dx
= 1 − 2 cos x
(1−x)2
) ⋅
(1−x)⋅(−2 sin 2x) −(cos 2x)⋅(−1) (1−x)2
At stationary value,
) ⋅
2(x−1) sin 2x +cos 2x (1−x)2
dx
4(x − 1) sin 2x cos 2x (1 − x)3
1 4(x − 1) ( sin 4x) 2 = (1 − x)3 =
= =
d cos 2 2x [ ] dx (1 − x)2 =
⋅
⋅ cos 2x 7
= (1 + x) ⋅ 7 cos 2x ⋅ (−2 sin 2x) + cos 2x = cos 6 2x [cos 2x − 14(1 + x) sin 2x] ✓ 8(f)
1 2√1+sin x cos x
7
+1
6
=
(1−x)3
=0
1 − 2 cos x = 0 −2 cos x = −1
+ 2 cos 2 2x
cos x α=
+ 2 cos 2 2x
+2 cos2 (2x)
(2x−2) sin 4x
dy
=
π
2
S
3
⇒ 1st or 4th quadrant
T
A α α C
0 ≤ x ≤ π: x = α, 2π − α
✓
π 5π
= , 3
© Daniel & Samuel A-math tuition 📞9133 9982
1
sleightofmath.com
3
✓
462
A math 360 sol (unofficial)
Ex 17.1
10(b) y = x − tan x dy dx
y = x + 4 tan2 2x
12
= 1 − sec 2 x
dy
= 1 + 4(2 tan 2x)(sec 2 2x)(2)
dx
= 1 + 16 tan 2x sec 2 2x
At stationary point, dy
=0
dx
1 − sec 2 x sec 2 x tan2 x + 1 tan x
=0 =1 =0 =0
dy
𝑦
dx
⇒ (0,0) ✓ ⇒ (π, π) ✓
α T
(1)
sin 3x 2 − cos 3x
y= dy dx
(2 − cos 3x) ⋅
=
3 2
α = 0.983 ⇒ 1st or 3rd quadrant S
1
13
−2 sin x + 3 cos x = 0 −2 sin x = −3 cos x =
)
2
=0
0 ≤ x ≤ π: x = α, π + α = 0.983 ✓
3
π cos 3
= 1 + 64√3 ✓
At stationary point,
tan x
1
= 1 + 16(√3)
𝑥
= −2 sin x + 3 cos x
dx
2
π
2
−1
dy
3
1
y = 2 cos x + 3 sin x dy
π
3
= 1 + 16 tan ( ) (
y|x=0 = (0) − tan(0) = 0 y|x=π = (π) − tan(π) = π 11(i)
π
= 1 + 16 tan ( ) sec 2 ( )
6
90° 180° 270° 360°
0≤x≤π x = 0, π
|
dx x=π
=
(2 − cos 3x) ⋅ (3 cos 3x) − (sin 3x) ⋅ (3 sin 3x) (2 − cos 3x)2
=
6 cos 3x − 3 cos 2 3x − 3 sin2 3x (2 − cos 3x)2 − 3(sin2 3x + cos 2 3x) (2 − cos 3x)2
6 cos 3x
=
A α
d d (sin 3x) − (sin 3x) ⋅ (2 − cos 3x) dx dx (2 − cos 3x)2
6 cos 3x
=
−3 (2 −
C
cos 3x)2
Tangent ∥ to x − axis, 11(ii)
d2 y dx2 d2 y
dy
= −2 cos x − 3 sin x |
dx2 x=0.983
dx 6 cos 3x−3 (2−cos 3x)2
≈ −3.61 < 0
⇒ max pt ✓
=0 =0
6 cos 3x − 3 6 cos 3x
=0 =3
cos 3x
=
α=
π
∵ (2 − cos 3x)2 > 0
1 2
3
⇒ 1st or 4th quadrant
S
0
T
3x = α, 2π − α,
x © Daniel & Samuel A-math tuition 📞9133 9982
2π + α, 4π − α
π 5
7
3 3 π 5π
3 7π
= , π, = , 9
sleightofmath.com
9
,
A α α C
9
π
✓
463
A math 360 sol (unofficial) 14(i)
Ex 17.1
Curve & its derivative y = 1 + cos x dy dx
14(ii) Normal: π
y = 2x − + 1 + 3
= − sin x
y|x=π = 1 + cos ( )
⇒ ( ,1 + 6
dy
√3 2
= √3 )= 2
dy dx
|
6
2
1
π
(− ) [x − ( )] 2
6 π
= −x + + 2 + √3
π
2 1
12
y
= − x+
1 2
= − dy
π 12
1 |
dx x=π 6
1
y − (1 +
√3 ) 2
=−
y − (1 +
√3 ) 2
= 2x −
𝜋
√3 4
6
1 2
+ 2 + √3
+1+
√3 2
✓
√3 2
x
= + 2 + √3
2
π 6
√3 2
π
2x
= −1−
x
= − −
(x − x1 )
3 π
1
6
2
=0 √3 2 √3 4
Area 1
= (base)
6
2 1
= 2x − + 1 +
(height)
π
π
1
2 6 1 5
6
2
= [( + 2 + √3) − ( − −
π
3
=0
π
3
[x − ( )]
3 π
√3 2
=− −1−
√3 2
✓
5 4 5
= (1 + 4
sleightofmath.com
5
= ( + √3) 2 2 4 = (1 +
© Daniel & Samuel A-math tuition 📞9133 9982
√3 2
𝑥
− x
π
π
(− )
+1+
2x − + 1 +
6
y − y1
2
+1+
Normal at x-axis, y =0
6
π
2y
y
1
− x+
(x − x1 )
π x= 6
2y − 2 − √3 = −x +
Normal:
1
2
y − y1 y − (1 +
π
= − sin = −
dx x=π
12
Tangent at x − axis, y =0
√3 ) 2
|
1
− −
6
6
Tangent:
𝜋
6
π
π
2 √3 ) 2
𝑂
π
=1+
Gradient:
𝜋 6
6
1
y=− x+ ( ,1 +
Tangent & Normal Point:
Tangent:
𝑦
√3 2
√3 ) 2 √3 ) 2
√3 )] 4
(1 + (1 + (1 +
√3 ) 2 √3 ) 2 √3 ) 2
2
[shown] ✓
464
A math 360 sol (unofficial) 15(i)
Ex 17.1
y = 2 sin 2x − 1 i.e. a = 2, b = 2, c = −1
15(iii) At point where tangent (y = 1) meets y = 2 sin 2x − 1 2 sin 2x − 1 = 1 sin 2x =1 π α= 2 ⇒ 1st or 2nd quadrant
Amplitude = |a| = |2| = 2 Period
=
2π b
2π
=
2
=π
𝑦 1𝑂 −1 −3
𝑦 = 2 sin 2𝑥 − 1
0 < x < 2π 0 < 2x < 4π
𝑥
2𝜋
✓
2x = α, π − α, π = ,
Workings Domain Axis with amplitude Shape Cycle
x
2 π
=
4
0 < x < 2π −1 ± 2
π
A
α T
α C
α + 2π, 3π − α π + 2π 2 5π
(taken),
4
⇒( 16(i)
+sin 2π−0
S
5π 4
, 1) ✓
f(x) = sin x + cos x f ′ (x) = cos x − sin x
=2 At turning points, f ′ (x) =0 cos x − sin x = 0 − sin x = − cos x tan x =1 π α= 4
⇒ 1st or 3rd quadrant
15(ii) Curve & its gradient y = 2 sin 2x − 1 dy dx
0 ≤ x ≤ 2π
S
x = α, π + α
α T
= 2(cos 2x)(2) = 4 cos 2x
A α C
π 5π
= , Tangent Point:
4
π
y|x=π = 2 sin − 1
π
π
4
4
f ( ) = sin + cos
2
4
= 2(1) −1 =1
=
π 4
dy
4
√2 + 2
π
|
dx x=π
= 4 cos
4
π 2
⇒ ( , √2) ✓ 4
=0
5π
f ( ) = sin
Tangent: y − y1 = m(x − x1 )
4
π
y − 1 = (0) [x − ( )]
=
4
y
√2 2
π
= √2
⇒ ( , 1) Gradient:
4
=1✓
4 √2 − 2
+ cos −
5π 4
√2 2
= −√2 ⇒(
© Daniel & Samuel A-math tuition 📞9133 9982
5π
sleightofmath.com
5π 4
, −√2) ✓
465
A math 360 sol (unofficial)
Ex 17.1
16(ii) For increasing function, f ′ (x) >0 cos x − sin x > 0 cos x > sin x 𝑦 5π π 4
⇒0≤x<
dS dθ
π
or
4
5π 4
At stationary value, dS
64 cos 2θ − 64 sin θ =0 cos 2θ − sin θ =0 2 1 − 2 sin θ − sin θ =0 2 sin2 θ + sin θ − 1 =0 (2 sin θ − 1)(sin θ + 1) = 0
< x ≤ 2π ✓
𝑂
π 4
⇒ 17(i)
π 4
5π 4
cos θ =
AF 8 BF 8
α=
⇒ AF = 8 sin θ ⇒ BF = 8 cos θ
1
6
6
S
A
α T
α C
2nd derivative d2 S dθ
A 8 cm 8 cm θ C B F
= 64(−2 sin θ) −64 cos θ = −128 sin 2θ −64 cos θ
d2 S
|
dθ2 θ=π
D
≈ −35.8 < 0
6
⇒ max +area of rectangle +(BE)(BC)
= (2 ⋅ BF)(AF)
+(BE)(2 ⋅ BF)
2 1
or sin θ = −1 (rej ∵ θ > 0)
2
= (BC)(AF) 2 1
2
θ = α, π − α π = ✓
E
Area S = area of triangle
π
1
⇒ 1st or 2nd quadrant π 0<θ<
✓
By trigonometry sin θ =
sin θ =
𝑦 = cos 𝑥 2𝜋 𝑥 𝑦 = sin 𝑥
4
=0
dθ
For decreasing function, f ′ (x) <0 cos x − sin x < 0 cos x < sin x 𝑦 5π
= 32(2 cos 2θ) −64 sin θ = 64 cos 2θ −64 sin θ
𝑦 = cos 𝑥 2𝜋 𝑥 𝑦 = sin 𝑥
4
𝑂
17(ii) 1st derivative
y = a tanm (x n ) = a[tan(x n )]m
18
dy
d
= a ⋅ m[tan(x n )]m−1
⋅
+64 cos θ
= a ⋅ m[tan(x n )]m−1
⋅ sec 2 (x n ) ⋅
= 64 ( sin 2θ)
+64 cos θ
= 32 sin 2θ
+64 cos θ ✓
= a ⋅ m[tan(x n )]m−1 = amn tanm−1 (x n )
⋅ sec 2 (x n ) ⋅ nx n−1 sec 2 (x n ) (x n−1 ) ✓
= (2 ⋅ 8 cos θ)(8 sin θ) +(4)(2 ⋅ 8 cos θ)
dx
2
= 64 sin θ cos θ 1 2
dx
[tan(x n )] d dx
(x n )
19(i) y = (k + x) cos x dy dx
= (k + x) ⋅
d dx
cos x
+
= (k + x) ⋅ (− sin x) = cos x d2 y dx2
= − sin x−[(k + x) ⋅
sleightofmath.com
(k + x) ⋅ cos x
+1 ⋅ cos x −(k + x) sin x d dx
(sin x) +
= − sin x−[(k + x) ⋅ cos x = − sin x−(k + x) cos x = −2 sin x −(k + x) cos x ✓ © Daniel & Samuel A-math tuition 📞9133 9982
d dx
d dx
(k + x) ⋅ sin x]
+1 − sin x
⋅ sin x]
466
A math 360 sol (unofficial) 19(ii)
d2 y dx2
Ex 17.1 22(i)
+y
= [−2 sin x − (k + x) cos x] + [(k + x) cos x] = −2 sin x [independent of k] ✓ 20(i)
d dx
d
(sec x)=
1
(
dx cos x cos x⋅
=
−1⋅
cos x⋅(0)
d cos x dx
−(− sin x)
= LHS [shown] ✓
sin x cos2 x
=(
1 cos x
)(
sin x cos x
tan x − tan3 x + 2 tan x 3 tan x − tan3 x = 1 − tan2 x − 2 tan2 x 1 − 3 tan2 x
=
cos2 x
=
22(ii)
d dx
)
(
3 tan x−tan3 x 1−3 tan2 x
)=
[
= 1 − (sec 2x tan 2x)(2) = 1 − 2 sec 2x tan 2x
dy
|
dx x=3
20(iii)
dx dt
= 2, =
dt
1−3 tan2 x
)]|
x=
=
dy
=3✓
=?
dy
×
dx
3 12
y = x + cos x
dx
dy
dt
dx
= 1 − sin x
At stationary point, dy
≈ 3.21 ✓
sin x cos x (
1
1
1−sin2 x 2 cos2 x
1 − sin x = 0 sin x =1 π α=
)
1+sin x 1−sin x (1−sin x)+(1+sin x)
= sin x cos x (
)
2
)
d
=
[sin x cos x ( d dx
=− 1 1+sin x
𝑦 1
90° 180° 270° 360°
𝑥
−1
−2π ≤ x ≤ π x = −2π + α, −π − α, α, π − α
= 2 tan x ⇒ k=2✓
dx
=0
dx
+
π 3
cos2 π
dy
|
(3x)
3
≈ 1.61 ✓
= sin x cos x (
21(ii)
3 tan x−tan3 x
= (1 − 2 sec 2x tan 2x) × 2 At x = 3, dt x=3
21(i)
dx
(
=
|
d dx
= 3 sec 2 π
23(i) dy
d
= 1 − 2 sec 6 tan 6
dt x=3
(tan 3x)
= sec 2 3x ⋅ 3 = 3 sec 2 3x
20(ii) y = x − sec 2x
dx
d dx
= sec 2 3x ⋅
= sec x tan x ✓
dy
= tan 3x
2 tan x tan x + tan x + tan 2x 1 − tan2 x = = 1 − tan x tan 2x 1 − tan x ( 2 tan x ) 1 − tan2 x
cos2 x
=
1−3 tan2 x
RHS
)
d (1) dx
3 tan x−tan3 x
Show:
+
1 1−sin x
3π 2
,
π 2
✓
)]
2 tan x
= 2 sec 2 x ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
467
A math 360 sol (unofficial)
Ex 17.1
23(ii) Coordinates
= sin x (1 + cos x) = sin x + sin x cos x 1 = sin x + sin 2x 2
y
π
π
2
2
y|x=π = + cos ( ) 2
π = 2 π π ⇒( , )
1st derivative
2 2
dy
y|x=−3π = − 2
=− ⇒ (−
3π 2
,−
3π 2 3π
3π
+ cos (−
2
dx
)
at stationary pt:
2 3π 2
dy
)
cos x + cos 2x
=0
3x
x
2
2
2 cos ( ) cos (− ) = 0
= − cos x
dx2
=0
dx
2nd derivative d2 y
= cos x + cos 2x
3x
cos ( ) = 0
d2 y
π
|
dx2 x=π
2
0 ≤ x ≤ 2π:
= − cos ( ) = 0 2
2
x
cos ( ) = 0
or
2
0≤
π π
⇒ not max. or min. at ( , ) ✓ 2 2
3x 2
0 ≤ x ≤ 2π: x
≤ 3π:
0 ≤ < π: 2
𝑦
𝑦
1
d2 y
3
|
dx2 x=−3π
= − cos (− π)
2
not max. or min. at (−
⇒
=0
2
3π 2
,−
90° 180° 270° 360°
3π 2
)✓
3x
2
𝑦
𝑥
90° 180° 270° 360°
−1
2 3x
23(iv)
1
𝑦 = 𝑥 + cos 𝑥
−1
= α, 2π − α, 2π + α, 4π − α π 3π
= ,
2 2 π
5π
,
3
𝑂 (−
3𝜋 2
,−
3𝜋 2
π
1
2π
3
2
3
y|x=π = sin ( ) + sin
𝑥
3
=
)
√3 2 3
=
π 2
3
𝜋 𝜋 2 2
x 2
x=π
2 5π
x = , π,
( , )
𝑥
+
1 √3 ( ) 2 2
= √3 4
✓
π 3
24
d dx
(sin x°) = = =
25(i) 25(ii)
𝑦
d dx π
[sin (
180 π 180
π 180 π
cos (
⇒ ( , √3) 3 4
x)]
180
1
x)
y|x=π = sin π + sin 2π 2
=0 ⇒ (π, 0)
cos(x°) ✓
𝜋 3 ( , √3) 3 4
𝑦 = |sin 𝑥 (1 + cos 𝑥)|
𝑂
3
=−
(𝜋, 0)
𝑥 5𝜋
© Daniel & Samuel A-math tuition 📞9133 9982
3
3
, − √3) 4
1
10π
3
2
3
√3 2
1
+ (− 2
)
√3 ) 2
3 = − √3 4 5π 3 ⇒ ( , − √3) 3 4
𝑦 = sin 𝑥 (1 + cos 𝑥) (
5π
y|x=5π = sin ( ) + sin (
✓
sleightofmath.com
468
A math 360 sol (unofficial)
Ex 17.1
2nd derivative d2 y dx2 d2 y
|
0600 1800
π 3
≈ −2.60 < 0
⇒ max at ( , √3) 3 4
|
=0
⇒ not max/min (π, 0)
|
≈ 2.60 > 0
⇒ min at (
3
dx2 x=π d2 y
y = sin x
= − sin x − 2 sin 2x
dx2 x=π d2 y
26
dx2 x=5π 3
© Daniel & Samuel A-math tuition 📞9133 9982
5π 3
3
, − √3) 4
sleightofmath.com
1200
0000
✓
Fastest when gradient is the steepest ⇒ 0900, 1500, 2100 & 0300
469
A math 360 sol (unofficial)
Ex 17.2 3(b)
Ex 17.2 1(a)
d dx
d
(ex + 1) =
dx
dx
1(b)
dx
d
(4ex − 6) = 4
dx d
=4
dx x
dy dx
(ex ) −
d dx
3(c) (6)
d dx
d
(xex ) = x ⋅
dx d
(x) ⋅ ex
3(d)
dx x
d dx
ex
( )=
= d dx
d x (e ) dx
−ex ⋅
x⋅ex
3
= e2x ✓
d (x) dx
dy dx
x2 ex (x−1)
4(a)
✓
x2
(e−2x ) = e−2x ⋅
d dx
(−2x)
= e−2x ⋅ (−2) = −2e−2x ✓ 2(b)
d dx
dy dx
d (e3−5x ) dx d 5e3−5x ⋅ (3 − dx 3−5x (−5)
d
d
(e3x + 7) =
(e3x ) +
dx 3x
=e
⋅
d dx
d dx
d dx
(ex + e−x ) =
d dx x
4(b)
(7)
=e
= ex = ex
dx
d (e−x ) dx d +e−x ⋅ (−x) dx −x (−1)
4(c)
+e ⋅ −e−x ✓
=
= = =
dx
= 4e4x−1 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
du dx
dy
⋅
du
du dx
y = √1 + ex Let u = 1 + ex y = √u ✓
dx
y = e3x . ex−1 = e4x−1 ✓ dy
⋅
= 5u4 ⋅ (1 + ex ) = 5(x + ex )4 ⋅ (1 + ex ) = 5(1 + ex )(x + ex )4 ✓
dy
3(a)
dy du
y = (x + ex )5 Let u = x + ex y = u5 ✓ dy
(3x) + 0
(ex ) +
=
5x)
= e3x ⋅ 3 = 3e3x ✓ 2(d)
2
= 2u ⋅ (−ex ) = 2(1 − ex ) ⋅ (−ex ) = 2ex (ex − 1) ✓
= 5e ⋅ = −25e3−5x ✓ dx
3 3
= e2x ✓
y = (1 − ex )2 Let u = 1 − ex y = u2 ✓
(5e3−5x ) = 5 =
2(c)
y = √e3x 1
x2 −ex ⋅1
x
=
2(a)
x⋅
= −2e2−2x ✓
= (e3x )2
= xe +1 ⋅ e = ex (x + 1) ✓ 1(d)
= ex+3 ✓
y = (e1−x )2 = e2−2x ✓ dy
(ex ) +
dx x
✓
(ex ) − 0
= 4e ✓ 1(c)
ex x+3
(1)
= ex + 0 = ex ✓ d
e2x+3
=e
d
(ex ) +
y=
=
sleightofmath.com
dy du 1 2√u 1 2√1+ex ex 2√1+ex
⋅
du dx
⋅ (ex ) ⋅ (ex ) ✓
470
A math 360 sol (unofficial) 4(d)
Ex 17.2 6(a)
y = √x + ex Let u = x + ex y = √u ✓
y= dy
dx
= = = =
5(a)
dy
⋅
du 1
du dx
6(b)
✓
2√x+ex
= (x + 1) ⋅
d dx
(e2x )
= (x + 1) ⋅ e2x ⋅
d dx
(2x) +
=
d
+
= (x + 1) ⋅ e2x ⋅ 2 = e2x [2(x + 1) = e2x (2x + 3) ✓ 5(b)
dx
d dx
(x + 1) ⋅ e2x
dx
=e
−2x
⋅
+1 ⋅ e2x +1]
d dx
(sin x)
+
d
(e−2x )
dx −2x
+e
⋅
d dx
dy dx
6(c)
⋅ sin x
−2x
(ex
3 +2x
dx x3 +2x
=x⋅e
= x ⋅ ex = ex
3 +2x
⋅
)
d dx
+
d dx
(x 3 + 2x) +1
⋅ (3x 2 + 2)
+ex
3 +2x
[x(3x 2 + 2) 3 = ex +2x (3x 3 + 2x + 1) ✓
⋅ sin x =
(x) ⋅ ex ⋅ ex
3 +2x
=
3 +2x
dx
1−x
=e
⋅
d dx
d x (e ) dx
−ex ⋅
d (1+e2x ) dx
(1+e2x )2 (1+e2x )⋅ex
−ex ⋅2e2x
(1+e2x )2 ex (1+e2x
−2e2x )
(1+e2x )2 ex (1−e2x ) (1+e2x )2
(cos 2x)
6(d)
+1]
cos x
cos x ⋅
d 3x d e − e3x ⋅ cos x dx dx cos 2 x
cos x ⋅ 3e3x
− e3x ⋅ (− sin x) cos 2 x
e3x (3 cos x + sin x) 2 cos x
y=
x+e2x ex
dy dx +
d dx
(e1−x )
⋅
cos 2x = −e1−x ⋅ (−2 sin 2x) +(e1−x ) ⋅ cos 2x = −e1−x (2 sin 2x + cos 2x) ✓
© Daniel & Samuel A-math tuition 📞9133 9982
e3x
✓
3 +2x
y = e1−x cos 2x dy
1+e2x
dx
= d
ex
(1+e2x )⋅
y=
3 +2x
=x⋅
✓
dy
(−2x) ⋅ sin x
=e cos x +e ⋅ (−2) −2x = e (cos x − 2 sin x) ✓
5(d)
= =
−2x
y = xex
1+e−x +xe−x (1+e−x )2
✓
= e−2x ⋅ cos x
5(c)
=
(x + 1) ⋅ e2x
y = e−2x sin x dy
−x⋅(−e−x )
(1+e−x )2
dx
y = (x + 1)e
dx
−x⋅
dy 2x
dy
y=
d x dx
(1+e−x )⋅1
=
⋅ (1 + ex )
2√x+ex 1+ex
d (1+e−x ) dx −x 2 (1+e )
(1+e−x )⋅
=
⋅ (1 + ex )
2√u 1
1+e−x
=
dx dy
x
sleightofmath.com
d d (x + e2x ) − (x + e2x ) ⋅ ex dx dx = e2x x (1 2x ) e ⋅ + 2e − (x + e2x ) ⋅ ex = e2x 2x (1 + 2e ) − (x + e2x ) = ex 2x 1−x+e = ex ✓ ex ⋅
471
A math 360 sol (unofficial) 7
Ex 17.2
y = 2ex + 1
9(ii)
dx
|
= p,
dt x=1 dy dx dy
= 2ex
dx x=1
dx2 d2 y
8(i)
=
= 2ex |
dx2 x=1
=
dt
= 2e ✓
|
d2 y
dy
dy
|
y = 3e2x
1 − e−2x 3 dx
|
10
1 3e2 p
3e2
×
dx dt dx dt
= p,
dt x=1
=−
at y = 3: 3e2x = 3 e2x = 1 2x = ln 1 =0 x =0✓
=?
×
dx
= (−
dt x=1
|
dt x=1
dy
At x = 1,
= 2e ✓
dy
) ⋅ (p)
✓
t
Q = −ECe−RC t
dQ
= −EC (e−RC ) ⋅
dt
d dt
t
(−
= −EC (e−RC ) ⋅ (− E
t RC
1 RC
)
)
t
= e−RC R
8(ii)
dy
dQ
= 3(2e2x )
dx
dt x=3
= 6e2x 11(a) dy
8(iii)
11(b)
6e2x = 3 1
e2x
=
2x
= ln ( )
2 1 2
1 2
d2 y
=
2
2x )(2)
= 6(e
dx2
R
(e2x−1 + x)3 d dx
(e2x−1 + x)
d 2 + e1−x dx tan 2x d d tan 2x ⋅ (2 + e1−x ) − (2 + e1−x ) ⋅ (tan 2x) dx dx = tan2 2x
1
= ln ( )
x
3
= 3(e2x−1 + x)2 ⋅ (2e2x−1 + 1) ✓
=3
dx
E
= e−RC ✓
= 3(e2x−1 + x)2 ⋅
Gradient is 3, dy
d dx
= 6e2 ✓
|
dx x=1
|
=
= 12e2x
tan 2x ⋅ (−e1−x ) −e1−x tan 2x
− (2 + e1−x ) ⋅ 2 sec 2 2x tan2 2x − 2 sec 2 2x (2 + e1−x ) tan2 2x
✓ d2 y
1 2
1 2
2[ ln( )]
|
dx2 x=1 ln(1) 2
= 12e
2
1
= 12eln2 1 = 12 ( ) 2 = 6✓ 9(i)
y= dy dx
e−2x 6 1
= (−2e−2x ) 6
1
= − e−2x ✓ 3
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
472
A math 360 sol (unofficial)
Ex 17.2
11(c) d x cos x dx e1−x2 =
dx
2 d (x cos x) dx
−x cos x⋅ 2
e1−x ⋅(x⋅
d cos x dx
+
)
=
Gradient:
2
e1−x ⋅[x⋅(− sin x) +1 ⋅cos x]
−x cos x⋅e1−x ⋅(−2x)
2 2
dy
|
dx x=2
= 2e4−1 = 2e3
(e1−x ) 2
=
= 2e2x−1
Tangent & Normal Point: y|x=2 = e3 ⇒ (2, e3 )
2 d d x⋅cos x) −x cos x⋅e1−x ⋅ (1−x2 ) dx dx 2 1−x2
2
=
2 d (e1−x ) dx
e1−x
(e
=
y = e2x−1 dy
e1−x ⋅
2
=
13(i)
Tangent:
2
e1−x ⋅(cos x−x sin x)
+2x2 cos x⋅e1−x
2 2 (e1−x )
+2x2 cos x
(cos x−x sin x) 2 e1−x
(1+2x2 ) cos x−x sin x
12(i)
✓
2
e1−x
y=
x k (e2k
+e
−
Normal:
x 2k )
y = (e 2
(x − x1 )
y − (e3 ) y − e3 y − e3 y
= 2e x − (2)] = e3 (2x − 4) = 2e3 x −4e3 = 2e3 x −3e3 ✓
y − y1
= − dy
dx x=2 3[
1
(x − x1 )
|
1
1
1
|
=
dx x=2
y − (e3 ) = − (2e3 ) [x − (2)]
At k = : 2
dy
y − y1
x 1 2( ) 2
x
− 1 2( )
+e
2
y
)
=−
1 2e3
x+
1 e3
+ e3 ✓
1
= (ex + e−x ) = 12(ii)
dy dx
2 (ex +e−x ) 2 1
= (ex − e−x ) =
d2 y dx2
✓[verified]
2 ex −e−x 2
✓
1
= [ex −(−e−x )] 2 1
= (ex +e−x ) 2
=
ex +e−x 2
✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
473
A math 360 sol (unofficial)
Ex 17.2
13(ii)
14(ii) 1st curve y = e2x−3
𝑦 = 𝑒 2𝑥−1
𝑦
(2, 𝑒 3 )
dy
= 2e2x−3
dx
𝑂
3
2 + 2e6
2
𝑥 dy
Normal: 1 𝑦 = − 3𝑥+
Tangent: 𝑦 = 2𝑒 3 𝑥 − 3𝑒 3
2𝑒
1 𝑒3
=
= 2e2(2)−3 = 2e ✓
+ 𝑒3
Point B At B, tangent (y = 2e3 x − 3e3 ) crosses x − axis (y = 0). y =0 3 (2x e − 3) = 0 x
|
dx x=2
2nd curve y = e3−x dy
= −e3−x
dx dy
3
|
dx x=2
2
= −e3−(2) = −e ✓
3
⇒ B ( , 0) 2
15(i) Point C
y = 5xe−x dy
At C, normal (y = −
1 2e3
x+
1 e3
= 5x ⋅
dx
3)
+e
−
=0 1 2e3
1 2e3
x+
1 e3
+ e3 = 0
d2 y
1
dx2
x
=
e3
3
+e
⇒ C(2 + 2e6 , 0) Area of △ ABC 1
= (base)
(height)
2 1
3
dy
2
dx
= [4 + 4e6 − 3] = 14(i)
4 e3 (1+4e6 ) 4
= 5e−x ⋅
d dx
⋅ e−x
(1 − x) +
d dx
(5e−x ) ⋅ (1 − x)
+(−5e−x ) ⋅ (1 − x) −(1 − x)] −1 + x)
=0 −x (1
5e − x) = 0 x =1✓ ⇒ x − coordinate of S is 1
e3
✓
At P, y = e2x−3 has x-coordinates of 2 y|x=2 = e2(2)−3 = e ⇒ P(2, e)
(5x) ⋅ e−x
15(ii) At stationary point,
= [(2 + 2e6 ) − ( )] (e3 ) 2 1
d dx
= 5e−x ⋅ (−1) = 5e−x [−1 = 5e−x (−1 = 5e−x (x − 2) ✓
= 2 + 2e6
x
(e−x ) +
= 5x ⋅ (−e−x ) +5 = e−x (−5x +5) = 5e−x (1 − x) ✓
crosses x − axis (y = 0). y
d dx
15(iii)
d2 y dx2 d2 y
at S, |
dx2 x=1
= 5e−1 (1 − 2) 5
P(2,2e) lies in y = ea−x e = ea−2 ⇒1 =a−2 a =3✓
=− ✓ e
16(i)
y = ex − 2x − 1 dy dx
= ex − 2
At stationary point, dy dx x
=0
e −2 =0 ex = 2 x = ln 2 ✓ © Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
474
A math 360 sol (unofficial)
Ex 17.2
16(ii) y|x=ln 2 = e(ln 2) − 2(ln 2) − 1 =2 − 2 ln 2 − 1 =1 − 2 ln 2 ≈ −0.386 ✓ d2 y
= ex
dx2 d2 y
18(iii) P|t=25 = 995 000 m(25) 650 000e = 995 000
|
dx2 x=ln 2
= eln 2
18(iv)
=2 >0 ⇒ min at x = ln 2
>0
dx x
y = e−x dy dx
25m
= ln (
m
=
m
=
= e−x
2 +2x
= e−x
2 +2x
⋅
d dx
(∵ m =
2 +2x
✓
18(vi)
2 +2x
−
ln 199−ln 130 (9) 25
]
1 sign +
1 0
dP
> 18 000
mP
> 18 000
P
>
mt
1 −
)
25
650 000e
+
t ≡ t years after beginning of 2006
>
18 000 m 18 000 m 9
e
>
mt
> ln (
t
>
t (∵ m =
325m
1 m
9
)
325m 9
ln (
325m
)
> 28.5 ln 199−ln 130 25
)
⇒ t = 29 ✓ 19(i)
P = 650 000 emt
m = ae−kt Initial of 100g m|t=0 = 100 ae0 = 100 a = 100 ✓
2006 ⇒ t = 0 P|t=0 = 650 000 ✓ dt
(30)
ln 199−ln 130
mt
=0 =1 = e−1+2 = e [shown] ✓
Max ✓
dP
[shown] ✓
≈ 13 000 ✓
(−x 2 + 2x)
=0
−2(x − 1)e−x x y|x=1
18(ii)
25
ln 199−ln 130 (8) 25 ]
⋅ (−2x + 2)
dx
18(i)
)
2 +2x
dy
dx
ln (
25 130 ln 199−ln 130
−650 000 [e
17(ii) At turning point,
dy
)
ln 199−ln 130
dt
x
1
199
130 199
25 P|t=30 = 650 000e ≈ 1 083 000 ✓
= 650 000 [e
= −2(x − 1)e−x
17(ii)
130
P|t=9 − P|t=8
e −2 >0 ex >2 x > ln 2 ✓ 17(i)
=
18(v) 2014 ⇒ t = 8 2015 ⇒ t = 9
16(iii) For increasing function, dy
199
e25m
= 650 000memt = m(650 000emt ) = mP
⇒
dP dt
∝ P [shown] ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
475
A math 360 sol (unofficial)
Ex 17.2
19(ii) m = 100e−kt
21(iv)
𝑛 𝑛 = 20𝑒 0.1𝑡
th
At 40 h, mass reduces to 90g m|t=40 = 90 −k(40) 100e = 90 −40k e = 0.9p −40k = ln(0.9p) k 19(iii)
=− (
m = 100e
1
ln
40
9 10
21
= ab(e−bx ) >0 ∵ a > 0, b > 0, e−bx > 0 ⇒ increasing for all x ∈ ℝ ✓
1
= m|t=0
100e [
1
e 40 [
1 40
ln
2 1
1 9 ln ]t 40 10
= (100)
9 10
=
ln ]t 9 10
]t
2 1
22
y = ae2x + be4x dy
2
= ln
f: x ↦ a(1 − e−bx )
f ′ (x) = −a(e−bx )(−b)
Decay to half: [
dx
1
= 2ae2x +4be4x
2 d2 y dx2
1 9 ( ln )t 40 10
m = 100e dm dt
=(
1 40
ln
5
9
2
10
= ln 20(i)
= a(2e2x ) +b(4e4x )
≈ 263h ✓
t 19(iv)
✓
f(x) = a − ae−bx
✓
1 9 ln )t 40 10
m
𝑥
𝑂
9 10
e
= 4ae2x (
) 100e
[
1 9 ln ]t 40 10
= 2a(2e2x ) +4b(4e4x )
1 9 ln )t 40 10
Show:
d2 y dx2
+16be4x =6
dy dx
− 8y
✓ RHS
n = 20e0.1t n|t=5 = 20e0.5 ≈ 33 ✓
= 6(2ae2x + 4be4x ) −8(ae2x + be4x ) = 12ae2x + 24be4x −8ae2x − 8be4x = 4a2x + 16be4x = LHS [shown] ✓
20(ii) n > 200 0.1t 20e > 200 0.1t e > 10 0.1t > ln 10 t > 10 ln 10 t > 23.026 ⇒ least t = 24 ✓ 20(iii)
dn
= 20(e0.1t )(0.1)
dt
= 2e0.1t dn
|
dt t=15
= 2e0.1(15) ≈ 9 snails /week ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
476
A math 360 sol (unofficial) 23
Ex 17.2
y = (2 + 3x)e−x
24
dy
ex − x = 0 ex = x 𝑦
dx d
= (2 + 3x) ⋅
dx
(e−x ) +
= (2 + 3x) ⋅ (−e−x ) +3 = e−x [−(2 + 3x) +3] = e−x (−2 − 3x +3) = e−x (1 − 3x)
d dx
(2 + 3x) ⋅ e−x
𝑦=𝑥
⋅ e−x
y1 = ex y1 = ex > 0 ∴ y1 > y2
y2 = x y2 = x <0
x = 0:
y1 = e0 = 1 ∴ y1 > y2
y2 = 0
x > 0:
y1 = ex
y2 = x
dy1
dy2
x < 0: dx2 d
d (e−x )⋅ (1 dx −x ) (1
(1 − 3x) +
dx
−x
𝑥
𝑂
d2 y
= e−x ⋅
𝑦 = 𝑒𝑥
= e ⋅ (−3) +(−e ⋅ −x = e [−3 −(1 − 3x)] −x = e (−3 −1 + 3x) = e−x (3x − 4)
− 3x)
− 3x)
dx
At stationary point, dy dx −x (1
e
⇒
=0 − 3x) = 0
x
=
dy dx
=e
dy1 dx
>
dx
dx
∵ y1 > y2 at x = 0
3
&
dx
>
dy2 dx
for x >
0, y1 > y2 for x > 0
1−
1
1+
3
3
3
0
−
sign +
dy1
=1
dy2
1
⇒ stationary pt exist Sign Test: x
x
∴ ex − x = 0 does not have a real solution ∵ y1 > y2 for all x
⇒ max 1
2nd derivative at x = : 3
d2 y
1 3
−( )
|
dx2 x=1
=e
1
[3 ( ) − 4] 3
3
1 −e−3
= <0
1
⇒ max at x =
3
1
Curve at x = : 3
y|
1 x= 3 1
1 1 1 −( ) −( ) = [2 + 3 ( )] e 3 = 3e 3 3 1
⇒ ( , 3e−3 ) ✓ 3
1
1
Insert ( , 3e−3 ) into y = 3e−x 3
−
1 3
1
1 3
−( )
(3e ) = 3e
[consistent]
1 − 3
⇒ ( , 3e ) lies on y = 3e−x 3
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
477
A math 360 sol (unofficial) 24
Ex 17.2
Curve Eqn: y1 = ex Curve Grad:
dy1 dx
25
y = ekx
= ex dy dx
= kekx
Line Eqn: y2 = x Line Grad:
dy2 dx
d2 y
=1
dx2
= k(kekx ) = k 2 ekx
x ≤ 0:
y1 > 0 y2 ≤ 0 ⇒ y1 > y2
dn y dxn
26
x > 0:
y1 > 0 y2 > 0 ⇒ cannot confirm y1 and y2 don′ t intersect dy1
x > 0:
dx
= ex > 1 [exponential function is an
increasing function] dy2 dx
⇒
= k n ekx [by inspection] ✓
Exponential function: (constant)variable (variable)constant Power function ex is an exponential function with e as a constant & x as a constant It is wrongly treated as a power function & power rule is wrongly applied.
=1
dy1 dx
>
dy2 dx
⇒ y1 > y2 x ∈ ℝ:
y1 > y2 y1 − y2 > 0 ex − x > 0 ex − x ≠ 0 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
478
A math 360 sol (unofficial)
Ex 17.3 2(d)
Ex 17.3 1(a)
d dx
= = 1(b)
d dx
d dx 1
(ln x) +2
=1− (
d dx 1
=
(ln x)
+
x
dx
3(a)
) =
(1+ln x)⋅
d (x) dx
d (1+ln x) dx 2 (1+ln x)
−x⋅
−x⋅
1 x
(1+ln x)2 1+ln x −1 (1+ln x)2 ln x ✓ (1+ln x)2
d
d dx
ln(5x + 1) =
5 5x+1
[ln(4x − 3)2 ] =
=2
d dx
= d dx
ln(8 − x 3 ) = = =
8 4x−3 1
8−x3 1 8−x3 3x2 x3 −8
© Daniel & Samuel A-math tuition 📞9133 9982
⋅
=
dy
|
dx x=3
4
3(b)
⋅ (0
⋅ (−2)
⋅ ln(5 − 2x)
+ ln(5 − 2x) + ln(5 − 2x) ✓
1 2x−5 2
⋅ (2)
2x−5
=
2 2(3)−5
y = ln(3 − 2x)
dy
=
dx
= dy
)
|
dx x=1
1 3−2x 2
⋅ (−2)
2x−3
=
2 2(1)−3
= −2 ✓
✓ d
(5 − 2x) +1
(x) ⋅ ln(5 − 2x)
Curve crosses x − axis, y =0 ln(3 − 2x) = 0 3 − 2x = e0 =1 −2x = −2 x =1✓ (1,0) ⇒
4x−3
dx
d dx
=2✓
[ln(4x − 3)]
=2⋅(
d dx
+
y = ln(2x − 5)
=
[2 ln(4x − 3)]
dx
⋅
2x−5
dx
✓
d
5−2x 1
5−2x 2x
dy
d sin x ( ) dx ln x d d ln x ⋅ (sin x) − sin x ⋅ (ln x) dx dx = (ln x)2 1 ln x ⋅ cos x − sin x ⋅ x = (ln x)2 sin x cos x ln x − x = (ln x)2 ✓
dx
[ln(5 − 2x)]
Curve crosses x − axis, y =0 ln(2x − 5) = 0 2x − 5 = e0 =1 x =3 ⇒ (3,0) ✓
⋅ ln x
(1+ln x)⋅1
d
dx 1
(x − 1) ⋅ ln x
+ ln x ✓
=
2(c)
d
+1
x
=
2(b)
=x⋅
x
=
2(a)
(x)
1
dx 1+ln x
1(d)
dx
=x⋅
[(x − 1) ln x]
= (x − 1) ⋅
d
d
+2 ✓
x
x ln(5 − 2x)
=x⋅
(ln x + 2x)
= (x − 1) ⋅
1(c)
d dx
(8 − x 3 ) − 3x 2 )
✓
sleightofmath.com
479
A math 360 sol (unofficial) 3(c)
y = 3 ln(x − 3)
Ex 17.3 4(ii)
At stationary point, dy
dy
= 3(
dx
=
1
=0
dx ln x−1 = (ln x)2
Curve crosses x − axis, y =0 3 ln(x − 3) = 0 ln(x − 3) = 0 x−3 = e0 x−3 =1 x =4✓ (4,0) ⇒
0
ln x = 1 x =e y|x=e =
e =e ln e
⇒ (e, e) Sign Test x 3−
) ⋅ (1)
x−3
3
dy
x−3
dx
sign
−
e
e+
0
+
⇒ min dy
|
=
dx x=4
3 4−3
5
=3✓ 3(d)
y = ln(3x − 2)2 = 2 ln(3x − 2)
dy dx
= 2(
dx
|
y= dy dx
d [ln(x+1)] dx
−ln(x+1)⋅
d (x+1) dx
(x+1)2 1 (x+1)⋅ x+1
−ln(x+1)⋅1 (x+1)2
1
−ln(x+1) (x+1)2
>0
dx 1−ln(x+1) (x+1)2
>0
1 − ln(x + 1) ln(x + 1) x+1 x
) ⋅ (3)
6 3−2
>0 ∵ x > −1 <1
Combine inequalities, −1 < x < e − 1 ✓
=6✓ 4(i)
(x+1)⋅
dy
3x−2
=
=
For increasing function,
3x−2
dx x=1
for x > −1
x+1
=
6
= dy
1
ln(x+1)
=
Curve crosses x − axis, y =0 2 ln(3x − 2) = 0 ln(3x − 2) = 0 3x − 2 = e0 3x − 2 =1 x = 1✓ dy
y=
x ln x
= = =
6
d d ln x⋅ (x) −x⋅ (ln x) dx dx (ln x)2
ln x⋅1
dC dt
1 x
−x⋅( )
1
) (1)
t+1 1
t+1
> 0 for 0 ≤ t ≤ 10
⇒ increasing function ✓
✓
© Daniel & Samuel A-math tuition 📞9133 9982
= 0.1 + ( = 0.1 +
(ln x)2 ln x −1 (ln x)2
C = 11.9 + 0.1t + ln(t + 1)
sleightofmath.com
480
A math 360 sol (unofficial)
Ex 17.3
7(a) d dx
=
(3x ln √x 2 d
dx
− 2x − 3)
=
3
[ x ln(x 2 − 2x − 3)]
dx 2 3
d
2
dx
= x⋅
2
[ln(x − 2x − 3)]
3
= x⋅ 2
1
d
⋅
x2 −2x−3 dx
3
1
2
x2 −2x−3
= x⋅ =
d
7(d)
+
d
3
2
( x) ⋅ ln(x − 2x − 3)
dx 2
(x 2 − 2x − 3)
+
3 2
= ⋅ ln(x 2 − 2x − 3) =
3
+ ln(x 2 − 2x − 3)
⋅ (2x − 2)
2
3x(x−1)
=
3
2
+ ln(x − 2x − 3) ✓
x2 −2x−3
7(b)
=
2
=
Method 1 d dx
[ln(sin x cos x)]
d 1 ln ( sin 2x) dx 2 d 1 = (ln + ln sin 2x) =
2 1
d
2
dx
(ln ) +
dx
=0
+
=0
+
1 sin 2x 1 sin 2x
7(e)
d dx
=
(ln sin 2x) d
(sin 2x)
=
⋅ (2 cos 2x)
=
⋅
dx
= 2 cot 2x ✓
dx
=
[ln(sin x cos x)]
d = (ln sin x + ln cos x) dx d d = (ln sin x) + (ln cos x) = =
dx 1
sin x 1 sin x
⋅
d dx
(sin x)
⋅ cos x
+ +
dx 1
⋅
cos x 1
cos x
d dx
(cos x)
⋅ (− sin x)
− tan x ✓
= cot x
=
d dx
[ln (3 + e
d dx
= =
1 − x 2
)]
1 d − x 2 ) = 1 ⋅ dx (3 + e − x 2 3+e
= = =
1
− x 3+e 2
1 1 − x 3+e 2
⋅[
d dx
(3) +
⋅ [0 +e
1 − x 3+e 2
d
d dx d
1 √x2 +1−x
⋅
1 2
(e
dx
2
⋅ [0 +e−2x ⋅ (− )]
− x e 2 1 − x 2(3+e 2 )
⋅
d
2√x2 +1 dx
⋅( ⋅(
1 2√x2 +1
d dx
(x)]
(x 2 + 1) −1]
⋅ 2x
−1)
x
−1)
√x2 +1
x − √x 2 + 1 ⋅( ) √x 2 + 1 − x √x 2 + 1 1 √x2 +1
ln [ d dx d dx d dx
✓
e2 (3x−2) 4−x
]
[ln e2 + ln(3x − 2)
− ln(4 − x)]
[2 + ln(3x − 2)
− ln(4 − x)]
(2) + +
d dx 1
3x−2
1
[ln(3x − 2)] ⋅
d dx
(3x − 2)
⋅ (3)
3x−2
− − −
3
+
3x−2
dx d dx
sin x
d dx
[ln(4 − x)]
1 4−x 1 4−x 1 4−x
⋅
d dx
(4 − x)
⋅ (−1) ✓
]
[3 ln(x + 2)
+ ln(cos 3x)
− ln(sin x)]
[3 ln(x + 2)]
+
d dx
[ln(x + 2)] 1
⋅
d
x+2 dx
=
1 x+2
+
(x + 2) +
⋅ (1)
+
3
d dx
[ln(cos 3x)]
1 cos 3x 1 cos 3x
⋅
d dx
−
(cos 3x) −
⋅ (− sin 3x) ⋅
8(a)
1 cos 3x
d dx
[ln(sin x)]
1 sin x
d dx
d
⋅
dx
(sin x)
(3x) 1 sin x
⋅ cos x
⋅ (− sin 3x) ⋅ 3 − cot x
−3 tan 3x
x+2
− cot x ✓
y = ln(2x − 1) dy
✓
© Daniel & Samuel A-math tuition 📞9133 9982
1
⋅[
−
− ln(sin x)]
)]
(− x)]
2
(√x 2 + 1)
dx
−
1
1
d
⋅[
+ ln(cos 3x)
=3⋅ d
(√x 2 + 1 − x)
1
(x+2)3 cos 3x
1
=−
1 √x2 +1−x
d dx
[ln(x + 2)3
=3⋅
− x
dx
1 − x 2
1
1
ln [
=3
1
1
1 √x2 +1−x
⋅
7(f)
= 7(c)
1 √x2 +1−x
=0
Method 2 d
1 √x2 +1−x
=−
=
dx d
[ln(√x 2 + 1 − x)]
dx
=
2 2x−1
≠0
⇒ no stationary pts
sleightofmath.com
481
A math 360 sol (unofficial) 8(b)
Ex 17.3
y = ln(3x − k) dy
=
dx
= =
1
d
⋅
3x−5 1
dx
10
(3x − k)
y = ln(2 + e−x )
⋅3
3x−5 3
dx dy = 3, | =? dt dt x=1
dy
3x−5
=
dx
=
Curve cross x − axis (y = 0) at x = 2, 6−k = e0 6−k =1 k =5
=−
(2,0)
Gradient:
− dy
1
=−
|
dx x=2
Normal:
=
dt 1 3 ( ) 3(2)−5
y − y1 = − dy
1 |
=−
3
y − (0)= −
[x − (2)]
3 1
2
3
3
11(i)
y = ln(x 2 − 4) dy
= 9(ii)
dx
1
=(
dx
|
dt x=3 dy
=
dt
=
dy
|
dt x=3
dy
= 2x ⋅
dx
|
dt x=3
× ×
x2 −4 dx
32 −4
3 2e+1
✓
d dx
(ln x) +
1
d dx
(2x) ⋅ ln x
+2
x
⋅ ln x
=? 11(ii) At stationary point, dy
dx
=0
dx
dt dx
2 + 2 ln x = 0 ln x = −1
dt
dt x=3 2(3)
=−
+2 ln x ✓
1
= ✓
x |
|
dt x=1
=2
dx 2x
=
2ex +1
✓ dy
dt
×3
2ex +1 3
= 2x ⋅
dy
At x = 3,
1
) (2x)
= p,
dx
×
y = 2x ln x
x2 −4 2x
x2 −4
1 +1
2ex
At x = 1,
dy
9(i)
2+e−x
(x − x1 )
=− x+ ✓
y
(e−x )
⋅ (−e−x )
dx
=−
dx x=2
1
d dx
dy
=−
1
⋅
2+e−x e−x
=−
dy
Normal Point:
1 2+e−x 1
e
= p, ×p
11(iii)
d2 y
=
dx2
2 x
6
d2 y
5
dx2 x=1
= p
|
=
e
2 1 e
( )
= 2e ✓ 12(i)
y= dy dx
ln x x2
= = = =
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
x2 ⋅
d d (ln x) −ln x⋅ (x2 ) dx dx x4
x2 ⋅
1 x
−ln x⋅2x x4
x
−2x ln x x4
1
−2 ln x x3
✓
482
A math 360 sol (unofficial)
Ex 17.3
12(ii) At stationary point, dy
13
x
=0
dx 1−2 ln x
= λx 2 (ln 1 − ln x) = λx 2 (0 − ln x) = −λx 2 ln x 1st derivative
=0
x3
1
V = λx 2 ln ( )
1 − 2 ln x = 0 −2 ln x = −1
dV
1
ln x
=
x
= √e ✓
dx
2
d
= −λx 2 ⋅
dx 1
(ln x) +
= −λx 2 ⋅ ( )
12(iii) d2 y dx 2
d
(λx 2 ) ⋅ ln x
dx
+ (−2λx) ⋅ ln x
x
= −λx −2λx ln x = −λx(1 + 2 ln x)
d d (1 − 2 ln x) − (1 − 2 ln x) ⋅ (x 3 ) dx dx = x6 2 x 3 ⋅ (− ) − (1 − 2 ln x) ⋅ 3x 2 x = x6 x3 ⋅
−2x 2
=
−2
=
dV
−λx(1 + 2 ln x) = 0 x=0
or
1
ln x = −
(rej ∵ 0 < x < 1) x
2
1
=
√e
✓
Sign Test 1−
x dy
x4
dx
6 ln x − 5 x4
=
=0
dx
− (1 − 2 ln x) ⋅ 3x 2 x6 − (1 − 2 ln x) ⋅ 3 4 x − 3 + 6 ln x
−2
=
At turning point,
√e
sign
+
1+
1 √e
√e
0
−
⇒ max
✓
2nd derivative d2 V
d2 y
| 2
dx x=√e
= =
dx2
6 ln √e−5 (√e) 3−5
4
= −λx ⋅
e2
=−
d dx
(1 + 2 ln x) +
2
2
2 ✓
(−λx) ⋅ (1 + 2 ln x) ⋅ (1 + 2 ln x)
= −λx ⋅ ( )
+(−λ)
= −2λ
−λ(1 + 2 ln x)
x
e
d dx
= −λ(2 + 1 + 2 ln x) = −λ(3 + 2 ln x) d2 V
1
|
dx2 x= 1
= −λ (3 + 2 (− )) 2
√e
= −2λ <0 ∵λ>0 ⇒ max ✓ 14
y = 2x ln y = ln 2x ln y = x ln 2 diff wrt x: 1 dy
( ) = ln 2
y dx dy dx
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
= (ln 2)y [shown] ✓
483
A math 360 sol (unofficial)
Ex 17.3
15 y = (2 + x 2 )3 (1 − x 3 )4 −(1) ln y = ln[(2 + x 2 )3 (1 − x 3 )4 ] = ln(2 + x 2 )3 + ln(1 − x 3 )4 = 3 ln(2 + x 2 ) +4 ln(1 − x 3 ) differentiating wrt x, 1 dy y
⋅
dx
=3⋅ =3⋅ =
dy dx
1 2+x2 1 2+x2
⋅
d dx
(2 + x 2 )
⋅ 2x
+4 ⋅
6x 2+x2 6x
=(
2+x2
+4 ⋅
− −
12x2 1−x3
)⋅y
1 1−x3 1
1−x3 12x2
⋅
d dx
(1 − x 3 )
⋅ (−3x 2 )
1−x3
−(2)
sub (1) into (2): dy dx
=(
6x 2+x2
= 6x (
− 1
2+x2
12x2 1−x3
−
⋅ (2 + x 2 )3 (1 − x 3 )4
)
2x 1−x3
)
⋅ (2 + x 2 )(1 − x 3 )4
=6x[(1 − x 3 ) − 2x(2 + x 2 )] ⋅ (2 + x 2 )(1 − x 3 )3 = 6x[(1 − x 3 ) − 4x − 2x 3 ]
⋅ (2 + x 2 )(1 − x 3 )3
= 6x(1 − 4x − 3x 3 )
(2 + x2 )2 (1 − x3 )3 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
484
A math 360 sol (unofficial) 16(a)
y=
Ex 17.3
1 5 x 10x ln x
(x+ ) (5+x)ex 1 5 x 10x ln x
(x+ ) (5+x)ex
ln y = ln [
]
1 5
+ ln(5 + x) + ln ex − ln 10x − ln(ln x)
= ln (x + ) x
1
= 5 ln (x + )
+ ln(5 + x) +x −x ln 10
x
− ln(ln x)
Diff wrt x, 1 dy
( ) = 5(
y dx
1 dy
( ) =
y dx dy dx
1
) (1 −
1 x 1 5(1− 2 ) x 1 (x+ ) x
x+
) + +
1
= y[
1 x2
5(1− 2 ) x 1 x
(x+ )
+
1 5+x
1 5+x 1 5+x
− ln 10 −
1 x ln x
+1 − ln 10
−
+1 − ln 10
−
1
1
( )
ln x x 1 x ln x
]✓
16(b) y = (cos5 x)(x2 +5)(ln x) x+1 ln y = ln [
e (cos5 x)(x2 +5)(ln x) ex+1
] + ln(x 2 + 5) + ln(ln x)
= 5 ln cos x diff wrt x, 1 dy
1
y dx
cos x
( ) = 5(
) (− sin x) + (
= −5 tan x dy dx
= y (−5 tan x +
© Daniel & Samuel A-math tuition 📞9133 9982
+ 2x x2 +5
1
) (2x) + (
x2 +5 2x
x2 +5 1
+
x ln x
+
1 ln x 1
1
)( )
x ln x
x
−(x + 1) −1 −1
− 1) ✓
sleightofmath.com
485
A math 360 sol (unofficial) 17(i)
Ex 17.3
y = ax − x ln x
18(ii) y = x ln x dy
Curve cross x − axis: y =0 ax − x ln x = 0 x(a − ln x) = 0 x=0 or ln x = a (rej ∵ x > 0) x = ea ✓ 17(ii)
dy dx
= a − [x ⋅ = a − (x ⋅
d dx 1
(ln x) +
d dx
=x⋅
d dx 1
(ln x) +
d dx
(x) ⋅ ln x
+1 ⋅ ln x
x
=1
+ ln x
At stationary point, dy
=0
dx
1 + ln x = 0 (x) ⋅ ln x]
x
+1 ⋅ ln x)
x
=x⋅
dx
=
1 e
1
1
e 1
e
y|x=1 = − ln e
= a − (1 + ln x) = a − 1 − ln x
=−
e
1 1
⇒ M( , )✓ e e
At stationary point, dy
=0
dx
d2 y
a − 1 − ln x = 0 ln x =a−1 x = ea−1 ✓
dx2 d2 y
=
1 x
|
dx2 x=1
y|x=ea−1 = a(ea−1 ) −(ea−1 ) ln(ea−1 ) = a(ea−1 ) −(ea−1 )(a − 1) = ea−1 [a −(a − 1)] = ea−1 (a −a + 1) = ea−1 ⇒ (ea−1 , ea−1 ) d2 y dx2 d2 y dx2
=− |
e
𝑦 𝑂
1 1 e
( )
=e >0 ⇒ min without reflection ⇒ max at M 19
1
x x is (variable)variable x n is (variable)constant ⇒ Tom is wrong ax is (constant)variable ⇒ Doris is wrong
x
x=ea−1
=−
1 ea−1
<0
Dave’s method can be derived as follows let y = x^x ln both sides, ln y = ln x x ln y = x ln x Differentiating wrt x,
∵ ea−1 > 0
⇒ max. ✓ 18(i)
=
𝑦 = |𝑥 ln 𝑥|
1 dy
𝑥 ✓
= x ( )+1(ln x)
( )
=1
y dx dy dx d dx
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
1
( )
y dx 1 dy
(x x )
x
+ ln x
= y(1 + ln x) = x x (1 + ln x)
486
A math 360 sol (unofficial) 20
Clearly,
Ex 17.3
ln 3x
= ln 3 + ln x ≠ ln x The derivative might be the same because the derivative of the constant is ln 3 is 0.
21
No. d d ln|ax| = a ⋅ ln|x| dx dx For a = −1, LHS =
d dx
(ln 3x)
= =
d dx d dx
(ln 3 + ln x) (ln 3) +
=0 = d dx
(ln x)
=
+
d dx 1
d dx
ln|−x|
RHS = −1 ⋅ (ln x)
d dx
=
d dx
ln|x| = −
ln|x|
=
1 x
1 x
LHS ≠ RHS
x
1 x 1 x
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
487
A math 360 sol (unofficial)
Rev Ex 17 A2(b)
Rev Ex 17 A1(a)
d dx
d dx
(x) −2
= 3(1)
d
(
d dx
(cos x)
A2(c)
x
d
d dx
(tan 3x)
+
= 2x ⋅ (3 sec 2 3x)
d dx
d dx
A2(d)
A2(e)
=3
d d dx
⋅ tan 3x
A3(i)
d dx
+
d dx
(3x 2 ) ⋅ ln x
+6x
x
⋅ ln x
+6x ln x ✓
=
ex [(2x + 1) (2x + 1)2
=
ex (2x−1) (2x+1)2
d
ln (
= d
(sin 8x)
d dx
d
✓ ) =
d dx
d
[ln(1 − 2x) − ln(1 + x)]
dx −2
2x−1
−
1 x+1
✓
(cot x) = − csc 2 x
sin2 x + cos 2 x sin2 x 1 =− 2 sin x
(x 2 + 2)
=−
= − csc 2 x [shown] ✓
[(x + 1)e−x ] dx
1+x
− 2]
d cos x ( ) dx sin x d d sin x ⋅ (cos x) − cos x ⋅ (sin x) dx dx = sin2 x sin x (− sin x) − cos x (cos x) = sin2 x
[sin(x 2 + 2)] = cos(x 2 + 2) ⋅
= (x + 1) ⋅
1−2x
Show:
(sin 8x)4 dx
d x d (e ) − ex ⋅ (2x + 1) dx dx (2x + 1)2
(2x + 1) ⋅ ex − ex ⋅ 2 (2x + 1)2
LHS
= cos(x 2 + 2) ⋅ 2x = 2x cos(x 2 + 2) A2(a)
(ln x)
)
(2x + 1) ⋅
(sin4 8x)
= 96 sin3 8x cos 8x ✓ d
ex
=
= 3 ⋅ 4(sin 8x)3 ⋅ (8 cos 8x)
dx
(
+2 tan 3x ✓
= 3 ⋅ 4(sin 8x)3 ⋅
A1(e)
+(2e2x ) ⋅ sin x +2 sin x) ✓
=
dx
(3 sin 8x) dx
d
=
4
=3
(e2x ) ⋅ sin x
dx 2x+1
(2x) ⋅ tan 3x
+2
= 6x sec 2 3x A1(d)
d dx 1
d dx
)
(2x tan 3x)
= 2x ⋅
(sin x) +
= 3x
d d (sin 2x) − sin 2x ⋅ (x) dx dx = x2 x ⋅ (2 cos 2x) − sin 2x ⋅ 1 = x2 2x cos 2x − sin 2x = 2 x ✓
dx
(3x 2 ln x) = 3x 2 ⋅ = 3x 2 ⋅
x⋅
A1(c)
d dx
+2 sin x ✓
sin 2x
d dx
= e2x ⋅ cos x = e2x (cos x
−2(− sin x)
=3 dx
(e2x sin x) = e2x ⋅
(3x − 2 cos x)
=3
A1(b)
d dx
(e−x )
= (x + 1) ⋅ (−e−x ) = e−x [−(x + 1)
+1]
= e−x (−x − 1
+1)
+
d dx
+1
(x + 1) ⋅ e−x ⋅ e−x
= −xe−x ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
488
A math 360 sol (unofficial)
Rev Ex 17 dy
A3(ii) t = 20 cot θ dt
2
= −20 csc θ
dθ dθ
=
dt
= −2(2 cos x) ⋅
dx
1
20
At turning points,
sin θ
dy
=0
dx dt
|
π θ= 4
=− =− =− =−
A4(i)
1 20 1
4 sin x cos x − sin x = 0 sin x (4 cos x − 1) = 0
π
sin2 ( ) 4
√2 20 2 1 2
2
sin x = 0
( )
40
rad s
or
0 < x < 2π:
( )
20 4 1
𝑦 −1
✓
1
90° 180° 270° 360°
y = 1 − 2 cos 2 x + cos x
𝑥
−1
x = 0, π ✓ Curve meets x − axis, y =0 1 − 2 cos 2 x + cos x =0 2 2 cos x − cos x − 1 =0 (2 cos x + 1)(cos x − 1) = 0 cos x = − α=
π
1 2
or
Sign Test x π− dy sign −
cos x = 1
1 4 α ≈ 1.32 ⇒ 1st or 4th quad. 0 < x < 2π: S A α α T C x = α, 2π − α ≈ 1.32,4.97 ✓ cos x =
π 0
π+ +
1.32 0
1.32+ −
4.97 0
4.97+ −
dx
0 < x < 2π:
3
⇒ min at x = π
𝑦
⇒ 2nd or 3rd quad. 1 0 < x < 2π: 𝑥 90° 180° 270° 360° S A −1 α α x = α, 2π − α T C = 0,2π (no x = π − α, π + α solution) 2π 4π = , ✓ 3
(cos x) − sin x
= −2(2 cos x) ⋅ (− sin x) − sin x = 4 sin x cos x − sin x
−20 csc2 θ 1 2
=− dθ
d dx
x dy dx
1.32− sign +
⇒ max at x = 1.32 x dy
3
dx
4.97− sign +
⇒ max at x = 4.97 A5(i)
y = xex−3
A5(ii)
dy
=x⋅
dx
d
(ex−3 ) +
dx x−3
d dx
(x) ⋅ ex−3
=x⋅e +1 x−3 = (x + 1)e ✓ dy
|
dx x=3
⋅ ex−3
= 4e0 =4✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
489
A math 360 sol (unofficial) A6(i) A6(iii)
Rev Ex 17 A8(ii) n = 40: 18e0.2t = 40
𝑦 𝑦 = ln 𝑥
2
20 9
20
t = 5 ln ( )
2
9
✓ A6(ii) x 2 ex ln(x 2 ex ) ln x 2 + ln ex 2 ln x + x 2 ln x
= 12 = ln 12 = ln 12 = ln 12 = −x + ln 12
ln x ⇒a=−
1
1
2
2
9
0.2t = ln ( )
𝑥 1 1 𝑦 = − 𝑥 + ln 12
𝑂
20
e0.2t =
≈4✓ B1(a)
d dx
=
(sin 4x − 3 cos 2x) d
(sin 4x)
dx
= cos 4x ⋅
d dx
= − x + ln 12 ✓
= cos 4x ⋅ 4
= ax +b
= 4 cos 4x
1
−3
d dx
(cos 2x)
(4x) −3(− sin 2x) ⋅
d dx
(2x)
−3(− sin 2x) ⋅ 2 +6 sin 2x ✓
2
1
⇒ b = ln 12 2
B1(b)
≈ 1.24
d
1
(
dx 1+cos 4x
=
Draw 1
1
2
2
d
)
[(1 + cos 4x)−1 ]
dx
= −(1 + cos 4x)−2 ⋅
y = − x + ln 12 ✓
1
A7(i)
cos θ (
1
+
= − (1+cos
)
1+sin θ 1−sin θ (1−sin θ)+(1+sin θ)
= cos θ [
= cos θ ( =
1
1−sin2 θ 2 cos2 θ
)
B1(c)
d dx
2 cos θ
✓
(x cos 2 3x) d
=x⋅
= 2 sec θ [shown] ✓
4x)2
dx
(cos 2 3x)
= x ⋅ 2 cos 3x ⋅
d dx
=
[cos θ ( d dx
=2
1 1+sin θ
+
1 1−sin θ
)]
(2 sec θ) d
(
1
dx cos θ
=2⋅ =2⋅ =2⋅ = 2(
B1(d)
=
d cos θ⋅ (1) dx
d −1⋅ (cos θ) dx cos2 θ
−1⋅(− sin θ) cos2 θ
sin θ cos2 θ 1
sin θ
cos θ
cos θ
)(
)
B1(e)
+1
(x) ⋅ cos 2 3x ⋅ cos 2 3x
(x 2 − 3 tan2 4x) d dx
(x 2 )−3
d dx
(tan2 4x) d
(tan 4x)
−3 ⋅ 2 tan 4x ⋅
= 2x = 2x
−3 ⋅ 2 tan 4x ⋅ (4 sec 2 4x) −24 tan 4x sec 2 4x ✓
d
dx
[2 cos(1 − x 2 )]
=2
n = 18e0.2t
d dx
[cos(1 − x 2 )]
= 2[− sin(1 − x 2 )] ⋅
d dx
(1 − x 2 )
= 2[− sin(1 − x 2 )] ⋅ (−2x)
n|t=10 = 18e2 ≈ 133 ✓ © Daniel & Samuel A-math tuition 📞9133 9982
(cos 3x)
d dx
= 2x
dx
= 2 sec θ tan θ ✓ A8(i)
d dx
)
cos θ⋅0
d dx
+
= x ⋅ 2 cos 3x ⋅ (−3 sin 3x) + cos 2 3x = x ⋅ 2 cos 3x ⋅ (−3 sin 3x) + cos 2 3x = cos 2 3x −6x sin 6x ✓
k=2✓ A7(ii)
(1 + cos 4x)
⋅ (−4 sin 4x)
4x)2
4 sin 4x
= (1+cos
]
d dx
= 4x sin(1 − x 2 ) ✓ sleightofmath.com
490
A math 360 sol (unofficial) B2(a)
d
x2
(
dx ln 2x
Rev Ex 17 B3(i)
)
d 2 d (x ) − x 2 ⋅ (ln 2x) dx dx = (ln 2x)2 d ln 2x ⋅ 2x − x 2 ⋅ (ln 2 + ln x) dx = (ln 2x)2 1 ln 2x ⋅ 2x − x2 ⋅ x = (ln 2x)2 ln 2x ⋅
=
2x ln 2x (ln 2x)2
−x
y = sin 3x + cos 3 x dy
dy
dx
2(x2 −1)
6
1
√3 2
2
= 3(0) −3 ( ) ( )
✓
2
3 3
=− ( ) 8
d
d dx
[ln(2x + 1)] +
dx 2
=e
⋅
1
= = = d dx
=
dt
= 0.3,
d
dx −4
dt
= 0.3,
=?
(e2x ) ⋅ ln(5 − 4x) ln(5 − 4x)
=
|
dt x=π
=?
dy
×
dx
dx dt
π
At x = , 6
dy
9
|
dt x=π 6
+ ln(5 − 4x)] ✓
dy
6
1
d
dx 1 1 + ( e2x ) ⋅ 2 1
5−4x 4
|
dt x=π
⋅ ln(2x + 1) dx
[ln(5 − 4x)] +
dy
6
dt
4x−5
=
dx
dy
= e2x [
=
B3(ii)
[e ln(5 − 4x)]
1 x 2
=
⋅ ln(2x + 1)
1 x 2
1
d
(x 2 − 1)
+2x
2x+1
= e2x ⋅
dx
d dx
+2x ln(2x + 1) ✓
2x+1
B2(e)
π
6
=− ✓
= (x 2 − 1) ⋅
B2(d)
π
2
6
[(x 2 − 1) ln(2x + 1)]
B2(c)
π
= 3 cos −3 sin cos 2
|
dx x=π
(cos x)
2 4 9
= (x 2 − 1) ⋅
=
d dx
+3 cos 2 x ⋅ (− sin x) −3 sin x cos 2 x
= 3 cos 3x = 3 cos 3x
B2(b) d
+3 cos 2 x ⋅
= 3 cos 3x
dx
= (− ) ⋅ (0.3) 8
≈ −0.338 ✓
2
[ln(x + √x 2 + 1)] 1 x+√x2 +1 1 x+√x2 +1 1 x+√x2 +1 1 x+√x2 +1 1 x+√x2 +1 1 √x2 +1
⋅
d
(x +√x 2 + 1)
dx
⋅ [1
+
⋅ (1
+
⋅ (1
+
⋅(
1 2√x2 +1 1 2√x2 +1 x √x2 +1
√x2 +1 √x2 +1
⋅
d dx
(x 2 + 1)]
⋅ 2x)
)
+x
)
✓
[x 3 ln(cos 2 x)] d dx
[2x 3 ln(cos x)]
= 2x 3 ⋅ = 2x 3 ⋅ = 2x 3 ⋅
d
[ln(cos x )]
dx 1
cos x 1
⋅
(cos x)
(− sin x)
cos x 3 sin x
= −2x (
d dx
cos x
)
= −2x 3 tan x
© Daniel & Samuel A-math tuition 📞9133 9982
+
d dx
(2x 3 ) ⋅ ln(cos x)
+2(3x 2 ) ⋅ ln(cos x) +6x 2 ⋅ ln(cos x) +6x 2 ln(cos x) +6x 2 ln(cos x)✓
sleightofmath.com
491
A math 360 sol (unofficial) B4
Rev Ex 17
y = sin x cos 3 x
Sign Test x
dy dx
= sin x ⋅
d dx
(cos 3 x) d
2
= sin x ⋅ 3 cos x ⋅
dx
+
d dx
dy
(sin x) ⋅ cos 3 x
(cos x) + cos x
= sin x ⋅ 3 cos 2 x ⋅ (− sin x)
+ cos 4 x
= −3(1 − cos 2 x) cos 2 x
+ cos 4 x
= −3 cos 2 x + 3 cos 4 x
+ cos 4 x
2
2
0
−
sign −
π+
⇒ (0,0) is not max or min
⋅ cos x x dy
⇒( , 6
dy
dx 5π
=0
⇒(
4 cos 4 x − 3 cos 2 x =0 2 (4 2 cos x cos x − 3) = 0
π
π+
6
6
6
0
−
16
5π
5π+
) is max 5π−
x dy
π−
sign +
dx π 3√3
= 4 cos 4 x −3 cos 2 x At turning point, dx
π
2
3
+ cos 4 x
= −3 sin2 x cos 2 x
dx
π−
6
6
6
sign +
0
−
6
,−
3√3 16
) is min
√3
cos x = 0 or cos x = ± 2 π 0 < x < π: α= 𝑦 6 ⇒ 1st, 2nd, 3rd, 4th quadrant 1 𝑥 0 < x < π: 90° 180° 270° 360° x = α, π − α, π + α, 2π − α −1 π 5π π x= , 6 6 x= 2 π π y|x=π = sin cos 3 2
2
2
(0)3
= (1) =0 π
⇒ ( , 0) 2
π 3
π
y|x=π = sin (cos ) 6
6
6
1 √3 2 2 1 3√3
3
= ( ) = ( =
2 3
16 π 3√3
⇒( , 6
16
8
)
√3
)✓
y|x=5π = sin
5π
6
6
1
= (− 2
=− ⇒(
5π 6
,−
3
16 3√3 16
(cos
√3 ) 2
5π 3 6
)
3
√3
)✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
492
A math 360 sol (unofficial)
Rev Ex 17
B5(a) y = 2e4x + 8e−4x 1st derivative dy
4x )
dx
B5(b) y = x ln x − 2x dy
= 2(−4e
+ 8(−4e
= 8e4x
−32e−4x
dx
−4x )
=0
dx 4x
−4x
8e − 32e e4x − 4e−4x e4x e8x 8x
= ln 22 8 2
= ln 2 8 1
B6
= ln 2 4
1 4
−4( ln 2)
+ 8e
= 2e
−2
=1 = ln x − 1
+ ln x
−2
=0
Curve y = (2x + c) ln x dy
4
ln 2
dx
− ln 2
+ 8e
= 2(2)
+8eln2
=4
+8 ( )
= (2x + c) ⋅ = (2x + c) ⋅
1
=2+
1
c
d dx 1
(ln x) +
x
⇒ ( ln 2 , 8) ✓
1
=−
|
dx x=1
2nd derivative
dx2
= 8(4e4x ) − 32(−4e−4x )
Line 2y = 5 − 3x
= 32e4x
y
|
+128e−4x 1 4
4( ln 2)
1 x= ln 2 4
⋅ ln x
+2 ln x
x
mnorm = − dy
4
d2 y
(2x + c) ⋅ ln x
Normal gradient at A(1,0)
1
dx2
+2
d dx
2
=8
d2 y
(x) ⋅ ln x −2
ln x − 1 = 0 ln x =1 x =e y|x=e = (e) ln(e) −2(e) = e −2e = −e ⇒ (e, −e) ✓
8 1
1 4
d dx
+(1) ⋅ ln x
dx
1
4( ln 2)
+
=x⋅( )
dy
= ln 4
y|x=1 ln 2 = 2e
(ln x)
At stationary point,
=0 =0 = 4e−4x =4 = ln 4
x
d dx 1 x
At turning point, dy
=x⋅
= 32e
+128 e
3
=− x+ 2
mline = −
1 4
−4( ln 2)
1 c 2+ +2 ln 1 1
2
−
+128 ( )
>0 1
⇒ min at ( ln 2 , 8) 4
B7(i)
1 2+c
1 2+c
2
2
= 32(2)
=−
3
1
+128eln2
1 2+c+0
5
Normal at A(1,0) ∥ line: mnorm = mline
1
= 32eln 2
=−
=−
3 2
2
2+c
=
c
=− ✓
3 4 3
t
m = 24e−8 7
m|t=7 = 24e−8 ≈ 10.0g ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
493
A math 360 sol (unofficial) 1
B7(ii) m
= m|t=0 t
2 1
24e−8 = (24)
Rev Ex 17 B8(ii) x|t=0 = 26 − 30e0 = −4 ✓
2
B8(iii) sub x = 25, 26 − 30e−0.2t = 25
= 12 −
t
= ln
8
t
1 2
= −8 ln
1 2
≈ 5.55h ✓ B7(iii)
dm
1
t − 8
=
−0.2t
= ln
t
= −5 ln
= 24 (− e )
dt
8
t − 8
= −3e |
dt t=8
B8(iv)
dx
1 30
= 6e−0.2t
3
dx
e
|
dt t=5
= 6e−1 ≈ 2.21° per minute ✓
x = 26 − 30e−0.2t
t →∞ −0.2t e →0 x → 26 ✓
x|t=9 = 26 − 30e−1.8 ≈ 21.0 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
1 30
= −30(−0.2e−0.2t )
= −3e−1 = − g h−1 ✓
B8(i)
30
≈ 17.0 ✓ dt
dm
1
e−0.2t
sleightofmath.com
494
A math 360 sol (unofficial)
Ex 18.1 4(a)
Ex 18.1
∫(6x + 3) dx x2
= 6 ( ) +3(x) +c 1(i)
d dx
1(ii)
2
(x 2 + 5x) = 2x + 5 ✓
∫(2x + 5) dx= x 2 + 5 + c ✓
= 3x 2 4(b)
+3x +c ✓
∫(3 − √x) dx 1
2(i)
d
(
x
dx 1+2x
)=
= ∫ (3 −x 2 ) dx
d d (1+2x)⋅ x −x⋅ (1+2x) dx dx (1+2x)2
(1+2x)⋅1
=
3
x2
= 3x − ( 3 ) +c
−x⋅2
2
2
(1+2x)2 1+2x −2x (1+2x)2
=
1
= 3x − x√x +c ✓ 3 4(c)
= (1+2x)2 [shown] ✓ 2(ii)
2
x3
1
= 2(
1+2x 2x
= 3(a)
= ∫(3x 2 + 6x) dx 3
4(d)
x4
3(b) 3(c)
∫(x − 1)(x + 2) dx
=
= 2 ( ) +c =
+c ✓
4(e)
∫(−5) dx = −5x + c ✓
x3 3
1
2
=
= x +c ✓ 3(d)
1
∫ (− x2 ) dx= − ∫ x −2 dx = −( =
3(e)
1
1
1 x−2 2
=− 3(f)
∫
2 √x
−1
−2 1
dx = 2 ∫ x
+2x√x +c ✓
2
2
∫(2x − √x) dx
3
= ∫ (4x 2 − 4x 2 + x) dx 5
x3
x2
x2
= 4 ( ) −4 ( 5 ) + ( ) +c 3
) +c
4
= x3 3
+c ✓ 5(a) dx
∫
2x2 +3 x2
8
x2
5
2
− x 2 √x +
+c ✓
dx = ∫(2 + 3x −2 ) dx
= 2x
= 2 ( ) +c
2
2
= 2x
1 x2 1 2
= 4√x
2
x2
= ∫(4x 2 − 4x√x + x) dx
) +c
dx
4x2 1 − 2
4(f)
+c ✓
x
∫ 2x3 dx = 2 ∫ x = (
x−1
1
−3
x2
= ( ) +3 ( 3 ) +c
3 2
3
3
x2
+c
2
−2x +c ✓
2
∫ √x(√x + 3) dx
3 3 2
x2
= ∫ (x + 3x 2 ) dx
∫ √x dx = ∫ x dx =
+
= ∫(x + 3√x) dx
1 2
x2
+3x 2 +c ✓
= ∫(x 2 + x − 2) dx
∫ 2x 3 dx = 2 ∫ x 3 dx 4 1 4 x 2
2
= x3
) +c
+c ✓
1+2x
x2
= 3 ( ) +6 ( ) +c
∫ (1+2x)2 dx = 2 ∫ (1+2x)2 dx x
∫ 3x(x + 2) dx
+3 ( −
3 x
x−1 −1
) +c +c ✓
+c ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
495
A math 360 sol (unofficial) 5(b)
∫
x2 +1 2x2
dx = ∫ (
1
Ex 18.1
1
2 1 x−1
2 1
2 −1 1
2
2x
= x + ( = x − 5(c)
∫
x+1 √x
8(a)
1
+ x −2 ) dx
2
+c ✓
x2
y = 2 ( ) +3 ( 2
= x2
1
2 3
3
1
x2
x2
2 3 2
2
= =
6(b)
(3x+1)5 (3)(5) (3x+1)5 15
+c
x
x
+c ✓
8(b)
dy
⇒
(1−x)4
4
) +c
3
∫(1 − x)3 dx = (−1)(4) +c =−
−1
∴ y = x2 − + 1 ✓
+c
dx
(1−x)4
−
3
x−1
Curve at (−1,5): 5 = (−1)2 + 3 + c c=1
+c ✓
+2√x
∫(3x + 1)4 dx
3 x2
= 2x + 3x −2
) +c
dx = ∫ (√x + x −2 ) dx
= x
= 2x +
dx
= ( 3 ) + ( 1 ) +c
6(a)
dy
∝ (x 2 − 1) dy dx
= k(x 2 − 1) = kx 2 − k
+c ✓ x3
6(c)
∫(2x + 5)−3 dx =
(2x+5)−2
2
=− dy dx
3
+c
(2)(−2) 1 (2x+5)−2
= [
7
y = k ( ) −kx +c
−2 1
4(2x+5)2
1
= kx 3 3
] +c dy
+c ✓
dx dy
x3 3
=x
|
=9
k(2) − k = 9 3k =9 k =3 c|k=3 = 1
x2
y = 3( ) − ( ) + c 3
= 9 when x = 2,
dx x=2 2
= 3x 2 − x
2 1 2 − x 2
−kx +c
+c
y = 3 when x = 2, y|x=2 =3
Curve at (2,4), 1
(4) = (2)3 − (2)2 + c
1
2
3 2
4 =8−2+c c = −2
3
k(2)3 − k(2) + c = 3 k+c
=3 2
c
=3− k 3
1
∴ y = x2 − x2 − 2 ✓ 2
1
∴ y = (3)x 3 −3x +1 3
= x 3 − 3x + 1 y|x=3 = (3)3 − 3(3) + 1 = 19 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
496
A math 360 sol (unofficial) 9
dV dt
Ex 18.1 12(i)
= 6(2t − 1)2 + 1
V = 6 [ (2)(3) ] + t + c
=x⋅
= (2t − 1)3 + t + c V|t=1 (2 − 1)3 + 1 + c 1+1+c c
=4 =4 =4 =2
=
(given)
= = =
3
∴ V = (2t − 1) + t + 2 ✓ dx dt
(x√x + 1)
=x⋅
(2t−1)3
10(a)
d dx
d dx
d
√x + 1 + dx (x) ⋅ √x + 1 1
2√x+1
⋅1
+1
x
⋅ √x + 1
+√x + 1
2√x+1 x
+2(x+1) 2√x+1
x
+2x+2 2√x+1
3x+2
[shown] ✓
2√x+2
12(ii) ∫ 3x+2 dx = 2 ∫ 3x+2 dx 2√x+1
= 3t 2 + 2
√x+1
= 2x√x + 1 + c ✓ t3
x = 3 ( ) + 2t + c
13(a) ∫ √6x − 1 dx
3
=t
3
+ 2t + c
1 2
= ∫(6x − 1) dx Initial radius is 1: x|t=0 =1 03 + 0 + c = 1 c =1
3
= =
x = t 3 + 2t + 1 ✓ 10(b)
dA dt
2
− t2
d
√6x + 5 1
+c ✓
=− = 11 = 11 = 11 = −3
(2x−7)−1 (2)(−1) (2x−7)−1 −2
+c +c
= −(2x − 7)−1 +c
13(c) ∫
1 2x−7
1 √3−2x
+c ✓ 1
dx = ∫(3 − 2x)−2 dx 1
=
(3−2x)2 1 2
(−2)( )
+c
= −√3 − 2x +c ✓
A = 2t 3 − t 2 + t − 3 ✓ dx
9
=2⋅
+t +c
Area is 11 when t = 2: A|t=2 2(2)3 − (2)2 + (2) + c 16 − 4 + 2 + c c
11(i)
(6x−1)√6x−1
=2⋅
t2
3
+c
= 2 ∫(2x − 7)−2 dx
A= 6( ) − 2( ) + t + c = 2t 3
3 2
(6)( )
13(b) ∫ 2 dx (2x−7)2
= 6t 2 − 2t + 1 t3
(6x−1)2
d (6x + 5) 2√6x + 5 dx 1 = ⋅6 =
=
⋅
2√6x+5 3 √6x+5
✓
11(ii) ∫ 1 dx = 1 ∫ 3 dx 3 √6x+5 √6x+5 1
= √6x + 5 + c ✓ 3 © Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
497
A math 360 sol (unofficial) 14
dy
Ex 18.1 15
= x 2 (x − k)
dx
dx
= x 3 − kx 2 x4
dy
⇒
∝ x(2x 2 − 3) dy dx
= kx(2x 2 − 3) = 2kx 3 − 3kx
x3
y = ( ) − k( ) +c =
4 1 4 x 4
−
3 k 3 x 3
1
= kx k
4
3 8
x2
4
2 3k 2 x 2
4
2
(2, −2) lies on curve, 1
x4
y = 2k ( ) − 3k ( ) + c
+c
−
(−2) = (2)4 − (2)3 + c
(1,3) lies on curve,
−2
=4
3 = k(1)4 −
c
= k−6
− k 3
+c
8
−(1)
3
1
3k
2 1
2
(1)2 +c
3
3= k
− k
2
+c
+c
2
c =k+3
−(1)
(4,2) lies on curve, 1
k
4
3 64
(2) = (4)4 − (4)3 +c
(2,9) lies on curve,
2
= 64
−
9 = k(2)4 −
0
= 62
−
3 64 3
k
+c
k
+c
0
= 62
−
0
= 56
−
56 3
k
3 56 3
k
3k
2
2
(2)2 + c
9 = 8k − 6k + c 9 = 2k + c
−(2)
sub (1) into (2): 64
1
−(2)
sub (1) into (2): 9 = 2k + (k + 3) 6 = 3k k =2
8
+ ( k − 6) 3
k
k= 56 c|k=2 = (2) + 3 = 5
=3
1
8
3
∴ y = (2)x 4 − (2)x 2 + 5
c|k=3 = (3) − 6 = 2
2
3
2
4
2
= x − 3x + 5✓ ∴y=
1 4 x 4
3
−x +2✓
16
dy dx
= x(2 − 3x)
= 2x − 3x 2 x2
x3
y = 2( ) − 3( ) + c 2
= x2
3
− x3
+c
Curve at (1,2), (2) = (1)2 − (1)3 + c c=2 ∴ y = x2 − x3 + 2 Curve at (−2, p), p = (−2)2 − (−2)3 + 2 = 14 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
498
A math 360 sol (unofficial) 17
d2 y dx2 dy dx
Ex 18.1 18(ii) With c1 = 1 & c2 = 5,
= 6x − 16
d2 y
x2
= 6 ( ) − 16x + a
dx2 dy
= 3x − 16x + a
dx
2 2
= 6x − 4
= 3x 2 − 4x + 1
y = x 3 − 2x 2 + x + 6 x3
x2
3
2
y = 3 ( ) − 16 ( ) + ax + b
At max value,
= x 3 − 8x 2 + ax + b
dy
=0
dx
3x 2 − 4x + 1 = 0 (3x − 1)(x − 1) = 0
(0,3) lies on curve, 3 = 03 − 8(0)2 + a(0) + b 3=b
x=
1 3
or x = 1(min)
y|x=1 = 5
(−1,0) lies on curve, 0 = (−1)3 − 8(−1)2 − a + 3 0 = −1 − 8 − a + 3 a = −6
3
d2 y
|
dx2 x=1
4 27
✓
= −2 < 0
3
1
⇒ max at x =
3
∴ y = x 3 − 8x 2 − 6x + 3 ✓ 19(i) 18(i)
d2 y dx2 dy dx
d
(
d
2x
dx √x+1
= 6x − 4
)= =
x2
= 6 ( ) − 4x + c1 2 2
=
= 3x − 4x + c1 x3
x2
3
2
=
y = 3 ( ) − 4 ( ) + c1 x + c2 =
= x 3 − 2x 2 + c1 x + c2
dy
|
dx x=1 2
√x+1⋅(2)
−2x⋅
1 2√x+1
x+1 2√x+1
−
x √x+1
x+1 2(x+1) −x (x+1)√x+1 2x+2
−x
3 (x+1)2
x+2
=
At min (1,5),
d
√x+1⋅dx2x −2x⋅dx√x+1 x+1
3
[shown] ✓
(x+1)2
=0
3(1) − 4(1) + c1 = 0 c1 =1 (1,5) lies on curve, (5) = (1)3 − 2(1)2 + c1 (1) + c2 5 = −1 + c1 + c2 5 = −1 + (1) + c2 ∵ c1 = 1 c2 = 5
19(ii) ∫
x+2 3 4(x+1)2
1
x+2
1
(x+1)2 2x
dx = ∫ 4
3
= ( =
dx
) +c
4 √x+1 x 2√x+1
+c ✓
20(a) ∫ x2 +2x dx x2 +2x+1 =∫
∴ y = x 3 − 2x 2 + x + 5 ✓
(x2 +2x+1) −1 x2 +2x+1
= ∫ (1 −
dx
1
) dx
x2 +2x+1 1
= ∫ (1 − (x+1)2 ) dx = ∫[1 − (x + 1)−2 ] dx (x+1)−1
= x − (1)(−1) +c = x+
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
1 x+1
+c ✓
499
A math 360 sol (unofficial)
Ex 18.1
20(b) ∫ 3x2 −4x dx 9x2 −12x+4 =∫
22
1 (9x2 −12x+4) 3 9x2 −12x+4
1
= ∫[
1
= ∫[
dx
dx
y=
] dx (3x−2)2
4
3
3
=
= ∫ [ − (3x − 2)−2 ] dx = =
1
4
(3x−1)−1
3
(3)(−1)
− ⋅
3 1
+
3
4
dy
+c
4 x3 4 3
) +c
2 3
3
3
4
4 3
= a2 (2x
9
2
3
−
3 4 x4 12
+ c1 x + c2
= −1 + c1 = −1 =−
1
1
2 5
12
4 = − 4 = 4 = c2 =
4 3
+ x ) +c ✓ 4
− ( ) + c1 x + c2
5 3
(1,4) lies on curve,
= 3a2 ( x 2 + x ) +c 3 2
+ c1
1 x4
2 x2
c1
1
+
+ c1
3 1 3 x 3
|
1−
= 3a2 ∫ (x 2 + x 3 ) dx = 3a2 (
x2
dx x=1 13
20(c) ∫ 3a2 (√x + 3√x) dx 1
x3
tangent at (1,4) is y = 5 − x,
+c ✓
9(3x−1)
3 x2 3 2
=x−
] dx
4 3
1
= 1 − x2
=x−
9x2 −12x+4
−
3
dx2 dy
4 3
4 3
−
3
−
d2 y
∴y=
12 5 12 21
+ c1 (1) + c2
+ c1 + c2 5
+ (− ) + c2 3
∵ c1 = −
5 3
4 x2 2
−
x4 12
5
21
3
4
− +
✓
21(i) 5
d 1
− (2t + 1)2 ]
dt 5
3
3 2
1 5
= ⋅ (2t + 1) ⋅ 5 2
d dt
3 2
d dt
(2t + 1)
1
1 3
= ⋅ (2t + 1)2 ⋅ 2
− ⋅ (2t + 1)2 ⋅ 2
5 2
= (2t + 1)
1
1 3
(2t + 1) − ⋅ (2t + 1)2 ⋅
3
1 5
3
1
[ (2t + 1)2
3 2
3 2
1
−(2t + 1)2
= (2t + 1)√2t + 1
−√2t + 1
= √2t + 1[(2t + 1)
−1]
= 2t√2t + 1 ✓ 21(ii) ∫ t(√2t + 1) dt 1 = ∫ 2t√2t + 1 dt 2 5
1 1
= [ (2t + 1)2 =
2 5 1 10
(2t + 1)
5 2
1
3
3 1
3
− (2t + 1)2 ] +c − (2t + 1)2 6
© Daniel & Samuel A-math tuition 📞9133 9982
+c ✓
sleightofmath.com
500
A math 360 sol (unofficial) 23(i)
dy dx
Ex 18.1 24(i)
= kx + c
d2 y dx2
x2
dy
2
dx
y = k ( ) + cx + a
x2
= λ ( ) − 18x + a
k
= x 2 + cx + a At stationary pt (2, −3): |
2k + c c
18x + a
λ x3
x2
y = ( ) − 18 ( ) + ax + b 2 3 λ = x3 − 6
=0
dx x=2
2 λ 2 x − 2
=
2
dy
= λx − 18
=0 = −2k
−(1)
2
2
9x + ax + b
Origin (0,0) lies on curve, λ
0 = (0)3 − 9(0)2 + a(0) + b
(2, −3) lies on curve,
6
0=b
k
(−3) = (2)2 + c(2) + a 2
−3 −3 −3
= 2k + 2c + a = 2k 2(−2k) + a = −2k + a
(1,16) lies on curve, λ
16 = − 9 + a + b
−(2)
6 λ
16 = − 9 + a
∴b=0
6 λ
(0,1) lies on curve,
25 = + a
k
(1) = (0)2 + c(0) + a
−(1)
6
2
a
=1
Gradient at (1,16) is 9, dy
Put a = 1 into (2): −3 = −4k + 1 2k =4 k =2
|
=9
− 18 + a
=9
dx x=1 λ 2
a
= 27 −
λ 2
−(2)
sub (2) into (1): λ
Put k = 2 into (1): c = −2(2) = −4
λ
25 = + (27 − ) 6
2
1
25 = 27 − λ 3
∴y =
2 2 x 2 2
1
+ (−4)x + 1
3
λ
= x − 4x + 1 ✓
dx
6
a = 27 − = 24
= 2x − 4
Tangent Point: Gradient: Tangent:
= 6✓
24(ii) Put λ = 6 into (2):
23(ii) With k = 2, c = −4: dy
λ =2
2
∴ y == x 3 − 9x 2 + 24x ✓ (0,1) dy
|
= −4
y − y1
=
dx x=0
dy
|
dx x=0
(x − x1 )
y − (1)= −4(x − 0) y = −4x + 1 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
501
A math 360 sol (unofficial)
Ex 18.1
24(iii) At a = 24, b = 0, λ = 6, y = x 3 − 9x 2 + 24x dy
26 (a) For f(x) = 1 g(x) = 2
= 3x 2 − 18x + 24
dx d2 y dx2
∫ f(x)g(x) dx = ∫(1)(2) dx = 2x + c
= 6x − 18
At turning pts, dy
[∫ f(x) dx][∫ g(x) dx] = [∫(1) dx][∫(2) dx] = x(2x) + c = 2x 2 + c ∴ ∫ f(x)g(x) dx ≠ [∫ f(x) dx][∫ g(x) dx]
=0
dx
3x 2 − 18x + 24 = 0 x 2 − 6x + 8 =0 (x − 2)(x − 4) = 0 x=2 or x = 4 y|x=2 = 20 y|x=4 = 16 ⇒ (2,20) ✓ ⇒ (4,16) ✓
26 (b) ∫ f(x) dx = ∫ 1 dx g(x) 2 1
= x+c 2
f(x) dx
d2 y dx2 d2 y
| |
x=2
dx2 x=4
= −6 < 0
⇒ max at (2,20)
=6>0
⇒ min at (4,16)
∫ g(x) dx [wrong notation ?] ∫ f(x)dx ∫ g(x)dx
=
Both are correct The arbitrary constant can factor in the difference in constant values. ∫(x + 1) dx ∫(x + 1) dx
= = = =
x2 2
2 2
x+a 2x+b 2
f(x) g(x)
dx ≠ ∫
f(x) dx g(x) dx
+ c1
x2 +2x+1 x2
2 dx
1
∴∫
(1)(2)
1 dx
= +d
+x+c
(x+1)2
=∫
+ c1 1
+ x + + c1 2
1 ⇒ c = + c1 2
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
502
A math 360 sol (unofficial)
Ex 18.2 1(e)
Ex 18.2 1(a)
5
9 1
∫4
√x
9
1
5
∫2 3x dx = 3 ∫3 x dx
x2
=[1] 2
5
x2
1
9
dx = ∫4 x −2 dx
4
= 3[ ]
1 9
2 3
= 2 [x 2 ]
3
= [x 2 ]53
4
2
=
9
= 2[√x]4
3 2 (5 − 32 ) 2
= 24 ✓ 1(b)
9 1 ∫1 x 2 dx
9
3
= 2[√9
− √4]
= 2(3
− 2)
=2✓
x2
=[3] 2
1
1(f)
3 9
2
4 3
4
∫1 x√x dx = ∫1 x 2 dx
= [x 2 ] 3
x2
=[5]
2 9 = [x√x]1 3 2 = (9√9 − 1√1) 3 2 = [9(3) − 1] 3
2
2 5 2
=
5
2
8
2(a)
1 x3
= [2] 3
4
2(b)
0
∫−1(3x 2 − 2x + 5) dx 0
x3
+5) dx
x2
= [3 ( )−2 ( ) +5x]0−1
3
]
3
3
2
+5x]0−1
= [x
1 1 3
= [(0)3 −(0)2 +5(0)] −[(−1)3 − (−1)2 + 5(−1)]
1 1
=− (
3 3
−x
2
1
3 x 2
1
−(4 + 4)
= ∫−1(3x 2 −2x
3
− [x −1 ]32 3
18
− 4x]1−1
= −8 ✓
=− [ ]
=
−1
= (4 − 4)
3 −1 2
=
2
= [4(1)2 − 4(1)] −[4(−1)2 − 4(−1)]
dx = ∫2 x −2 dx 3x2 3 = [
1
= [4x 2
2
− 13 )
2 3 = [(23 )3 − 1] 4 3 = (22 − 1) 4 1 =2 ✓
1 x−1
x2
= [8 ( ) − 4x]
4
1
1
∫−1(8x − 4) dx
1
2
3
3 1
5 2
= (83
∫2
62
= 12 ✓
3 2 8 = [x 3 ] 4 1
1(d)
− 1)
5
3
2
5
− 12 ]
= (25
1
8 1 −1 ∫1 2 x 3 dx
1 5 2
= [4
= 17 ✓ 1(c)
4
5
1
=7✓
1
− ) 2
✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
503
A math 360 sol (unofficial) 2(c)
Ex 18.2
4
4(a)
∫1 (6x − 3√x) dx 1
4
= ∫1 (6x
− 3x 2 ) dx 4
3
x2
x2 2
3 2
= ∫ (1 + x −2 ) dx
1
1
4
= [3x 2
− 2x ]
= [3x 2
− 2x√x]1
1 4
= [x
− ]
= 32
=3
2
4(b)
2
x4
2
2
0
1
2
4
0
= [ x4 − x2 ]
= [( 1
4
4
2
3
−
2
(2)2 2
t2
2
2 2
1
− t2]
1
−
(2)2 ]
1
− [− (1) − (1)2 ] +2
2 1 2
4(c)
= ∫1 (x 2 − x − 2) dx −
− 2t) dt
= −2 ✓
2
3
− 2t) dt
− 2 ( )]
1
= −4
∫1 (x + 1)(x − 2) dx
=[
−1
)
t 1 [− (2) 1
=
=0✓
(2)3
t−1
= [−
−0
x2
dt
1
1
=0
=[
1
− (1)]
−0
4 3
t2 2 1 ∫1 (t2 2 ∫ (t −2
=
= [ (2)4 − (2)2 ] − [ (0)4 − (0)2 ]
x3
x 1 1 ] − [(1) (4)
3
2 1−2t3
∫1 =
x2
− 2 ( )]
4
−1 1 1 4
4
∫0 x(x 2 − 2) dx
=[
4
]
=3 ✓
= ∫0 (x 3 − 2x) dx
3(b)
+
= [(4) −
−1
x−1
= [x
= [3(1)2 − 2(4)√4] −[3(1)2 − 2(1)√1]
= 31 ✓ 3(a)
x +1 dx x2 1 4 1 = ∫ (1 + 2 ) dx x 1 4
= [6 ( ) − 3 ( 3 )] 2
4 2
∫
− 2x]
√x 1
4
− 2(2)] − [
3
2x − 1
(1)3 3
− (−
−
(1)2 2
− 2(1)]
1
3
1
x2
x2
= [2 ( 3 )
13 6
dx
= ∫1 (2x 2 − x −2 )
1
1
∫ 1
2
= (−3 )
4
)
2
4
1
= −1 ✓
=[ x 3
6
3 2
4
= [ x√x 3 4
dx 4
− ( 1 )] 2 1 2
1 4
− 2x ]
1
− 2√x]
4
1
= [ (4)√(4) − 2√(4)] 3
=
20 3
4
− [ (1)√(1) − 2√(1)] 3
+
2 3
1
=7 ✓ 3
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
504
A math 360 sol (unofficial) 4(d)
9
∫ 1
1 3−2x2
x2
x−1 −1
= [−
3
−1.5 )
dx
1 − x 2 1 − 2
9
− 2x
−
3
= [− (9) +
)] 1
4 9
4 √(9)
− [− (1) +
4 √(1)
6(a)
]
2 −1 1 1 −1 2 x ] 2 1 1 2
− 2x −
]
2x 1 1
1
2(2)
2(1)
] − [2(1)4 − 2(1) −
3
+
4 1
]
1 2
0
∫−1 x(x − a)(x + a) dx 0
= ∫ x(x 2 − a2 ) dx = ∫ (x 3
−2⋅
3 2
1 2
=[ =[
]
1 2
1
x4
x4 (0)4
1 4
=0
1
a2
4
− 4x ]
2 3
2
+
3
=
2
− [ (1)√(1) − 4√(1)] 3 10
6(b)
3
2
0
2
−1
0 a2 x2
−
4
=[
x2
− a2 ( )]
4
4
= [ (4)√(4) − 4√(4)]
− a2 x) dx
−1
= [ x√x − 4√x] 3
−
2
a2 (0)2 2
]
−1
] −[
(−1)4 4
1
a2
4
2
− +
−
a2 (−1)2 2
]
1
− ✓
2
4
4
∫0 √x(a − √x) dx
= ✓
4
3
5(b)
4
)]
0
2
= −2
1 x−1
4
3
]
2
x4
−1
3 2
3
) dx
= 28 ✓
]
4 2 ∫1 (√x − ) dx √x 4 1 1 = ∫ (x 2 − 2x −2 ) dx 1 3 1 4 x2 x2
2
2x2 1 −2 2
= [2x 4
√x 1
−1
=[ x
+ x
− 2x −
=0✓
=[
−2
= [2x 4
= 27
1
=1
5(a)
) dx
+
= [2(2)4 − 2(2) −
1 9
+ 4x 2 ] +
x
2 ∫1 (8x 3
1
−2
= [8 ( ) − 2x + (
) − 2(
[−3x −1
2
∫1 (8x 3 =
dx
9 ∫1 (3x −2
= [3 ( =
5(c)
3 − 2√x dx x2
=∫ =
Ex 18.2
= ∫ (a√x − x) dx
2
0
4
∫1 (x 2 − x2 ) dx = ∫ (x 2
− 4x −2 ) dx
3
1
x3 =[ 3 x3 =[ 3
x2
= [a ( 3 ) −
2
−4(
x −1 )] −1 1
2
2
2
3
+ 4x −1 ] 1
2
1
− [ (1)3 + (1)]
=4
−4
3
3 1
=
3
1
=
= ✓ 3
© Daniel & Samuel A-math tuition 📞9133 9982
x2 2
4
]
x2
0 4
]
2 0 x2
4
]
2 0
2
(4)2
3
2
= [ a(4)√(4) −
4
= [ (2)3 + (2)] 3 2
−
= [ ax√x − 3
1 4 = [ x3 + ] 3 x1 4
3
= [ ax 2
2
1
1
4
= ∫0 (ax 2 − x) dx
2
sleightofmath.com
16 3 16 3
a−8
2
(0)2
3
2
] − [ a(0)√(0) −
]
−0
a−8✓
505
A math 360 sol (unofficial) 6(c)
2 2t2 +a
∫1
Ex 18.2 8
dt
t2 2
= ∫ (2 + at −2 ) dt
= [2t −
t−1
2
)]
=
−1 1 −1 ]2 at 1 a2 a
a
= [2(2) − (2)] − [2(1) − (1)] =4− a
=[
2
x2
a
2
1
=
− 3x
2)
1 12 1 12
x2
x3
1
2
3
2
[2x 2 ]1a
= [3x 2 −2(1)
2
= [3(1) −
2a2 −2
=2
2a2 −2
= −2
2a
9(i)
− x 3 ]12 2
(1)3 ]
(2x − 3)3
(2(1) − 3)3 +
a
=0
a
=0✓
dy 2
−[3(2) −
(2)3 ]
dx
+2
6
=x⋅
d dx
=x⋅[
−4
= = =
k
5
1 12
7
+
1
]
4(2x−3) 0 7
]
4(2(1)−3)
(2(0) − 3)3 +
7
]
4(2(0)−3)
5 6
y = x√1 + 2x 2
=0
2
−
1 7 (2x−3)−1 [ ]] 2 (2)(−1) 0
=1✓
dx
= [6 ( ) − 3 ( )]
2
7(b)
1 ∫2 (6x
[4 ( )]
2(a)
2
= −1
a ∫1 4x dx
2
7
2
−[
= +2✓ 7(a)
1 1
−2 + a
2
dx
1 (2x−3)3 [ [ (2)(3) ] 2
=[
= [2t − ] t 1 a
2(2x−3)2
= ∫0 [ (2x − 3)2 − (2x − 3)−2 ] dx
1
= [2t + a (
1 (2x−3)4 −7
∫0
√1 + 2x 2 1
2√1+2x2
(4x)]
2x2
+
d dx
+1
(x) ⋅ √1 + 2x 2 ⋅ √1 + 2x 2
+√1 + 2x 2
√1+2x2 2x2
+(1+2x2 ) √1+2x2
1+4x2 √1+2x2
[shown] ✓
∫−2 3(2 + x)2 dx
= 64
k 3 ∫−2(2
= 64
= [x√1 + 2x 2 ]0
= 64
= (2)√1 + 2(2)2 −(0)√1 + 2(0)2
+ x)2 dx
k
3 ∫−2(x 2 + 4x [ [ [
x3
3 (k)3 3
−[ 1 3 1 3
x2
k
2
−2
+ 4 ( ) + 4x]
3 x3
+ 4) dx
+ 2x
2
k
+ 4x]
−2
+ 2(k)2 + 4(k)] (−2)3 3
=
2
=
=
+ 2(−2) + 4(−2)]
k 3 + 2k 2 + 4k +
8
k 3 + 2k 2 + 4k −
56
3 3
k 3 + 6k 2 + 12k − 56 (k − 2)( + + ⬚) 2 (k − 2)(k + + ⬚) 2 (k − 2)(k + + 28) 2 (k − 2)(k + 8k + 28) ⇒ k=2✓ © Daniel & Samuel A-math tuition 📞9133 9982
=
9(ii)
2 1+4x2
∫0
√1+2x2
dx 2
=6
64 3
−0
=6✓
64 3
10(i)
64
Prove: (x − 4)(x 2 + 4x + 16) = x 3 − 64 LHS = x 3 +4x 2 +16x −4x 2 −16x −64 = x 2 − 64 [proven]✓
3 64 3
=0 =0
=0
sleightofmath.com
506
A math 360 sol (unofficial)
Ex 18.2
10(ii) ∫3 x3 −64 dx −1 x−4 =
12(ii) C| = 24 000 [10 + 4 (354 )] x=3 5
3 (x−4)(x2 +4x+16) dx ∫−1 x−4 3
= ∫−1(x 2 + 4x =[ =[ =[
x3
≈ $316 000 ✓
+ 16) dx
5
x2
3
2
−1
+ 4 ( ) + 16x]
3 x3
3
+ 2x 2
3 (3)3 3
12(iii) C| = 24 000 [10 + 4 (554 )] x=5
+ 16x]
≈ $384 000 ✓ 13
dV dt
−1
= 20 000 (t − 6)
= 20 000t − 120 000
2
+ 2(3) + 16(3)] −[
= 75
(−1)3 3
+14
Net change in Value
+ 2(−1)2 + 16(−1)]
4
= ∫0 [20 000t − 120 000] dt
1 3
= 89 ✓ 3
11(i)
2 ∫0 x dx
x2
t2
4
2
0
= [20 000 ( ) − 120 000t]
1
= [160 000 − 480 000 − (0)]
2
=[ ]
= −$320 000
2 0
1
= [x 2 ]20
Total loss = $320 000 ✓
2 1
= (22 −02 )
14(i)
2 1
3
8
Given: ∫0 f(x) dx = ∫3 f(x) dx = 12
= (4) 2
8
11(ii)
2
∫ |x| dx −2 2
2
= ∫−2|x| dx
+ ∫0 |x| dx
0
= [− ] 2
] − [−
(−2)2 2
= [x]83 =8−3 = 29 ✓
] +2
=2 =4✓
+2
C = 8000 (30 +
8
+2(12) +24
14(iii) ∫8 2f(x) dx 3 =
12(i)
+12
8
+2
2 −2
=[
= 12 = 24 ✓
= ∫3 1 dx +2 ∫3 f(x) dx
+ ∫0 x dx
0
−(0)2
8
14(ii) ∫8[1 + 2f(x)] dx 3
2
= ∫−2(−x) dx x2
3
∫0 f(x) dx = ∫0 f(x) dx + ∫3 f(x) dx
=2✓
x 1 3 ∫0 t 4 dt)
8 2 ∫3 f(x) dx
= 2(12) = 25 ✓
x 1
+1 +1 +1
= 24 000 (10 + ∫0 t 4 dt) x
5
t4
= 24 000 [10 + [ 5 ] ] 4
4
0 5 4
x
= 24 000 [10 + [t ] ] 5
0
4 5
= 24 000 [10 + x 4 ] 5
4
C|x=1 = 24 000 [10 + (1)] 5
= $259 200 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
507
A math 360 sol (unofficial)
Ex 18.2
8
∫3 [f(x) − mx] dx 8
8
∫3 f(x) dx −m ∫3 x dx x2
=0
8
−m [ ]
12
=0
2 3 m 2 8 − [x ]3 2 1 2
12
=0
2 1
12
− m(55)
=0
12
−
=0
55 2
2 55 2
m
m
−1
= −2 ∫0 x 2 dx
Given:
= −2m ✓ 16(ii) ∫−1(−x 2 ) dx = − ∫−1 x 2 dx 0 0 (c) = −m ✓
= −12
m 15(i)
0
= 2 ∫−1 x 2 dx
− m[(8) − (3)2 ] = 0
12
−
1 16(ii) ∫1 x 2 dx = ∫0 x 2 dx + ∫0 x 2 dx −1 −1 (b) 0 0 = ∫−1 x 2 dx + ∫−1 x 2 dx (equal area under curve)
=0
= 4 ∫−3 f(x) dx 4 ∫−1 f(x) dx
−1
24 55
17
✓
b
∫a f(x) dx ≥ 0 Not True
=a In theory
=b
b
4
∫ f(x) dx ≡ algebraic area ≠ geometric area
4
a
∫−3 f(x) dx = ∫−3 f(x) dx − ∫−1 f(x) dx =a−b✓
For example
15(ii) ∫−3 2f(x) dx = 2 ∫−3 f(x) dx −1 −1 𝑦
−1
= −2 ∫−3 f(x) dx
𝑦 = 𝑓(𝑥)
= −2(a − b) = 2b − 2a ✓
𝑃 𝑂
16(i)
𝑎
Q
𝑏
𝑥
𝑦 𝑦=𝑥
Algebraic area = P − Q Geometric area = P + Q
2
𝑥 Clearly f(x) can be negative between a and b 16(ii) ∫−1 x 2 dx = ∫0 x 2 dx (equal area under curve) 0 −1 (a) 1 ∫0 x 2 dx
= =
0 ∫−1 x 2 dx −1 − ∫0 x 2 dx
18
∵ symmetry in y − axis
In order to compute b
∫ f(x) dx a
f(x) must be continuous [no gaps] for a ≤ x ≤ b x ≠ 0 [gap]
= −m ✓
1
1 dx cannot be computed 2 −1 x
∴∫
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
508
A math 360 sol (unofficial)
Ex 18.3 2(e)
Ex 18.3 1(a)
1(b)
1(c)
2(a)
π
∫06 (3 cos x − 2) dx π
∫(sin x + 2) dx = (− cos x) + 2x + c = − cos x + 2x + c ✓
= [3(sin x) − 2x]06
∫(1 − 3 cos x) dx = x − 3(sin x) + c = x − 3 sin x + c ✓
= [3 sin ( ) − 2 ( )] −[3 sin(0) − 2(0)]
π
− 2x]06
= [3 sin x π
π
6
6
1
π
= [3 ( )
− ]
2
3
π
2
3
∫(5 sec x + 3) dx = 5 tan x + 3x + c ✓
1
3(a)
∫ cos 2x dx = 2 sin 2x +c ✓
3(b)
∫ sin 3x dx = − 3 cos 3x +c ✓
3(c)
∫ 2 cos 4x dx = 2 ∫ cos 4x dx
π
π 6
∫0 cos x dx = [sin x]06 π 6
1
=
−0
2 1
1
1
= 2 ( sin 4x) +c
= ✓
4
2
π 4
1
= sin 4x +c ✓ 2
π 4
2
∫0 sec x dx = [tan x]0
3(d)
π
= tan ( ) − tan(0)
1
1
∫ −3 sin 2 x dx = −3 ∫ sin 2 x dx
4
=1 = 1✓
1
1
= −3 (− 1 cos x) +c
−0
2
2
1
= 6 cos x 2
2(c)
− 0)
= − ✓
2
= sin ( ) − sin(0)
2(b)
−(0
3
+c ✓
π
π
∫02 sin x dx = [− cos x]02
3(e)
∫ 4 sec 2 5x dx = 4 ∫ sec 2 5x dx 1
π
= 4 ( tan 5x) +c
= −[cos x]02
5
4
= tan 5x +c ✓ 5
π
= −[cos ( ) − cos(0)] 2
= −(0
−1)
4(a)
=1✓
x
∫ 2 cos (2 + 1) dx x
= 2 ∫ cos ( + 1) dx 2
2(d)
π
1
∫02 (1 − 2 sin x) dx = [x − = [x + π
π 2(− cos x)]02 π 2 cos x]02 π
=( =
π 2
2
x
−(0
+c ✓
= 4 sin ( + 1) 2
4(b)
2
+ 0)
2
2
= [( ) + 2 cos ( )] −[(0) + 2 cos(0)] 2 π
x
= 2 [ 1 sin ( + 1)] +c
+ 2)
∫ 3 sin(2 − x) dx = 3 ∫ sin(2 − x) dx = 3 [−
−2 ✓
1 −1
cos(2 − x)] +c +c ✓
= 3 cos(2 − x) 4(c)
π
∫ 4 sec 2 (8x − 4 ) dx π
= 4 ∫ sec 2 (8x − ) dx 4 π
1
= 4 [ tan (8x − )] +c 8
4
1
π
2
4
= tan (8x − ) © Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
+c ✓ 509
A math 360 sol (unofficial) 5(a)
Ex 18.3
∫(sec 2 x − 4 sin x) dx = tan x − 4(− cos x) +c = tan x + 4 cos x +c ✓
9(a)
π 3 π 12
π
∫ cos (2x + 3 ) dx 1
π
2
3
π 3
= [ sin (2x + )] π 5(b)
5(c)
∫(3 cos x − 2 sin x) dx = 3 sin x − 2(− cos x) = 3 sin x + 2 cos x ∫(4 cos x = 4 sin x
+c +c ✓
12
1
π
2
3
= [sin (2x + )]
π 3 π 12
1
π
π
π
π
2
3
3
12
3
= [sin (2 ( ) + ) − sin (2 ( ) + )]
+ 3 sec 2 x) dx + 3 tan x +c ✓
1
π
= (sin π
− sin )
2
6
π 4
π 4
= [0
∫0 (1 + tan2 x) dx = ∫0 sec 2 x dx
1
π
=− ✓ 2
π
= tan − tan 0 4
9(b)
π
∫π 2 sin(π − x) dx 2
= 1 −0
π
= 2 ∫π sin(π − x) dx 2
=1✓
= 2 [−
π
∫04 [sec 2 x + 1] dx = [tan x + π
π
4
4
=1
+
π
−1
2
π 4
π
= 2[cos(0)
− cos ( )]
= 2(1
−0)
2
=2✓
∫[− sin(2x + 1)] dx
9(c)
= − ∫ sin(2x + 1) dx
1
π
=[
1
= − [− cos(2x + 1)] +c
−
2
2
1
+c ✓
= cos(2x + 1) 2
π
1
=[ π
=[
∫ cos (2x + 4 ) dx = 2 sin (2x + 4 ) + c ✓
π
∫0 [x − cos ( 3 − 6 x)] dx x2
8(c)
2
x)]ππ 2 π
= + 1 [shown] ✓
8(b)
π
cos(π − x)]π
= 2[cos(π − (π)) − cos (π − ( ))]
−0
4
1
= 2[cos(π −
π x]04
= [tan + ] −[tan 0 + 0]
8(a)
−1)
2
= [tan x]04
7
2
1
x2
1 π − 6
π
π
3
6
6
π
π
π
3
6
6
π
π
π
3
6
0 1
+ sin ( − x)]
2 (1)2 2
0
+ sin ( − (1))] −[
∫ 6 sin(3x + 2) dx = 6 ∫ sin(3x + 2) dx
=[
1
= 6 [− cos(3x + 2)] +c
=[
3
= −2 cos(3x + 2)
1
sin ( − x)]
+c ✓
1 1
π 6
6 1
+ ( )]
2
=(
6
π
+ sin ( )]
2
π 2
1
3
+ )
2
π
1
1
2
π
(0)2 2
6
π
π
π
3
6
6
π
π
3
+ sin ( − (0))]
− [0
+ sin ( )]
−[0
+ ( )]
−
6 √3 2
π
3√3 π
= + (3 − 3√3) ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
510
A math 360 sol (unofficial) 9(d)
Ex 18.3
π
1
dx
= [− cos 5t] 5
d
12(a)
∫0 sin 5t dt π
sin(x 2 + 2x)
= cos(x 2 + 2x) ⋅
0
d dx
(x 2 + 2x)
= cos(x 2 + 2x) ⋅ (2x + 2)
1 = − [cos 5t]π0 5
= (2x + 2) cos(x 2 + 2x) ✓
1
= − (cos 5π − cos 0) 5
12(b) ∫(x + 1) cos(x 2 + 2x) dx
1
= − (−1
−1)
5
1
= ∫(2x + 2) cos(x 2 + 2x) dx 2
2
1
= ✓
= sin(x 2 + 2x) + c ✓
5
10(i)
d dx
2
(x cos x)
=x⋅
d dx
(cos x) +
d dx
(x) ⋅ cos x
= x ⋅ (− sin x) +1 cos x = cos x −x sin x ✓
13 Both are correct The arbitrary constant can factor in the differences in constant value ∫ sin x cos x dx 1
10(ii) d (x cos x) = cos x − x sin x dx d x sin x = cos x − x cos x ✓ dx
d
∫ x sin x dx = ∫ (cos x − dx x cos x) dx = sin x 11
− x cos x +c ✓
∫(sin x − cos x)2 dx = ∫(sin2 x −2 sin x cos x + cos 2 x) dx = ∫(sin2 x + cos 2 x −2 sin x cos x) dx = ∫(1 − sin 2x) dx 1
=x
− (− cos 2x)
=x
+ cos 2x
=x
+ (1 − 2 sin2 x) +c1
=x
+ − sin2 x
+c1
=x
− sin2 x
+ + c1
=x
− sin2 x
+c ✓
2
1 2 1 2 1 2
© Daniel & Samuel A-math tuition 📞9133 9982
= ∫ sin 2x dx 2
1
cos 2x
2
2
= (−
+ a)
1
1
4 1
2
= − cos 2x + a 1
1
2
4 cos2 x
1
= − [1 − 2 sin2 x] + a or = − [2 cos 2 x − 1] + a = =
4 sin2 x 2 sin2 x 2
1
1
4
2
− + a
=−
+ c1
=−
2 cos2 x 2
2
1
1
4
2
+ + a + c2
+c1 +c1
1 2
sleightofmath.com
511
A math 360 sol (unofficial)
Ex 18.4 2(c)
Ex 18.4 1(a) 1(b)
2x
∫e
dx =
3x
∫ 2e
1 2x e 2
1(c)
dx
1 2 ( e3x ) 3 2 3x e +c 3
0
= −2[e
= −2(
1
1
2(d)
−1)
e
2
1
∫1 e1−x dx = [−1 e1−x ]
2
1
2 1 x 2
= 2 (2e ) +c 1
= 4e2x
=
= −[e−1 −e0 ]
∫ 4e2x+1 dx = 4 ∫ e2x+1 dx 1 4 ( e2x+1 ) 2 2x+1
1
−1
= −[
+c
1−x )
e
1 e
2(e) +c
ln 5
∫0
5 (ex + 1) dx = [ex + x]ln 0
= [e(ln 5) + (ln 5)] −[e(0) + (0)] = 5 + ln 5 −1 = 4 + ln 5 ✓
= 3(−e1−x ) +c = −3e1−x +c ✓ 2
2(f)
∫0 ex dx = [ex ]20
−1]
e
=1− ✓
+c ✓
∫ 3e1−x dx = 3 ∫ e1−x dx 1
−[e1−x ]12
= −[e1−(2) −e1−(1) ]
+c ✓
= 2e
0
= e −e = e2 −1 ✓ 2(b)
1
e
∫ 2e dx = 2 ∫ e dx
2
]
1
= 2 ( 1 e2x ) +c
2(a)
(0)
= 2(1 − )✓
1 x 2
= 3(
1
−e−2
= −2(e−1 −1)
2
1(f)
2
1 − (2) 2
∫ e−2x dx= −2 e−2x +c
=
0
1 2 [−2e−2x ] 0
✓
1
1(e)
2
1
1
1 x 2
− x 1e 2 ]
= −2 [e−2x ]
+c
= − e−2x +c ✓ 1(d)
2
1
1
−
=
dx= 2 ∫ e
=
=[
+c✓ 3x
=
2 −1x ∫0 e 2 dx
ln 2
∫0
ln 2 3x
5e3x dx = 5 ∫0
e
1
ln 2
3
0
= 5 [ e3x ]
1 1 1 ∫0 e2x dx = [2 e2x ] 0
=
dx
5 3x ln 2 [e ]0 3 5
1 2x 1 [e ]0 2 1 = [e2 −e0 ]
= [e3(ln 2) −e3(0) ]
= [e2 −1] ✓
= [8
=
3 5
3
= [eln 2 3
2 1
5
2
3
−1] −1]
2
= 11 ✓ 3
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
512
A math 360 sol (unofficial) 3
dy
Ex 18.4 5(c)
= e2x
dx
y=
1 2x e 2
1 2
∫0
2−x
dx = 2 ∫
= 2[
+c
−1
ln|2 − x|]
1 2x e 2
= 2 ln 2 ✓
2
5(d)
+2−
1 2 e 2
1
∫0
✓
1
3 2+3x
dx = 3 ∫0
1 2+3x
dx 1
1
= 3 [ ln|2 + 3x|] 3
4(a)
0
= −2(0 − ln 2)
e2
=2−
∴y=
1
1
= −2(ln 1 − ln 2)
+c =2
c
dx
= −2[ln|2 − x|]10
y = 2 when x = 1, y|x=1 = 2 1 2 e 2
1 2−x
2
1
∫ x dx = 2 ∫ x dx
= [ln|2 +
= 2 ln|x| + c ✓
= ln 5 − ln 2 5
1
= ln ✓
4(b)
∫ x+1 dx = ln|x + 1| + c ✓
4(c)
∫ 2x−1 dx = 2 ln |2x − 1| + c ✓
4(d)
∫ 2x+1 dx = 3 ∫ 2x+1 dx
1
2
1
3
0
3x|]10
6(a)
dy dx
1
=
1 2x+1
1
y = ln|2x + 1| + c 2
1
= 3 ⋅ ln|2x + 1| +c 2
3
= ln|2x + 1| 2
4(e)
2
1
1
∫ 1−2x dx = 2 ∫ 1−2x dx =2⋅
1 −2
2
1
1
∫ 4−3x dx = −3 ln|4 − 3x|
+c ✓ +c
1
= − ln|4 − 3x| +c ✓ 5(a)
=
=
1 2 1
1
2
2
∴ y = ln|2x + 1| + ✓ 6(b)
dy dx
3
44 ∫1 x dx
ln|1| + c = 0.5
c
ln|1 − 2x| +c
= − ln|1 − 2x| 4(f)
y = 0 when x = 0, y|x=0 = 0.5
+c ✓
=
1 3−2x 1
y = − ln|3 − 2x| + c 2
41 4 ∫1 dx x
= 4[ln|x|]14
y = 2 when x = 1, y|x=1 =2
= 4(ln 4 − ln 1)
− ln|1| + c = 2
= 4 ln 22
c
1 2
= 8 ln 2 ✓
=2 1
∴ y = 2 − ln|3 − 2x| ✓ 5(b)
1 2 ∫0 2x+1 dx
=
2
1 1 2 ∫0 dx 2x+1 1
1
= 2 [ ln|2x + 1|] 2
= [ln|2x +
0
1|]10
= ln 3 − ln 1 = ln 3 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
513
A math 360 sol (unofficial) 7(a)
2
1
Ex 18.4
2
2
9(i)
x − x ∫0 (e3 + e 3 ) dx 1
4
4
= ∫ (e3x + 2 + e−3x ) dx 4
1 3
3 4
3
3
4
4 (0) 3
−[ e 4
3 4
= ( e3 3
−
4
7(b)
∫0
e−x
B 3−2x
⇒A=1
=B
1
]
9(ii)
3 −4(0) e 3 ] 4
⇒ B = −2
1 1−x
−
2 3−2x
✓
1
∫ (1−x)(3−2x) dx = ∫(
3 −4 e 3) 4 3
1 1−x
−
2 3−2x
) dx
= − ln|1 − x| + ln|3 − 2x| + c
4
= ln |
4 − 3
10
1 ex +e2x
)
∴ (1−x)(3−2x) =
0
= (e − e ) + 2 ✓ 4
+
=A
1 1 (− )( 2
2
− )
+0
4 3
3
+ 2(0) −
+2
4
−(
4 − (1) 3
+ 2(1) − e
A 1−x
1
4
3
=[ e 4
4
1 ( )(1)
3
x= :
0
− e−3x ]
4
4 (1) 3
e−3x ]
4 − 3
3
= [ e3x + 2x
x = 1:
1
4
1
=
Cover-up rule:
0
= [ 4 e3x + 2x +
1 (1−x)(3−2x)
dy dx
3−2x 1−x
|+c✓
1
= (x−1)(x−2) ≡
A x−1
+
B x−2
dx Cover-up rule:
1
= ∫ (e2x + e3x ) dx 0 1
= [ e2x
1
1
3
0
+ e3x ]
2 1
1
1
1
2
3
2
3
1 3 e ) 3
1
1 0 e ) 3
x = 1:
1 ( )(−1)
x = 2:
1 (1)( )
=A
=B
⇒ A = −1 ⇒B=1
= [ e2(1) + e3(1) ] − [ e2(0) + e3(0) ] =
8(i)
1 ( e2 2
+
1
1
5
2
3
6
−(
+
2
∴
dx
=−
1 x−1
+
1 x−2
= e2 + e3 − ✓
y = − ln|x − 1| + ln|x − 2| + c
2x−1 (x+1)(x+2)
y = 2 at x = 3, y|x=3 =2 − ln 2 + ln 1 + c = 2 c = 2 + ln 2
=
A x+1
+
B x+2
Cover-up rule: x = −1: x = −2:
−3 =A ( )(1) −5 =B (−1)( )
2x−1
∴ (x+1)(x+2) = − 8(ii)
dy
2
∫1
3 x+1
⇒ A = −3 y = − ln|x − 1| + ln|x − 2| + 2 + ln 2
⇒B=5
= ln | +
5 x+2
2x−4 x−1
|+2✓
✓
2x−1 dx (x+1)(x+2) 2
3 5 ) dx + x+1 x+2 1 = [−3 ln|x + 1| + 5 ln|x + 2|]12 = [−3 ln 3 + 5 ln 4] −[−3 ln 2 + 5 ln 3] 2 = −3 ln 3 + 5 ln 2 +3 ln 2 − 5 ln 3 = 13 ln 2 − 8 ln 3 ✓ = ∫ (−
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
514
A math 360 sol (unofficial) 11(i)
1 (x−2)(x−1)2
A
=
x−2
+
Ex 18.4 B
1 12(ii) ∫5 dx 3 (x+3)(x−2)2
C
x−1
+ (x−1)2
5 1
= ∫3
Cover-up rule: 1 ( )(1)2
x = 2:
=A
=
1
[
+
25 x+3
1 5 1 ∫ [ 25 3 x+3
+
1
5
x−2 1 x−2
+ (x−2)2 ] dx + 5(x − 2)−2 ] dx
⇒A=1 = 1 (1)( )2
x = 1:
=C
⇒ C = −1
=
Substitution:
=
1 (−2)(−1)2
x = 0:
B ∴
B
+
−2
C
+ (−1)2
−1
=
= −1
1 (x−2)(x−1)2
= =
11(ii)
A
=
1 x−2 1 x−2
+ −
−1
+
x−1 1
−
x−1
=
−1 (x−1)2 1 (x−1)2
=
✓
=
5 1 ∫3 (x−2)(x−1)2 dx
13(i)
5
1 1 1 ] dx =∫ [ − − x − 1 (x − 1)2 3 x−2 =
5 1 ∫3 [x−2
−
1 x−1
− (x − 2)
−2 ]
= [ln|x − 2| − ln|x − 1| − [
1
2
4
1 (x+3)(x−2)2
1
1
4
2
2
(x−1)−1
=
x+3
+
x−2
1 25 1 25
−1
1 ( )(−5)2
x = 2:
1 (5)( )2
1
=
5
6
3
3
1
8
10
3
3
[ln − ln 6 + 4
10
9
3
[ln ( ) +
10
3
3
2
10
3
3
[2 ln +
3
]
]✓
y = ecos x = ecos x ⋅
d dx
(cos x)
= ∫ sin x ecos x dx
+
C (x−2)2
=A
3
1 25
x+3 1
[
+
+
= −(ecos x )
+(− cos x) +c
= −ecos x
− cos x
3
2 √e3x
∫0
ex−1
2 ex
dx = ∫0
ex−1
−2
−
1 25
x−2
1
© Daniel & Samuel A-math tuition 📞9133 9982
+
−
C 4
+ 1
x−2
+c ✓
dx
2
⇒C=
B
25 x+3
+ ∫ sin x dx
= ∫0 e dx
⇒A=
=C
A
]
]
2 2
[ln ( ) +
1
14(b)
25
1
∫ (e3
1
=
5
1 1 3
x−1
⇒B=−
− 3 cos 2x) dx
1
1 2
3
= 3e3x−1 − sin 2x 2
1
= 2e ✓
e3x−1 −3 ( sin 2x) +c 1
=
∴ (x+3)(x−2)2 =
8
13(ii) ∫ sin x (ecos x + 1) dx
Substitution: 3(4)
]
x−2 3
= e[x]20
x = −3:
1
5
|−
x−2
3
5
[[ln | | − ] − [ln | | − 5]]
Cover-up rule:
x = 0:
x+3
]]
5
]]
14(a) B
1 25
[ln |
−1
5
= − ∫ − sin x ecos x dx + ∫ sin x dx
1
A
1 25
dx
= ln + ✓ 12(i)
1 25
[ln|x + 3| + ln|x − 2| + 5 [
(x−2)−1
= ecos x ⋅ (− sin x) = − sin x ecos x ✓
= [ln | | + ] − [ln | | + ] 4
1 25
dx
x−2 1 |+ ] = [ln | x−1 x−1 3
3
25
dy
5
3
1
+c ✓
25
1 5
(x−2)2 5
+ (x−2)2 ] ✓
sleightofmath.com
515
A math 360 sol (unofficial) 15
dy dx
=
Ex 18.4 16(ii) ∫ sec x dx = ln(sec x + tan x) + c ✓
1
2x2 +1
− √e−2x
√x 3
1
17
1
= 2x 2 +x −2 −e−4x 5
1
x2
x2
2
2 1 2
x 1 − x 4 1 − 4 1 − x 4
y = 2( 5 ) + ( 1 ) −( 4 5
= x2 5
+2x
1
e
+c ∫
4 5
5
1
=
(0)2 + 2(0)2 + 4e−4(0) + c = 2
4e0 + c c ∴y=
4 2 x √x 5
=2 = −2 + 2√x + 4e
1 4
− x
x2 +a x+a
18
x2 2
+a −a2 ) a + a2
a+a2 x+a
) dx
−ax +(a + a2 ) ln|x + a| + c ✓
Recognize that the derivative of ln(−x) is also d
−2✓
+a
dx
= ∫ (x − a +
=2
1
+a
−a +0x +ax) −ax −(−ax
) +c
+4e
y = 2 when x = 0, y|x=0
x x2 −(x 2
dx
ln(−x) =
1 x 1
⋅
d
−x dx 1
(−x)
= − ⋅ (−1) 16(i)
d dx
= = = = = = = =
x
ln(sec x + tan x) 1 sec x+tan x 1 sec x+tan x 1 sec x+tan x 1 sec x+tan x 1 sec x+tan x 1 sec x+tan x 1 sec x+tan x
⋅
d dx
⋅[
=
dx
[(cos x)−1 ]
⋅ [−(cos x)−2 ⋅
d dx
1
possibility that the integral of can be either ln x + x
+ sec 2 x]
c or ln(−x) + c
(cos x) + sec 2 x]
19
⋅ [−(cos x)−2 ⋅ (− sin x) + sec 2 x] ⋅( ⋅(
sin x
+ sec 2 x)
cos2 x 1 cos x
⋅
x
The modulus sign is included to account for the
(sec x + tan x)
d
1
sin x cos x
+ sec 2 x)
⋅ (sec x tan x + sec 2 x)
d dx
2
(e−x ) = −2xe−x
∫ eax+b dx = but ∫ ef(x) ≠
eax+b a ef(x) f′ (x)
2
+c
+c
The student factored out the variable (−2x) outside the integral which makes it wrong.
sec x(tan x+sec x) sec x+tan x
= sec x ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
516
A math 360 sol (unofficial)
Rev Ex 18 A3(i)
Rev Ex 18
=
x3
−3 ( ) + c
4 x4
3
− x3
4
+c✓
=
A1(b) ∫ 2x2 −√x dx x
= 1
= ∫ (2x − x −2 ) dx x2
2
1 2
= 2( ) − = x2
+c
A2(a) ∫(2 + ex )2 dx = ∫(e2x + 4ex + 4) dx 1
= e2x +4ex + 4x + c ✓ 2
A2(b) ∫ e3x −2 dx = ∫(e2x − 2e−x ) dx ex
A2(c)
− sin2 x
1 2x 1 e −2 ( e−x ) 2 −1 1 2x e +2e−x +c 2
+c A3(ii)
✓
π 1 2 π 1−cos x 4
∫
dx
∫0 (cos x − 3 sin x) dx
= − ∫π2 − 4
π
=
π 4
4
π 1+cos 2 π sin 2
π
= [sin + 3 cos ] −[sin 0 + 3 cos 0] √2 2
= − [(
4
√2 2
−[0 + 3]
+ 3 ( )]
= − [(
= 2√2 − 3 ✓ π
dx
1+cos x 2 ] −[ sin x π
= [sin x + 3 cos x]0
=[
1 1−cos x π
= [sin x − 3(− cos x)]04
A2(d)
1 1 − cos x
π
4
π
∫π3 sin (2x − 3 ) dx
1+0 1
)
1
π
2
3
= [− cos (2x − )]
π 3 π 4
π 1 π 3 − [cos (2x − )]π 2 3 4 1 π π
−(
= − [1
−(
= − (1
−
= − (− = π
π
4
3
= − [cos (2 ( ) − ) − cos (2 ( ) − )] 2 1
= − (cos 2 1 1
=− (
2 2
3
π 3
3 π
2 √2
×
2 √2
π 4
1+cos
) −(
4
=
− cos x
[shown] ✓
π 4
π
− cos x − cos 2 x sin2 x
− sin2 x − cos 2 x sin2 x
=−
=
)
sin2 x + cos 2 x + cos x sin2 x 1 + cos x =− sin2 x 1 + cos x =− 1 − cos 2 x 1 + cos x =− (1 + cos x)(1 − cos x)
− 2√x + c ✓
=
sin x
=−
1
x2
1+cos x
sin x ⋅
= ∫(x 3 − 3x 2 ) dx x4
(
d d (1 + cos x) − (1 + cos x) ⋅ (sin x) dx dx = sin2 x sin x ⋅ (− sin x) − (1 + cos x) ⋅ cos x = sin2 x
A1(a) ∫ x 2 (x − 3) dx
=
d dx
π sin 4 √2 2 √2 2
1+
2+√2 √2
2 √2
)]
)]
)]
− 1)
)
√2 √2
= √2 ✓
− cos ) 6
√3 − ) 2
1
= (√3 − 1) ✓ 4
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
517
A math 360 sol (unofficial) A4(i)
1 (x−3)(2x+1)
=
A x−3
+
Rev Ex 18 A6(a) ∫a(3 − 2x) dx 1
B 2x+1
1 ( )(7)
=A
1
1
2
(− )( )
1
1 7
x=− :
7 2
∴ (x−3)(2x+1) = =
7
1
=
⇒A=
=B
x−3 1
7(x−3)
7
⇒B=−
−
+
1
2 7
2 7
2x+1
−
2 7(2x+1)
✓
k 6 ∫2 (1 2
−
[x −
] dx
7(x−3) 7(2x+1) 7 1 2 ) dx − ∫ ( 7 4 x−3 2x+1
(k − k3
1 = [ln|x − 3| − ln|2x + 1|]74 7 1 = [(ln 4 − ln 15) − (ln 1 − ln 9)] 7 1 4 = (ln + ln 9) 7 1
15 12
7
5
A5(a)
d dx
3 3
[ln(cos x)] =
1 cos x
⋅
d dx
(cos x)
1 ⋅ (− sin x) cos x = − tan x [shown] ✓ =
π 3
1
2
2
= −100
− x 2 ) dx
= −100
k x3
]
=−
3 2 k3 3
8
) − (2 − )
−k−
3
52
=−
100 6 100 6
=0
3
k − 3k − 52 =0 2 (k − 4)(k + + ⬚) 2 (k − 4)(k + + 13) 2 (k − 4)(k + 4k + 13) =0 (k − 4)[(k + 2)2 − 4 + 13] = 0 (k − 4)[(k + 2)2 + 9] =0 k =4✓
✓
A7(i)
dy dx
= 3x 2 + k
At turning pt (−2,6):
π 3
dy
∫0 tan x dx = − ∫0 − tan x dx =
1
A6(b) ∫k 6(1 − x 2 ) dx 2
1
= ln
2
x2
= [4 ( )]
[3x − x 2 ]1a = 2[x 2 ]12 (3a − a2 ) − (3 − 1) = 2(1 − 4) 3a − a2 − 2 = −6 2 3a − a + 4 =0 2 a − 3a − 4 =0 (a + 1)(a − 4) =0 a = −1 or a = 4 ✓
1 A4(ii) ∫7 dx 4 (x−3)(2x+1)
= ∫4 [
a
[3x − 2 ( )]
Cover-up rule: x = 3:
x2
1
= ∫2 4x dx
|
dx x=−2 2
π −[ln(cos x)]03
=0
3(−2) + k = 0 k = −12 ✓
π = − [ln (cos ) − ln(cos 0)] 3 1 = − [ln − ln 1] 2
= ln 2 ✓ A5(b)
d dx
[ln(ex + 1)] =
1
= ln 2 ex
∫0
ex +1
⋅
d
(ex + 1)
ex +1 dx 1 = x ⋅ ex e +1 ex ex +1
[shown] ✓
2 dx = [ln(ex + 1)]ln 0
= ln(eln 2 + 1) − ln(e0 + 1) = ln(2 + 1) − ln(1 + 1) = ln 3 − ln 2 3
= ln ✓ 2
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
518
A math 360 sol (unofficial) A7(ii)
dy dx
Rev Ex 18 B1(c) ∫1 (4x+1)4 −7 dx 0 2(4x+1)2
= 3x 2 − 12
1 1 2
y = 3 ( ) − 12x + a 3
=[
Curve at (−2,6): 6 = (−2)3 − 12(−2) + a a = −10
=[ =
3
∴ y = x − 12x − 10
4
(4x+1)3
2
(4)(3)
(4x+1)3 (4(1)+1)3
15
5 4
−[ =
632
−
15
= 41
9 10
3
1
2
2
0
1 2
6
π 1−sin2 x
= ∫π
3
6
1−sin x
dx
π (1+sin x)(1−sin x) 1−sin x
6
dx
π
= ∫ (1 + sin x) dx π 6
4
x2 2
+
2
= [x − cos x]ππ
5 2
(1)3
6
1
1
2 8
6
π 6
=
1
− (1)2 + (1)2 ] 5
π
6
= [(π) − (−1)] − ( −
2] 5
π
= (π − cos π) − ( − cos )
4 1 2 x ] 2 1
= [ (4) − (4) + (4) 3
12
B2(c) ∫ππ cos2 x dx 1−sin x
= ∫π
8 5
8
11
= − ln 8 ✓
2
5 x2 5 2
3
]
= −3 ln 2
= [4 ( ) − 4 ( ) + ( )]
4
7
8(4(0)+1)
✓
= 3 ln
4
5
+
= 3[ln 2 − ln 4]
= ∫1 (4x 2 − 4x√x + x) dx
− x
24
B2(b) ∫3 3 dx = [3 ln|x − 5|]13 1 x−5
B1(b) ∫4(2x − √x)2 dx 1
=
8(4(1)+1)
(4(0)+1)3
= 2 ln 5 ✓
=8 ✓
4 [ x3 3
−[
= 2(ln 5 − ln 1)
=
3
]
= 2[ln|2x + 1|]20
3 4 1 = [(2x + 1)2 ] 3 0
x3
]
= 4 [ ln|2x + 1|]
3 4
3 1 3 [92 − 12 ] 3 1 = (27 − 1) 3 26 = 3
7
8(4x+1) 0 7
B2(a) ∫2 4 dx = 4 ∫2 1 dx 0 2x+1 0 2x+1
∫0 √2x + 1 dx = ∫0 (2x + 1) dx (2x + 1)2 =[ ] 3 (2) ( ) 2 0
1
−
60 7
1
]
(4)(−1) 0
2
323
1 2
4
− ⋅
+
24
(4x+1)−1
7
+
24
=4
At point where curve meets y − axis (x = 0), y|x=0 = (10)3 − 12(10) − 10 = −10 ⇒ (0, −10) ✓
2
1
=[ ⋅
= x 3 − 12x + a
B1(a)
7
= ∫0 [ (4x + 1)2 − (4x + 1)−2 ] dx
x3
2
5π 6
+1+
√3 2
√3 ) 2
✓
7 30
✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
519
A math 360 sol (unofficial) B2(d)
Rev Ex 18
π 2 π 4
B4(a)
∫ 2 csc 2 x dx
8x+13 (1+2x)(2+x)2
=
A
B
+
1+2x
C
2+x
+ (2+x)2
π
= 2[− cot x]π2
[not in syllabus]
Cover-up rule:
4
B3(i)
1
9 ( )(1.5)2
π π = 2 [(− cot ) − (− cot )] 2 4 π π = 2 (cot − cot ) 4 2 = 2(1 − 0) =2✓
x=− :
y = x 2 √2x − 1
Substitution:
dy dx
= x2 ⋅
d dx
= = = = =
2√2x−1
⋅2
x2
x = 0:
+2x ⋅ √2x − 1
x2
13 (1)(4)
=
B
= −2
8x+13
∴ (1+2x)(2+x)2 = =
+2x(2x−1) √2x−1
x2
2
∫1
+4x2 −2x √2x−1
2
√2x−1 √2x−1
4
1+2x
B
C
2
4
+ +
1
1+2x 4
4
−
1+2x
2
= ∫1 [4 ⋅
[shown] ✓
A
+ −
−2 2+x 2 2+x
1
+ (2+x)2 1
+ (2+x)2 ✓
8x+13 dx (1+2x)(2+x)2
= ∫1 [
5x2 −2x x(5x−2)
=C
⇒C=1
+2x√2x − 1
√2x−1
−3 (−3)( )2
x = −2:
d
1
=A
⇒A=4
√2x − 1 + dx x 2 ⋅ √2x − 1
2
=x ⋅
2
1
2
−2⋅
1+2x
1
+ (2+x)2 ] dx
2+x 1
+ (2 + x)−2 ] dx
2+x
1
= [4 ⋅ ln|1 + 2x| − 2 ⋅ ln|2 + x| + 2
B3(ii) ∫5 x(5x−2) = [x 2 √2x − 1]5 1 1
= [2 ln|1 + 2x| − 2 ln|2 + x| − = [2 ln | = [2 ln |
1+2x 2+x
|−
1+2(2) 2+(2)
5
1
4
4
6
1
4
12
= 2 ln +
sleightofmath.com
1
]
1
]
2
2+x 1
2
2+x 1
|−
= [2 ln − ]
© Daniel & Samuel A-math tuition 📞9133 9982
2
] (1)(−1)
1
√2x−1
= (5)2 √2(5) − 1 −(1)2 √2(1) − 1 = 75 −1 = 74 ✓
(2+x)−1
1 2+(2)
]
− [2 ln |
1+2(1) 2+(1)
|−
1 2+(1)
]
1
− [2 ln 1 − ] 3
✓
520
A math 360 sol (unofficial)
Rev Ex 18
B4(b) Partial fractions 1
B5(ii)
1
x2 +3x+2
A
= (x+2)(x+1) =
x+2
+
B
π
∫04 cos 3 2x dx π 4
x+1
= ∫ [(cos 2x)(cos 2 2x)] dx Cover-up rule:
0
1 ( )(−1)
x = −2:
π 4
=A
= ∫ [(cos 2x)(1 − sin2 2x)] dx
⇒ A = −1
0 π
1 (1)( )
x = −1:
=B
⇒B=1 1
∴
x2 +3x+2
=−
1 x+2
∫ x2 +3x+2 dx =
1
+
x+1
0
x+1
= ln |
π 4
dx
−
x+2
x+1
+c ✓
|
x+2
dx
1 6
1
− 0)
2
= 3(sin 2x) ⋅ cos 2x ⋅
dx
B6(a)
d dx
[ln(ln x)] =
∫2
1 x ln x
(2x)
= ln (
cos 2x
= ln (
⋅
ln x 1
d dx 1
(ln x)
x
x ln x
ln 4
)
ln 2 ln 22
)
ln 2 2 ln 2
)
ln 2
= ln 2 ✓
π
π
d
1 4 = ∫ 6 sin2 2x cos 2x dx 6 0 π 1 = [sin3 2x]04 6 1 π = (sin3 − sin3 0)
dx
(x n ln x)
= xn ⋅ = xn ⋅ =x
2
− 0)
⋅
= [ln(ln x)]42 = ln (
∫04 sin2 2x cos 2x dx
1 (1 6 1 = (1) 6 1 = ✓
1 ln x 1
= ln(ln 4) − ln(ln 2)
= 3(sin 2x) ⋅ cos 2x ⋅ 2
=
6
3
2
= 6 sin2 2x
1
= ✓
4
d
−
1
(sin 2x)
2
6
2
= d
1
2
3]
= 3(sin 2x)2 ⋅
6
π
= (1
dx
1
1
=
[(sin 2x)
6
−
2
(sin3 2x) d
−
= [sin 2x]0
= ln|x + 1| − ln|x + 2| +c
=
2
1
✓
1 ∫ (x+2)(x+1) dx 1 1
=∫
dx
π 4
= (sin − sin 0) −
1
d
1
= [ sin 2x]
Integral
B5(i)
π
= ∫04 cos 2x dx − ∫04 sin2 2x cos 2x dx
d dx 1
x n−1
(ln x) + +nx
d
dx n−1
+n x
(x n ) ⋅ ln x
⋅ ln x
n−1
ln x ✓
B6(b) n = 1:
6
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
521
A math 360 sol (unofficial) d dx
Rev Ex 18 B7(a) ∫ 1 dN N
(x ln x) = 1 + ln x
⇒ ln x
=
d dx
ln|N| + a = kt ln|N| = kt − a N = ekt−a = bekt
(x ln x) − 1
∫ ln x dx = ∫[
d dx
(x ln x) − 1] dx
B7(b) N|t=0 = A be0 = A b=A ∴ N = ekt [shown] ✓
= x ln x −x + c ✓ n = 2: d dx
(x 2 ln x) = x + 2x ln x
⇒ 2x ln x =
d
dx 1 d
x ln x = (
= kt
x 2 ln x − x
2 dx
x 2 ln x − x)
∫ x ln x dx 1 d
=∫ [
2 dx 1 d
(x 2 ln x) − x] dx
= ∫ [ (x 2 ln x) − x] dx 2 dx 1
x2
2
2
= (x 2 ln x − ) + c ✓ n = 3: d dx
x 3 ln x = x 2 + 3x 2 ln x
⇒ 3x 2 ln x =
d
dx 1 d
x 2 ln x
= [
x 3 ln x − x 2
3 dx
(x 3 ln x) − x 2 ]
∫ x 2 ln x dx 1 d
=∫ [
3 dx 1 d
(x 3 ln x) − x 2 ] dx
= ∫ [ (x 3 ln x) − x 2 ] dx 3 dx 1
= (x 3 ln x
x3
−
3
3
)+c✓
n = m + 1: d dx
(x m+1 ln x)
= x m + (m + 1)x m ln x
⇒ (m + 1)x m ln x = x m ln x
=
d dx 1
(x m+1 ln x) − x m [
d
m+1 dx
(x m+1 ln x) − x m ]
∫ x m ln x dx =∫ = =
1
[
d
m+1 dx 1 d
m+1 1 m+1
(x m+1 ln x) − x m ] dx
∫ [dx (x m+1 ln x) − x m ] dx (x m+1 ln x −
© Daniel & Samuel A-math tuition 📞9133 9982
xm+1 m+1
)+c✓
sleightofmath.com
522
A math 360 sol (unofficial)
Ex 19.1 5
Ex 19.1 1
4 ∫0 x(4 4
= − ∫ sin(x − π) dx
𝑦
− x) dx
0 x2
x3
4
3
0
= [4 ( ) − ( )] 2
x3
= [2x 2 −
𝑥 𝑂
4
]
3 2
6 − [2(0)2 −
(0)3 3
= ∫ [(0) − (1 − ex )] dx
]
𝑦 = cos 2𝑥
𝑂 π 1 = [sin 2x]04 2 1 π = (sin − sin 0) 2 1
𝑥
𝜋
7
4
Shaded area =
2
= (1
−0)
2 1
4 ∫1 [(y
= [[
𝑦 2
− 3) + 2] dy
(y−3)3 3
4
4
] + 2y] 1
2
= unit ✓ Shaded area
((0)−3)
= [[
𝑦
1
= ∫ e2x dx =
0 1 2x 1 [ e ] 2 0
=8
𝑦 = 𝑒 2𝑥
1 2x 1 [e ]0 2 1 = (e2 − e0 ) =
𝑂
−[ =5
+ (3)]
𝑂
3
3
2
+ (0)] +
3
𝑥 = 𝑦(2 − 𝑦)
3
𝑂
2
y y = [2 ( ) − ( )] 2 3 0
𝑥
2 1 = [y 2 − y 3 ] 3 0
0
3
((0)−1)
2
0
𝑦 = (𝑥 − 1)2 + 1
3
3
𝑦
= ∫ [2y − y 2 ] dy 2
0
((3)−1)
3
0 2
= ∫ [(x − 1)2 + 1] dx
=[
2
= ∫ [y(2 − y) − (0)] dy
𝑦
3
+ x]
] + 2(0)]
2
Shaded area
3
+
3
3
3
Shaded area
2
=[
1
((0)−3)
8
= (e2 − 1) unit 2 ✓
(x−1)3
] + 2(0)] − [[
= 9 unit ✓
2 1
4
3
2
𝑥
1
3
𝑥 = (𝑦 − 3)2 + 2 𝑥
1
2
3
𝑦 = 1 − 𝑒𝑥
= −[x − ex ]20 = −[(2 − e2 ) − (0 − e0 )] = −[2 − e2 + 1] = (e2 − 3) unit 2 ✓
0
0
𝑥
= − ∫ (1 − ex ) dx
𝑦
= ∫ cos 2x dx
2
𝑂
2 0
π 4
π 4
2
0
−0
Shaded area
1
𝑦
2
3
= [ sin 2x]
𝑥
𝑦 = sin(𝑥 − 𝜋)
Shaded area
= 10 unit 2 ✓ 2
𝜋
4
3 0 (4)3 [2(4)2 − ] 3 2
= 10
𝑂
0
= −[− cos(x − π)]π0 = [cos(x − π)]π0 = cos 0 − cos(−π) =1 −(−1) 2 = 2 unit ✓
𝑦 = 𝑥(4 − 𝑥)
= ∫ (4x − x 2 ) dx
=
𝑦
π
Shaded area =
Shaded area
3
𝑥
=1 1 3
1
1
3
3
= [(2)2 − (2)3 ] − [(0)2 − (0)3 ] 1 3 1
−0
= 1 unit 2 ✓ 3
2
= 6 unit ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
523
A math 360 sol (unofficial) 9(i)
Ex 19.1 π
11(a) Area
At A, y = sin (2x + ) cuts x-axis (y = 0): 3
=0
=
sin (2x + ) = 0
=
y π 3
α π 2x +
= ✓
9(ii)
=[
3
Shaded Area π
π
= ∫03 sin (2x + ) dx 1
π
π 3
2
3
0
1
π
π 3
2 1
3
= [− cos (2x + )] = − [cos (2x + )]
1
𝐴
4
3
𝑂
+ (5)] − [ 1
4
√
Shaded area
𝑦
a 0 a
1
√
1
3 2
𝑦=𝑒
3 2
𝑂
𝑎
𝑥
1
3
√
x2
2
x
−
) dx
1
3 x2
2
2
3
√
x2
+ ∫ 3 (2 − 2
) dx ) dx
3 2 x √3 2
+4 +
1
3
2
2
2
3
3 2
3
−2 (2√ + 2
3 √
3 2
)
= 10 − 2 (2√ + 3√ )
2
ea
2
√
+ ∫ 3 (2 −
+ [2x + ]
3 √ 2
=2+3
unit ✓
1
3
2
2
2
3
= 10 − 4√ − 6√
10(ii) Shaded area = 0.5
e a
3 𝑥2
𝑥
3
= [2x + ]
= e−(0) −e−(a)
ea a
2
3 1
a 1 = [ e−x ] −1 0 = −[e−x ]a0 = [e−x ]0a
ea
𝑦 =2−
= ∫ 3 (2 −
−𝑥
0
1
+ (2)]
−6
4 1
= ∫ e−x dx
1−
4
∫1 − (2 − x2 ) dx
= ∫ e−x − (0) dx
1
(2)4
3
1 1 = − (−1 − ) 2 2 3 2 = unit ✓
=1
2
𝑦
𝑥
𝜋
𝑂
= − (cos π − cos )
10(i)
(5)4
3
π
2
4
4
𝑦 = sin (2𝑥 + ) 11(b)
0
+ x]
= 155 unit 2 ✓
𝜋
3
𝑥
𝑂 2 5
5
x4
= 161
𝑦
𝑦 = 𝑥3 + 1
+ 1] − (0) dx
x + 1 dx
=[
π
x
𝑦
2
=0 =π
3
5 ∫2 [x 3 4 ∫ 3
= 0.5 =
1
Note: Deal with the upper limits first then the lower limits.
2
=2 = ln 2 ≈ 0.693 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
524
A math 360 sol (unofficial) 12
Ex 19.1 14(i)
𝑦 𝑦 = 𝑥2 + 1
y = x2 − x − 6 = (x − 3)(x + 2) 𝑦
A 𝑂
B
𝑥
1
4
Line PQ Point:
2−0
3
2 3 2
8
3
3
=− x+
=
=[
3
0
3
4
+ [−
+[
3 4
+
3 1
=[ 8
+ ] − (0)dx
=[
3
2 x2
8
3 2
3
4
=
+ [− [ ] + x]
= [( + 1) − (0)]
=
−2
4 2 + ∫1 [− x 3
1
=
3
+area of B
+ 1] − (0) dx
+ x]
−2
2) dx = − ∫−2(x 2 − x − 6) dx
1
x3
𝑦 = 𝑥2 − 𝑥 − 6 𝑂 𝑥 3
= ∫3 (x 2 − x − 6) dx
Shaded area = area of A 1 ∫0 [x 2
𝑦
3
= − ∫−2(x − 3)(x +
y − 2 = − (x − 1) y
✓
= ∫−2[(0) − (x − 3)(x + 2)] dx
2
y − y1 = m(x − x1 )
PQ:
𝑥
3
=−
1−4
3
14(ii) Area
P(1,2), Q(4,0)
Gradient: mPQ =
𝑂
−2
x2 3
(−
3
−
(−2)3 3
1
x2 2
−
−2
− 6x] (−2)2 2
3
− 6(−2)] − [
22
+
3 5
(3)3 3
−
(3)2 2
− 6(3)]
27 2
2
= 20 unit ✓ 6
4
8
x3
+ x] 3
16
+
3
1
32
)
1
3 8
3
3
− (− + )
15(i)
Curve: y = x2
−(1)
Line: x + y= 6 y =6−x
−(2)
]
9 3
2
= 4 unit ✓ 3
13
Shaded area
𝑦 𝑦 = (𝑥 + 1)(𝑥 − 2)
2
= ∫ 0 − (x + 1)(x − 2) dx
𝑂
−1
𝑥
2
−1
2
= − ∫ (x + 1)(x − 2) dx −1 2
= − ∫ (x 2 − x − 2) dx −1 −1
sub (1) into (2): x2 = 6 − x x2 + x − 6 = 0 (x + 3)(x − 2) = 0 x = −3 or (rej ∵ x > 0)
x=2 y|x=2 = (2)2 =4 ⇒ A(2,4) ✓
= ∫ (x 2 − x − 2) dx 2
=[ =[ =
x3
−
3
(−1)3 3
x2 2
−
−1
− 2x] (−1)2 2
2
− 2(−1)] − [
7
+
6 1
(2)3 3
−
(2)2 2
− 2(2)]
10 3
2
= 4 unit ✓ 2
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
525
A math 360 sol (unofficial)
Ex 19.1
15(ii) Shaded region
16(ii) Method 2 (wrt x-axis) Line x=4−y y=4−x
𝑦
2
= ∫ [(6 − x) − x 2 ] dx
𝑦 = 𝑥2
0 2
6
𝐴
= ∫ [6 − x − x 2 ] dx 2
x2 x3 = [6x − − ] 2 3 0
=7
(2)2
−
2
2
𝑂
(2)3 3
] − [6(0) −
1
(0)2 2
𝑥
6 −
(0)3 3
Lower curve x = 4y − y 2 (y − 2)2 − 4 = −x (y − 2)2 =4−x y−2 = ±√4 − x y = 2 ± √4 − x ⇒y = 2 − √4 − x
]
−0
3 1
= 7 unit 2 ✓ 3
16(i)
x = 4y − y 2
−(1)
x=4−y
−(2)
𝐵
𝑥
𝑦 = 2 − √2 − 𝑥
Shaded Area 3
= ∫0 [(4 − x) − (2 − √4 − x)] dx 3
= ∫0 (2 − x + √4 − x) dx = [2x − = [2x −
16(ii) Method 1 (wrt y-axis)
x2 2 x2 2
𝑥 =4−𝑦
3
+
3 2
=
2 5
]
(−1)( )
0 3
2
3
− (4 − x)2 ] 3
9
2
2 2
3
3 2
0 3
2
− [0 − (4)2 ] 3
2
3
+ [ (22 )2 ]
=[ − ] 4
3
3
(4−x)2
= [6 − − (1) ]
𝑦
3
3 2 3 + 2 3
6 1
= 6 unit 2 ✓
𝑄
6
1 𝑃
17(i)
𝑥
2𝑂
d dx
1
=
+Area of Q
d
(√3x + 7) = ⋅ (3x + 7) 2√3x+7 dx =
Shaded Area = Area of P
𝑂 3
Line x=4−y y=4−x
sub (1) into (2): 4y − y 2 =4−y 2 y − 5y + 4 =0 (y − 1)(y − 4)= 0 y=1 or y = 4 x|y=1 = 4 − (1) x|y=4 = 4 − (4) =3 =0 ⇒ B(3,1) ✓ ⇒ A(0,4) ✓
𝑥 = 4𝑦 − 𝑦
𝐴
𝑦 =6−𝑥
0
= [6(2) −
𝑦 𝑦 =4−𝑥
1 2√3x+7 3 2√3x+7
⋅3 ✓
1
= ∫0 [(4y − y 2 ) − (0)] dy 4
+ ∫1 [(4 − y) − (0)] dy 1
= ∫0 (4y − y 2 ) dy y2
y3
1
3
0
= [4 ( ) − ( )] 2
= [2y 2 −
y3
1
]
3 0
1
= [(2 − ) − (0)] 3
=
5
4
+ ∫1 (4 − y) dy + [4y −
1
4
]
2 1 1
4
2
1
+ [4y − y 2 ]
1
+ [(16 − 8) − (4 − )] 2
+
3
y2
9 2
2
= 6 unit ✓ 6
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
526
A math 360 sol (unofficial)
Ex 19.1
17(ii) Shaded area = = =
18(ii) Method 2 (without rectangle area) Horizontal line y|x=a = 1 + a2
𝑦
3 1 dx ∫−1 √3x+7 2 3 3 dx ∫ 3 −1 2√3x+7 3 2 [√3x + 7]−1 3
𝑦= −1
𝑂
1 √3𝑥+7
𝑥
3
a
B = ∫0 [(1 + a2 ) − (1 + x 2 )] dx a
= ∫ (a2 − x 2 ) dx
2
= (√3(3) + 7 −√3(−1) + 7) 3 2
= (√16 = (4 = 18(i)
3
= [a2 x −
−√4)
3 2 3 4
0
= (a3 −
−2)
a3
]
= (a +
3
(0)3 3
]
𝑥=𝑎 𝑎
= a(1 + a2 ) − (a + = a + a3
𝑥
−a −
a3 3
19
1 3 a 3 3
3
−a
=0
𝑦 𝑦=
2 k
𝑂
a3
Area of P
3
2 3 a 3
k 10
∫2 ( x2 ) dx k
∫2 10x −2 dx 2
= a3 3
10 [
=0
x−1
𝑥2
[ ]
a = 0 or a = −√3 or a = √3 ✓ (both rej ∵ a > 0)
2
k k
k
sleightofmath.com
−
= area of Q 5 10
= ∫k ( 2 ) dx x
5
= ∫k (10x −2 ) dx = 10 [
x−1
5
]
−1 k
1 5
=[ ]
x 2
1
𝑥
5
k
]
−1 2
1 k
a − 3a =0 2 a(a − 3) =0 a(a + √3)(a − √3) = 0
© Daniel & Samuel A-math tuition 📞9133 9982
10
𝑃
)
Region A = Region B a3
−a
a = 0 or a = −√3 or a = √3 ✓ (both rej ∵ a > 0)
18(ii) Method 1 (with rectangle area) Horizontal line y|x=a = 1 + a2 Region B = Rectangle − Region A
a+
3
a − 3a =0 a(a − 3) =0 a(a + √3)(a − √3) = 0
) unit 2 ✓
=
2
= a3
3
1 3 a 3 3
𝐴
1 𝑂
=B a3
a+
−0
3 a3
) − (0)
A 𝑦 = 1 + 𝑥2 𝐵
− [(0) + =a+
𝑦
]
3
3
3
a x3
= [(a) +
3 0
a3
= a3
Region A a = ∫0 (1 + x 2 ) dx 3 0 (a)3
a
]
2
unit 2 ✓
= [x +
x3
x k
1 2
1
1
5
k
= − = =
7 10 20 7
✓
527
A math 360 sol (unofficial) 20(i)
y = x 2 − ax − b
Ex 19.1 20(iii) Line PR Points:
P(−1,0) & R(0, −3)
(1, −4) lies on curve, −4 = (1)2 − a(1) − b −4 = 1 − a − b b =5−a
Gradient:
mPR = (−1)−(0) = −3
PR:
y − y1 = m(x − x1 ) y − 0 = −3[x − (−1)] y = −3x − 3
At min (1, −4),
Line RQ Points:
R(0, −3) & Q(3,0)
Gradient:
mRQ =
RQ:
y − y1 = m(x − x1 ) y − 0 = 1(x − 3) y =x−3
dy dx
dy
= 2x − a
|
dx x=1
=0
2(1) − a = 0 a =2✓ b|a=2 = 5 − (2) = 3 ✓ 20(ii) Curve with a = 2, b = 3: y = x 2 − 2x − 3 Points P & Q At P & Q, curve cuts x − axis (y = 0): y =0 2 x − 2x − 3 =0 (x + 1)(x − 3) = 0 x = −1 or x=3 ⇒ P(−1,0) ✓ ⇒ Q(3,0) ✓
(0)−(−3)
(0)−(−3) (3)−(0)
=1
𝑦 −1 𝑃
3
𝑂
𝑄
𝑥
𝑅 𝑦 = 𝑥 2 − 𝑎𝑥 − 𝑏 Shaded Area = left region
+right region
0
Point R At R, curve cuts y − axis y|x=0 = (0)2 − 2(0) − 3 = −3 ⇒ R(0, −3) ✓
= ∫−1[(−3x − 3) − (x 2 − 2x − 3)] dx 3
+ ∫0 [(x − 3) − (x 2 − 2x − 3)] dx 0
3
= ∫−1[−x 2 − x] dx + ∫0 [−x 2 + 3x] dx = [−
x3 3
−
x2
0
]
2 −1 1
1
3
2
= [(0) − ( − )]
+ [−
x3 3
+
+ [(−9 +
3x2 2
3
]
0
27 2
) − (0)]
2
= 4 unit 2 ✓ 3
21(i)
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
P(2,0) lies on y = kx − x 2 : 0 = 2k − 22 k=2✓
528
A math 360 sol (unofficial)
Ex 19.1 22(a) ∫2π sin x dx = 0 0
21(ii) Point Q Q(3, h) lies on y = 2x − x 2 : h = 2(3) − 32 = −3 ⇒ Q(3, −3) Line OQ Points:
𝐴 𝑂
(−3)−(0) (3)−(0)
𝐵
𝑥
Algebraic area = A − B = 0 ∵ (symmetric) 22(b)
= −1
a
∫ cos x dx = 0 0
y − y1 = m(x − x1 ) y − (−3) = −1(x − 3) y = −x
OQ:
𝑦
𝑦
O(0,0) & Q(3, −3)
Gradient: mOQ =
[typo in book]
𝜋 2𝜋
𝑦 = 2𝑥 − 𝑥 2 3
By inspection a = kπ, k ∈ ℤ+
𝑥
𝑂
𝑄(3, ℎ) 3
Area = ∫0 [(2x − x 2 ) − (−x)] 3
= ∫ [3x − x 2 ] dx 0
=[ =[
3x2 2
−
3(3)2
=4
2 1 2 1
x3
3
]
3 0 (3)3
−
3
]− [
3(0)2 2
−
(0)3 3
]
−0
= 4 unit 2 ✓ 2
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
529
A math 360 sol (unofficial)
Ex 19.2 3
Ex 19.2 1
Points P & Q At P & Q, y = x 2 − 8x + 20 meets y = 8 x 2 − 8x + 20 = 8 𝑦 x 2 − 8x + 12 = 0 𝑄 𝑃 (x − 2)(x − 6) = x = 2 or x = 6
Point P x=0 Point Q 1
At Q, y = cos x meets y = : 2
cos x =
𝑦0= 8
x
=
1 2 π 3
𝑦=7
2
𝑦 = 𝑥 − 8𝑥 + 20 2
𝑂
Shaded Area
Shaded Area
𝑥
6
1 = ∫ [(cos x) − ] dx 2 0
6
= ∫ [(8) − (x 2 − 8x + 20)] dx 2 6
= ∫ [8 − x 2 + 8x − 20] dx 2 6
=∫
(−x 2
+ 8x − 12) dx
= [−
=(
6
3
x + 4x 2 − 12x] 3 2 (6)3 3
− [−
4
+ 4(6)2 − 12(6)] (2)3
+ 4(2)2 − 12(2)]
3
2
= 10 unit 2 ✓ 3
2
π 3
2
0
π
π
3
6
Shaded Area 7
= ∫1 [(8x − x 2 ) − 7]
𝑃 𝑂 1
𝑄 7
√3 2
π
− ) unit 2 ✓ 6
Points P & Q At P & Q, y = x 2 − 12x + 42 meets y = x + 2 x 2 − 12x + 42 = x + 2 𝑦 x 2 − 13x + 40 = 0 𝑦 = 𝑥 2 − 12𝑥 + 42 𝑄 (x − 5)(x − 8) = 0 𝑦 =𝑥+2 x = 5 or x = 8 𝑂
Shaded Area (x + 2) 8 ] dx = ∫5 [ 2 −(x − 12x + 42)
= [−
3
𝑦=7 𝑥
= [− = [−
x3 3
+
512 3
13 2 x 2
3
98 3
= −74
7
1
+
13 2
2
(64) − 40(8)]
+79
3
5
125 3
+
13 2
(25) − 40(5)]
1 6
2
= 4 unit ✓
1
2
2
+ 4(7) − 7(7)] − [−
=
𝑥
8
− 40x]
− [−
+ 4x − 7x]
(7)3
8
8
7
2
5
= ∫5 [−x 2 + 13x − 40] dx
= ∫1 [−x 2 + 8x − 7] dx = [−
𝑄
𝑃
Points P & Q At P & Q, y = 8x − x 2 meets y = 7 8x − x 2 =7 2 x − 8x + 7 = 0 𝑦 (x − 1)(x − 7) = 0 𝑦 = 8𝑥 − 𝑥 2 x = 1 or x = 7
x3
𝑂
= (sin − ) − (sin 0 − 0)
2
= [−
1
= [sin x − x]
𝑦 = 8𝑥 − 𝑥 2 1 𝑦 7 𝑥
𝑃
π 3
+
(1)3 3
+ 4(1)2 − 7(1)]
10 3
= 36 unit 2 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
530
A math 360 sol (unofficial) 5
Ex 19.2
Points P & Q At P & Q, y = x + 3 meets y = −x 2 + 8x − 7 x+3 = −x 2 + 8x − 7 x 2 − 7x + 10 = 0 (x − 2)(x − 5) = 0 x = 2 or x = 5 𝑦 Shaded Area 𝑦 =𝑥+3 5 (−x 2 + 8x − 7) ] dx =∫ [ 𝑄 −(x + 3) 2 𝑃 𝑥 5 5 𝑂 2 2 = ∫ [−x + 7x − 10] dx 𝑦 = −𝑥 2 + 8𝑥 − 7 2 =
x3
7 [− + x 2 3 2 125 7
= [−
= −4
3 1
− 10x]
7
Area of region A 1
= ∫0 [(ex ) − 1] dx
𝑦 = 𝑒𝑥 𝑥=1 1
= =
1 ∫0 [(1) 1 ∫ 2
− (1 − x
A B
Area of region B 2 )]
𝑂 dx
𝑦=1
𝑥 1 𝑦 = 1 − 𝑥2
x dx
0 x3
1
5
=[ ]
2
1 = [13 − 03 ] 3 1 = unit 2 ✓
3 0
8
7
3
2
+ (25) − 50] − [− + (4) − 20] 2
+8
6
𝑦
= [ex − x]10 = [e1 − 1] −[e0 − 0] = e − 1 −1 = (e − 2) unit 2 ✓
2
3
3
1
= 4 unit 2 ✓ 2
6
8(i)
𝑦 𝑦 = 2 sin 𝑥 𝑦=𝑥 𝑥
𝑂
By inspection, y = 2 sin x and y = x π π intersect at (0,0) and ( , ) 2 2 𝑦 𝑦 = 2 sin 𝑥 Area of region π
= ∫02 [(2 sin x) − x] dx = [−2 cos x −
=−
]
𝑂
2
2
2 π2 8
] − [−2 cos 0 −
] −[−2(1)
02 2
]
− 0]
+2
8
= (2 −
π 2 2
( )
−
π2
𝑦=𝑥 𝑥 𝜋
2 0
π
= [−2 cos − = [0
π x2 2
π2 8
) unit 2 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
Points P & Q At P & Q, y = 7 + 6x − x 2 meets x-axis (y = 0). 7 + 6x − x 2 = 0 x 2 − 6x − 7 = 0 (x − 7)(x + 1) = 0 x = 7 or x = −1 ⇒ P(7,0) ✓ ⇒ Q(−1,0) ✓ Point R At R, y = 7 + 6x − x 2 meets y − axis (x = 0): y|x=0 = 7 ⇒ R(0,7) ✓ Point S At S, y = 7 + 6x − x 2 meets y = 7. y =7 2 7 + 6x − x = 7 6x − x 2 =0 2 x − 6x =0 x(x − 6) =0 x=0 or x=6 (taken at R) ⇒ S(6,7) ✓
531
A math 360 sol (unofficial) 8(ii)
Ex 19.2 9(i)
𝑦 𝑦 = 7 + 6𝑥 − 𝑥 2
𝑅
𝑆
𝑄 𝑂
𝑃
(−2,0)
y = x 2 − 7x + 15
−(1)
y=7−x
−(2)
sub (1) into (2): 7−x = x 2 − 7x + 15 x 2 − 6x + 8 =0 (x − 2)(x − 4) = 0 x = 2 or x = 4
𝑥
Left region = = =
𝑦
−1 ∫−2 0 − (7 + 6x − x 2 ) dx −1 − ∫−2 (7 + 6x − x 2 ) dx −2 ∫−1 (7 + 6x − x 2 ) dx −2 x3 2
= [7x + 3x −
− [7(−1) + 3(−1) − +3
3 1
(−2)3
3 (−1)3 3
𝑂
]
1 2 2
= ∫1 [(x 2 − 7x + 15) − (7 − x)] dx
3
2
= ∫1 (x 2 − 6x + 8) dx
2
= 4 unit ✓ 3
=[ Middle region 0
=[
= ∫ (7 + 6x − x 2 ) dx
x3
− 3x 2 + 8x]
3
= [7x + 3x −
x3
− 3(2)2 + 8(2)]
3
−[
0
]
3 −1 (0)3 2
= [7(0) + 3(0) −
3
− [7(−1) + 3(−1) − +3
=6 ]
(−1)3 3
2
2
(1)3
−5
3 1
3
− 3(1)2 + 8(1)]
1 3
2
= 1 unit ✓ 3
] 9(ii)
3
2
1
(2)3
−1
=0
𝑥
4
Region A
]
2
2
𝑦 =7−𝑥
𝐵
3 −1
= [7(−2) + 3(−2) −
=
𝐴
]
2
2
𝑦 = 𝑥 2 − 7𝑥 + 15
Region B 4
= ∫2 [(7 − x) − (x 2 − 7x + 15)] dx
2
= 3 unit 2 ✓ 3
4
= ∫ (−x 2 + 6x − 8) dx Right region =
6 ∫0 (7 6
2 4
x3 x2 = [− + 6 ( ) − 8x] 3 2 2
+ 6x − x 2 ) − 7 dx
= ∫ (6x − x 2 ) dx
= [−
0
= =
[3x 2
−
x3
6
]
3 0 (6)3 [3(6)2 − ] 3 (0)3 2
− [3(0) −
3
= [−
x3 3
+ 3x 2 − 8x]
(4)3 3
= −5
+ 3(4) − 8(4)]
3
+6
(2)3 3
+ 3(2)2 − 8(2)]
2 3
4
= 36 −0 = 36 unit 2 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
1
2
2
− [− ]
4
= ✓ 3
sleightofmath.com
532
A math 360 sol (unofficial) 10(i)
Ex 19.2
y = x 2 + 4x − 5 dy dx
10(ii) Method 1 (complement)
= 2x + 4
𝑦
𝑦 = 𝑥 2 + 4𝑥 − 5
Gradient of tangent is 10, dy
𝑃
= 10
dx
2x + 4 = 10 x =3 y|x=3 = 32 + 4(3) − 5 = 16 ✓
𝑅 1
𝑂
Area of PQR = area of PR𝑇 =
10(ii) Point P P(3,16)
3 ∫1 (x 2
=[
x3
=( Point R At R, y = x 2 + 4x − 5 cuts x − axis (y = 0): x 2 + 4x − 5 = 0 (x + 5)(x − 1) = 0 x = −5 or x = 1 (rej ∵ x > 0) ⇒ R(1,0) Line PQ Points: Gradient: PQ:
−area of ⊿PQT
+ 4x − 5) − (0) dx
+ 2x 2 − 5x]
5
1
− (1.6)(16) 2
1
+ 18 − 15) − ( + 2 − 5)
15
7
2
−12.8
3
unit 2 ✓
𝑦
B A 𝑂
1
3
7
𝑥
5
Area of shaded region PQR = region A +region B 7
= ∫15(x 2 + 4x − 5) − 0 dx 3
+ ∫7 [(x 2 + 4x − 5) − (10x − 14)] dx 5 7 5
= ∫1 [x 2 + 4x − 5] dx 7 5
= ∫1 [x 2 + 4x − 5] dx
7 5
=[
7
⇒ Q ( , 0) 5
x3 3
+ 2x 2 − 5x]
3
sleightofmath.com
15
5
3
+ ∫7 [(x − 3)2 ] dx 5
+[
(x−3)3 3
3
]7 5
7 2 5
1
3 13
3
+ ∫7 [x 2 − 6x + 9] dx
+ 2 ( ) − 7]
− [ + 2 − 5] =1
7 5
1
7 3 ( ) 5
=[
© Daniel & Samuel A-math tuition 📞9133 9982
3
1
3 13
1
− (3 − ) (16)
Method 2 (break)
P(3,16) or Q mPQ = 10 y − y1 = mPQ (x − x1 ) y − 16 = 10(x − 3) 𝑦 − 16 = 10𝑥 − 30 y = 10x − 14
=
3 27
=1
Point Q At Q, PQ (𝑦 = 10𝑥 − 14) cuts x − axis (y = 0): y =0 10x − 14 = 0 10x = 14 x
𝑥
𝑄 3
+0
− (−
512
)
375
unit 2 ✓
533
A math 360 sol (unofficial) 11(i)
Ex 19.2
Point A At A, y = 7 + 6x − x 2 cuts y − axis (x = 0): y|x=0 = 7 ⇒ A(0,7)
12(ii) Area of region A k 1
= ∫1 =
=[
A(0,7) lies on y = mx + c, (7) = m(0) + c c =7✓
𝐴
=1− =
− m)x − x x3
2
3 0
[(6 − m) ( ) − [(6 − m) ( (6 −
(6−m)2 2
− (mx + 7)] dx = 20 = 20
6−m
x2
]
)−
1 m)3 [ ] 6 3
(6 − m) 6−m m
= 20 (6−m)3 3
] − [0]
= 20 =
k
k
𝑥
✓
−
=
−
=
= 20
dx
𝐴 1
k
1
=
2]
k−1
= (k − 1)(k + 1)
𝑥
+ 6x − x
𝐵
𝑄(1,1) 𝑂
𝑃(𝑘, 𝑘)
12(iii) By complement Area of region B = area of trapezium −area of region A
=
2)
1 𝑥2
k 1
𝑦 + 6𝑥 − 𝑥 2
Area of shaded region 6−m ∫0 [(7 6−m ∫0 [(6
−1 1 1 k
= − ( − 1)
𝑦 = 𝑚𝑥 + 𝑐
6−𝑚
𝑂
𝑦=
]
x 1 1
𝑦 𝐵
𝑦
= [− ]
11(ii) Point B At B, y = mx + 7 meets y = 7 + 6x − x 2 mx + 7 = 7 + 6x − x 2 x 2 + mx − 6x = 0 x 2 + (m − 6)x = 0 x[x − (m − 6)] = 0 x=0 or x = −(m − 6) (taken at A) =6−m✓ 11(iii)
dx
x2 k −2 ∫1 x dx k x−1
5 6 5
2 k2 −1 2
k−1 k k−1 k
k3 −k−2k+2 2k k3 −3k+2 2k (k−1)(k2 +k−2) 2k
13
[deduced] ✓
𝑦
6 5
𝑦 = √1 − 𝑥 2
6 5
𝑂
6
𝑥 𝑦 =1−𝑥
5 6
125
1
∫0 [√1 − x 2 − (1 − x)] dx
6
1
= 125 =5 =1✓
= ( area of circle) − (area of triangle) 4
1
= [π(1)2 ] 4 π
1
4
2
1
− (1)(1) 2
= − ✓ 12(i)
y=x✓ 14
∞ 1
∫1
x2
dx represents the convergent value of area as
→ ∞✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
534
A math 360 sol (unofficial)
Rev Ex 19 A3
Rev Ex 19 A1(i)
Area of region A
𝑦
p 8
= ∫1
x
2 dx
1 p
𝑦=
= 8 [− ]
x 1 1 1
𝐴
= −8 ( − ) p 8
1
𝑂
= (8 − ) unit 2 ✓
−(1)
x=3 −(2) sub (2) into (1):
8 𝑥2
𝐵
1 P
Coordinates y 2 = 3x 𝑦 = ±√3𝑥
𝑦 = ±√3(3) = ±3
𝑥
6
p
Shaded region A1(ii) A
=B
8− 8− 8− 8− 8−
8
=
p 8 8 8
= −8 ( − )
p 8
6
8
3
p
=− +
p
= =
7
d
1
9
9
+6
✓ A4
(sin x) +
Area of region A =
d
(x) ⋅ sin x
− sin x
= x ⋅ cos x +1 ⋅ sin x = x cos x + sin x = x cos x [shown] ✓
− sin x − sin x
dx
𝑥
= 12 unit 2 ✓
(x sin x + cos x)
=x⋅
𝑥=3
1
=6
28 3 12
𝑂 −3
= [3(3) − (3)3 ] − [3(−3) − (−3)3 ]
p
4
𝑦 2 = 3𝑥
3
3 1 = [3y − y 3 ] 9 −3
x p 1 1
p
dx
3 1 = ∫ [3 − y 2 ] dy 3 −3
= −8 [ ]
p
𝑦
1 3
x p 1 6
p
d
6 8 ∫p (x2 ) dx 1 6
= 8 [− ]
p
16
A2(a)
3
= ∫−3 [(3) − ( y 2 )] dy
dx
1 ∫0 x(x
− 1)(x − 2) dx
𝑦 𝑦 = 𝑥(𝑥 − 1)(𝑥 − 2)
1 2
= ∫ x(x − 3x + 2) dx
𝐴 𝑂 1
𝐵
2
𝑥
0 1
= ∫0 (x 3 − 3x 2 + 2x) dx =[
A2 At A, y = x cos x cut x − axis (y = 0): (b)(i) x cos x = 0 x = 0 or cos x = 0 π (rej ∵ x > 0) x =
x4 4
1
− x3 + x2 ]
0
1
= ( − 1 + 1) − (0) 4
=
2
1 4
π
⇒ A ( , 0) ✓ 2
A2 Shaded Area π (b)(ii) = ∫02 x cos x − (0) dx
Area of region B
π
= ∫02 x cos x dx = [x sin x + π
π
2
2
𝑂
π cos x]02 π
2
= − ∫1 x(x − 1)(x − 2) dx
𝑦 𝑦 = 𝑥 cos 𝑥 𝐴 𝑥 𝜋 2
=
2
2
x4 4
1
− x3 + x2 ]
2
4
−1
≈ 0.57 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
=[
1 = ( − 1 + 1) − (4 − 8 + 4) 4 1 =
= ( sin + cos ) −(0 + 1) π
1
= ∫2 (x 3 − 3x 2 + 2x) dx
∴A=B✓
sleightofmath.com
535
A math 360 sol (unofficial) A5(i)
Rev Ex 19
Point P At P, y = x 2 − 2x + 2 meets y − axis (x = 0): y|x=0 = 2 ⇒ P(0,2) ✓
A6(ii)
𝑦 = 2𝑥 𝐴 𝑂
Point Q At Q, y = x 2 − 2x + 2 has x-coordinate of 3 y|x=3 = 32 − 2(3) + 2 =5 ⇒ Q(3,5) ✓ A5(ii) Area of A =
3 ∫0 x 2
=[ =[
x3 3 3
−[
4
3
− x + 2x] −
Area of shaded region = left region +right region
𝑦 𝑦 = 𝑥 2 − 2𝑥 + 2
− 2x + 2 dx
(3)2
(0)3 3
+ 2(3)]
−
(0)2
𝑃 𝑂
𝐵 𝐴 (3,0)
+ ∫4 6x − x 2 dx
= [x 2 ]40
+ [3x 2 − x 3 ]
𝑥
B1(i)
2
4
+[108 − 72]− [48 −
= 16
+36
−48 +
64
3 64
]
3
2
Curve & its gradient y = x 2 − 4x + 5 dx
= 2x − 4
Normal PQ Point: y|x=3 = 32 − 4(3) + 5 = 2 ⇒ (3,2)
−6
Gradient:
1
= 4 unit 2 ✓
− 𝑑𝑦
1 |
𝑑𝑥 𝑥=3
2
PQ: Point A At A, y = 6x − x 2 meets y = 2x 6x − x 2 = 2x 4x − x 2 = 0 x 2 − 4x = 0 x(x − 4) = 0 x=0 or x = 4 y|x=0 = 2(0) y|x=4 = 2(4) =0 =8 ⇒ O(0,0) ⇒ A(4,8) ✓
3
=4 −0
dy
Area of B = area of trapezium −area of A 1
6
3
= 6 −0 = 6 unit 2 ✓
A6(i)
2
1
= 25 unit ✓
+ 2(0)]
= (3)(2 + 5)
6
= ∫0 2x dx
1
0
𝑥
4 6
2
2
(3)3
𝑦
y − y1
=−
1 2(3)−4
= − dy
1 |
=−
1 2
(x − x1 )
dx 𝑥=3
1
y − (2) = (− ) [x − (3)] 2
4 − 2y 2y + x
=x−3 = 7 [shown] ✓
B1(ii) Point Q At Q, PQ (2y + x = 7) cuts x − axis (y = 0): 2(0) + x = 7 x =7 ⇒ Q(7,0) ✓
Point B At B, y = 6 − x 2 meets x − axis (y = 0): 6x − x 2 = 0 x(x − 6) = 0 x=0 or x = 6 ⇒ O(0,0) ⇒ B(6,0) ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
536
A math 360 sol (unofficial) B1(iii)
Rev Ex 19 B2(b) Coordinates y = x(x − 3) −(1)
𝑦 𝑦 = 𝑥 2 − 4𝑥 + 5 𝑃 𝑄 𝑥 3 7
𝑂
Area of shaded region = left region 3
= ∫0 (x 2 − 4x + 5) dx =[
x3 3
− 2x 2 + 5x]
y = −2 −(2) (1) (2): sub into x(x − 3) = −2 2 x − 3x + 2 = 0 (x − 1)(x − 2) = 0 x = 1 or x = 2
+right region 7 7
1
2
2
+ ∫3 ( − x) dx
3
7
1
7
2 49
4 49
3
+ [ x − x2 ]
0
= [9 − 18 + 15] − [0]
+[
=6 = 10 unit 2 ✓
+4
2
−
4
]−[
𝑦
21
2
𝑦 = −2
x
3
2
= ∫ [(−2) − x(x − 3)] dx
4
1 2 ∫1 (−2 − 3x − x 2 ) dx 1 ∫2 (x 2 + 3x + 2) dx 1 x3 3 [ − x 2 + 2x] 3 2 2 1 3 8
=
=
= [ − + 2] − [ − 6 + 4]
𝑥
5
1 𝑂
2
9
− ]
𝑦 = 𝑥(5 − 𝑥)
𝑂
𝑦 = 𝑥(𝑥 − 3)
Area
= B2(a)
y
3 1
=
6
2
3
2
unit ✓
✓ B3(i)
Area of left region
𝑦
2
= ∫0 [x(5 − x)] dx = =
d dx
[(x − 1)ex ]
= (x − 1) ⋅
2 ∫0 (5x − x 2 ) dx 2 5 1 [ x2 − x3 ] 2 3 0 8
𝑂
2
5
d dx x
(ex )
= (x − 1) ⋅ e = ex [(x − 1) +1] = xex [shown] ✓
𝑥
+
d dx
(x − 1) ⋅ ex ⋅ ex
+1
= [10 − ] − (0) 3
=
B3(ii) Area of shaded region A
22
0
3
= ∫−2[(0) − (xex )] dx
Area of right region 5
=
5
= =
= ∫2 [x(5 − x)] − (0) dx = ∫2 [5x − x 2 ] dx 1
5
3 125
2
5
= [ x2 − x3 ] =[ =
2 125
2 27
−
3
𝑦
−2 ∫0 xex dx [(x − 1)ex ]−2 0 (−3)e−2
1 −2 A
−[−1(e0 )]
B 0.5
𝑥
3
8
=1
3
≈ 0.594 unit 2 ✓
] − [10 − ]
−
𝑂
𝑦 = 𝑥𝑒 𝑥
e2
2
Area of shaded region B Ratio =
22 3
=44
0.5
:
= ∫0 [(1) − (xex )] dx
27
= [x − (x − 1)ex ]0.5 0
2
: 81 [shown] ✓
1
1
= [0.5 − (− ) e2 ] −[0 − (−1)e0 ] 2
1
1
= ( + √e) 2 2
−1 2
≈ 0.324 unit ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
537
A math 360 sol (unofficial) B4(i)
Rev Ex 19
π 2 π 6
π
B5(ii) y-coordinate of P
∫ sin x dx = [− cos x]π2
4 π
y|x=π = 1 + ( ) = 2
6
=
π −[cos x]π2 6
Region B = area of trapezium −region A
π π = − (cos − cos ) 2 6
B4(ii)
√3 2
1 π
= ( ) (1 + 2) 2 4 3π
√3 ) 2
= − (0 − =
π 4
4
=(
unit 2 ✓
B6(i)
𝑦
dx
𝑦 = sin 𝑥
A B
= ex
Tangent Point:
1 2
Gradient: 𝑂
𝜋
𝜋
6
2
𝜋
𝑥
sin x =
⇒x=
2
sin x = 1
⇒x=
6 π
= = = = B5(i)
6 π 2 π 6 π 2 π 6
π 12 π 12 π 12 5 12
√3 2
π
+ ∫ 1 dx
− ∫π2 sin x dx
+[x]
√3 − 2
6
π
π
2
6
+ − π−
dy
(x − x1 )
|
dx x=2 2 (x
−
B6(ii) Area enclosed by curve & x − axis & lines x = 0, x = 2
√3 2
π 4
= [ex ]20 = e2 − e0 = e2 − 1 ✓
𝑦 𝑦 = sec 𝑥 𝑦 =1+
𝑃
𝐵
𝑥
2
Shaded region = (Bigger area) − △ ABC area
𝐵 𝐴 𝜋
𝑥
sleightofmath.com
1
= e2 − 1
− [2 − 1][e2 ]
= e2 − 1
− e2
=
4
© Daniel & Samuel A-math tuition 📞9133 9982
𝑂
4
1 𝑂
𝐶
𝜋
π
= [tan x]04 π = tan − tan 0 4 = 1 unit 2 ✓
𝐴
𝑦 = 𝑒𝑥
2
2
= ∫ (sec 2 x) dx
𝑦
= ∫0 [(ex ) − 0] dx
[shown] ✓
Region A
0
=
Point B At B, tangent cuts x − axis (y = 0): e2 x − e2 = 0 x =1 ⇒ B(1,0) ✓
+ [∫π2 1 − sin x dx]
2 6
= e2
|
dx x=2
2
π
1 π
dy
y − e2 = e − 2) 2 y = e x − 2e2 + e2 y = e2 x − e2
π
Area of the shaded region = rectangle A +region B = (1 − )
y|x=2 = e2 ⇒ A(2, e2 )
Tangent: y − y1
Coordinates 1
− 1) unit 2 ✓
Curve & its gradient y = ex dy
1
8
−1
1 ( e2 2
2 1 2
2
− 1) unit [shown] ✓
538
A math 360 sol (unofficial) 4(i)
Ex 20.1 1(i)
Displacement s = 2t 2 + t s|t=2 = 2(2)2 + 2 = 10 ✓
1(ii) 1
𝑠 = 2𝑡 2 + 𝑡 𝑂 𝑡
Velocity v =
ds dt
= 14t − 10
4(ii)
v|t=3 = 14(3) − 10 = 32 ms −1 ✓
5(i)
Displacement s = 7t 2 − 2t 3
2
Distance travelled in 1st 2s = s|t=2 −s|t=0 = 10 −0 = 10m ✓
Velocity v=
Velocity 1 v = 5t − t 2 2 v|t=0 = 0ms −1 ✓
2(ii)
Displacement s = 7t 2 − 10t
𝑠
−
2(i)
Ex 20.1
ds dt
= 14t − 6t 2 ✓ 5(ii)
Acceleration a =
At rest, v =0
dv dt
= 14 − 12t ✓
1
5t − t 2 = 0 2
t 2 − 10t = 0 t(t − 10) = 0 t = 0 or t = 10 ✓ 3(i)
5(iii)
a|t=2 = 14 − 12(2) = −10ms −2 ✓
6(i)
Acceleration a=t−9
Acceleration a = t − 5t 2
Velocity v = ∫ a dt = ∫ t − 9 dt
Accelerating at 0.05m/s 2 , a = 0.05 2 t − 5t = 0.05 2 20t − 100t =1 2 100t − 20t + 1 = 0 (10t − 1)2 =0 t = 0.1s ✓
=
Decelerating at 6 m/s 2 , a = −6 2 t − 5t = −6 5t 2 − t − 6 =0 (5t − 6)(t + 1) = 0 t = 1.2 or t = −1 (rej ∵ t > 0) ✓
2
− 9t + c
Initial velocity of −20 m/s, v|t=0 = −20 (0)2 2
3(ii)
t2
− 9(0) + c= −20
c
= −20 1
∴ v = t 2 − 9t − 20 ✓ 2
6(ii)
At rest, v 1 2 t 2 2
− 9t − 20
=0 =0
t − 18t − 40 = 0 (t − 20)(t + 2) = 0 t = 20s ✓ or t = −2 © Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
(rej ∵ t > 0)
539
A math 360 sol (unofficial) 7(i)
Velocity v=
Ex 20.1 9(i)
1 8e−2
Velocity
Displacement s = ∫ v dt = ∫ 8e
−
1 2
Displacement s = 12t − t 3
v =
ds dt
= 12 − 3t 2
dt
1 − 2
= 8e t + c
At rest, v =0 2 12 − 3t =0 2 t −4 =0 (t + 2)(t − 2) = 0 t = −2 or t = 2 (rej ∵ t > 0)
t ≡ time after leaving O: s|t=0 =0 1
8e−2 (0) + c = 0 c =0 1
∴ s = 8e−2 t ✓ 7(ii)
a=
s|t=5 = 8e (5) =
8(i)
Acceleration
1 − 2
40 √e
Acceleration at rest, a|t=2 = −6(2) = −12ms −2 ✓ 9(ii)
Velocity v =
ds
Recall
s = 12t − t 3 v = 12 − 3t 2 a = −6
dt
= 3t 2 − 24t + 36
Displacement Next at O, s =0 3 12t − t = 0 t 3 − 12t = 0 t(t 2 − 12) = 0 t = 0 or t = −√12 or t = √12 (rej both ∵ t > 0)
v|t=1 = 3 − 24 + 26 = 15 ms −1 ✓ 8(ii)
dt
= −6t
m✓
Displacement s = t(t − 6)2 = t(t 2 − 12t + 36) = t 3 − 12t 2 + 36t
dv
At rest, v =0 2 3t − 24t + 36 = 0 t 2 − 8t + 12 =0 (t − 2)(t − 6) = 0 t = 2 or t = 6 ✓
Velocity Velocity at t = √12: v|t=√12 = 12 − 3(√12)
8(iii)
= 12 − 36 = −24ms −1
Acceleration a =
2
dv dt
= 6t − 24 a|t=3 = 6(3) − 24 = −6ms −2 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
540
A math 360 sol (unofficial) 9(iii)
Recall
s = 12t − t 3 v = 12 − 3t 2 a = −6
Ex 20.1 10(ii) s|t=2 = 18(2)2 − 24 = 56 Distance travelled in 3rd sec = s|t=3 − s|t=2 = 81 − 56 = 25m ✓
Distance 𝑦 12
𝑣 = 12 − 3𝑡 2 𝑥 −2 𝑂 2
10(iii) a = dv dt
Distance travelled in first 3 seconds
= 36 − 12t 2
3
= ∫ |v| dt = = =
0 2 ∫0 |v| dt 2 ∫0 v dt 2 ∫0 v dt [s]20
When a = −12, a = −12 36 − 12t 2 = −12 2 12t − 48 =0 2 t −4 =0 (t + 2)(t − 2) = 0 t = −2 or t = 2 (rej ∵ t > 0)
3 + ∫2 |v| dt 3 + ∫2 −v dt 2 + ∫3 v dt +[s]23
= = (s|t=2 − s|t=0 ) +(s|t=2 − s|t=3 ) = 2s|t=2 −s|t=0 −s|t=3 = 2(16) −0 −27 = 23m ✓ 10
Velocity Velocity when a = −12: v|t=2 = 36(2) − 4(2)3 = 72 − 32 = 40ms −1 ✓
Displacement s = 18t 2 − t 4 Velocity v =
ds
11(i)
dt
= 36t − 4t 3 At rest, v =0 36t − 4t 3 =0 3 t − 9t =0 2 t(t − 9) =0 t(t + 3)(t − 3)= 0 t = 0 or t = −3 or t = 3 (rej both ∵ t > 0) Displacement s|t=3 = 18(3)2 − 34 = 162 − 81 = 81 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
Height h = 24t − 3t 2 Velocity v =
dh dt
= 24 − 6t v|t=3 = 24 − 6(3) = 6ms −1 ✓ 11(ii) At max height, v =0 24 − 6t = 0 t =4✓ Height h|t=4 = 24(4) − 3(4)2 = 96 − 48 = 48m
sleightofmath.com
541
A math 360 sol (unofficial)
Ex 20.1
11(iii) At h = 0, 24t − 3t 2 = 0 t 2 − 8t =0 t(t − 8) = 0 t = 0 or t = 8
13(i)
At rest: v =0 2t 2 − 3t − 2 =0 (2t + 1)(t − 2) = 0
Time of flight = 8 − 0 = 8s ✓ 12(i)
Velocity v = 2t 2 − 3t − 2
t=−
Displacement s = ∫ v dt 3t2
3
2
− 2t + c
dv dt
At t = 0, s = 3: s|t=0
= 3e0.4t (0.4) = 1.2e0.4t
2 3
2
e
2
(0)2
=3
− 2(0) + c = 3 =3
2
3
3
2
s = t 3 − t 2 − 2t + 3 Displacement at rest:
+ 6t + c
0.4 15 0.4t
−
3
Displacement with c = 3:
12(ii) Displacement s = ∫ v dt 3e0.4t
(0)3
c
Initial acceleration a|t=0 = 1.2e0 = 1.2ms −2 ✓
=
2
= t3 −
Acceleration
=
or t = 2 ✓
2
(rej ∵ t > 0)
Velocity v = 3(e0.4t + 2) = 3e0.4t + 6
a=
1
2
3
s|t=2 = (8) − (4) − 2(2) + 3
+ 6t + c
=
3 16 3
2
−6−4+3 5
=− m✓
t ≡ time after leaving O: s|t=0 =0 15 0 e 2
+ 6(0) + c
=0
c
=−
15 2
Displacement with c = − s=
15 0.4t e 2
3
+ 6t −
15 2
:
15 2
Displacement when t = 1: s|t=1 = =
15 0.4 e 2 15 0.4 e 2
+6−
15 2
3
− ✓ 2
12(iii) Velocity v = 3e0.4t + 6 > 0 ∵ e0.4t > 0 ∴ The particle will not return to O
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
542
A math 360 sol (unofficial)
Ex 20.1
13(ii) Displacement when t = 3: s|t=3 2
14(i)
3
= (27) − (9) − 2(3) + 3 3
2
= 18 −
27 2
−6+3
27 2 1 =1 m✓
Velocity v = ∫ a dt = −t 2 + 6t + c
= 15 − 2
Initial Velocity of 7 m/s: v|t=0 =7 2 −(0) + 6(0) + c = 7 c =7
𝑣 𝑣 = 2𝑡 2 − 3𝑡 − 2 𝑂 −
Acceleration a = 2(3 − t) = 6 − 2t = −2t + 6
1
2
2
t Velocity with c = 7: v = 6t − t 2 + 7
Total distance travlled in first 3s At v = 7, v =7 2 −t + 6t + 7 = 7 −t 2 + 6t =0 t(t − 6) =0 t = 0 (rej) or t = 6 ✓
3
= ∫ |v| dt = = =
0 2 3 ∫0 |v| dt + ∫2 |v| dt 2 3 ∫0 −v dt + ∫2 v dt 0 3 ∫2 v dt + ∫2 v dt [s]02 +[s]32
= = s|t=0 − s|t=2 +s|t=3 − s|t=2 = s|t=0 −2s|t=2 +s|t=3 5
3
3
2
14(ii) Displacement s = ∫ v dt 1
= − t 3 + 3t 2 + 7t + c2
= (3) −2 (− ) + ( )
3
5
=7 ✓
t ≡ time after passing O: s|t=0 =0
6
1
3(0)2 − (0)3 + 7t + c2 = 0 3
c2
=0
Displacement with c2 = 0: 1
s = 3t 2 − t 3 + 7t 3
Position when v = 7: 1
s|t=6 = 3(36) − (216) + 42 3
= 78m ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
543
A math 360 sol (unofficial) 15(i)
Acceleration a = 8 − 4t = −4t + 8 Velocity v = ∫ a dt = −2t 2 + 8t + c
Ex 20.1 15(iii) Acceleration At max speed: a =0 8 − 4t = 0 t =2 da dt
<0 ∴ max
Starts from rest: v|t=0 =0 2 −2(0) + 8(0) + c = 0 c =0
Velocity Max speed: v|t=2 = 8(2) − 2(2)2 = 16 − 8 = 8ms −1 ✓
Velocity with c = 0: v = −2t 2 + 8t At rest, v =0 2 −2t + 8t = 0 t 2 − 4t =0 t(t − 4) =0 t = 0 (NA) or t = 4 ✓
16(i)
Initial Velocity of 30 m/s: v|t=0 = 30 2 13(0) − 3(0) + c = 30 c = 30
2
= − t 3 + 4t 2 + c2 3
t ≡ time after leaving O: s|t=0 =0 2
Velocity with c = 30: v = −3t 2 + 13t + 30
− (0)3 + 4(0)2 + c2 = 0 3
=0
Velocity after 3s: v|t=3 = −27 + 39 + 30 = 42 ms −1 ✓
Displacement with c2 = 0: 2
s = − t 3 + 4t 2 3
Distance OA: 2
s|t=4 = 4(16) − (64) 3
1
= 21 m ✓ 3
Acceleration a = 13 − 6t = −6t + 13 Velocity v = ∫ a dt = −3t 2 + 13t + c
15(ii) Displacement s = ∫ v dt
c2
= −4
16(ii) At max distance: v =0 13t − 3t 2 + 30 = 0 3t 2 − 13t − 30 = 0 (3t + 5)(t − 6) = 0 t=−
5 3
or
t=6 ✓
(rej ∵ t > 0)
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
544
A math 360 sol (unofficial) 16(iii) Displacement s = ∫ v dt = −t 3 +
13 2 t 2
Ex 20.1 17(iii) Distance Total distance travelled in first 2s 2
+ 30t + c2
= ∫ |v| dt =
t ≡ time after passing O: s|t=0 = 0 c2 = 0
=
= = s|t=1 − s|t=0 +s|t=1 − s|t=2 = 2s|t=1 − s|t=0 − s|t=2 = 2(47) − (40) − 42 = 12
Displacement with c2 = 0: s = −t 3 +
13 2 t 2
0 1 2 ∫0 v dt + ∫1 −v dt 1 1 ∫0 v dt + ∫2 v dt [s]10 +[s]12
+ 30t
Max Distance: s|t=6 =
13 2
average speed in first 2s 12 = 2 = 6ms −1 ✓
(36) − 216 + 30(6)
= 198m ✓ 17(i)
Displacement s = t 3 − 9t 2 + 15t + 40
s|t=2 = 8 − 36 + 30 + 40 = 42
Velocity v=
ds
s|t=6 = 216 − 324 + 90 + 40 = 22
dt
= 3t 2 − 18t + 15 At zero velocity, v =0 2 3t − 18t + 15 = 0 t 2 − 6t + 5 =0 (t − 1)(t − 5) = 0 t = 1 or t = 5
17(iv) 𝑣 𝑣 = 3𝑡 2 − 18𝑡 + 15 𝑂 1
Displacement s|t=1 = 1 − 9 + 15 + 40 = 47m ✓
Total distance travelled in first 6s 6
= ∫0 |v| dt 1
= ∫0 |v| dt
s|t=5 = 125 − 225 + 75 + 40 = 15m ✓
1
= ∫0 v dt 1
17(ii) Acceleration a=
dv dt
= 6t − 18 magnitude of 9: |a| = 9 a = −9 or a =9 6t − 18 = −9 6t − 18 = 9 t = 1.5 s t = 4.5s
© Daniel & Samuel A-math tuition 📞9133 9982
𝑡
5
sleightofmath.com
5
+ ∫1 |v| dt 5
+ ∫1 −v dt 1
6
+ ∫5 |v| dt 6
+ ∫5 v dt 6
= ∫0 v dt
+ ∫5 v dt
+ ∫5 v dt
= [s]10
+[s]15
+[s]65
= 2s|t=1
+s|t=6 −s|t=0
−2s|t=5
= 2(47) = 46 ✓
+22
−2(15)
−(40)
545
A math 360 sol (unofficial) 18(i)
Ex 20.1
Acceleration a = 6t − 8
18(iii) Acceleration At min velocity, a =0 6t − 8 = 0
Velocity v = ∫ a dt = 3t 2 − 8t + c
t
4 2
2 3
= − ms
✓
Velocity v = −3t 2 + 8t + 5 Acceleration a=
dv dt
= −6t + 8 ✓
or t = 2
19(ii) s = ∫ v dt t3
t2
3
2
= −3 ( ) + 8 ( ) + 5t + c
Displacement with c2 = 0: s = t 3 − 4t 2 + 4t Distance 2
= ∫03|v| dt 2
= ∫03 v dt
= −t 3 + 4t 2 + 5t + c ∵ t ≡ time after passing O, s|t=0 = 0 c =0 ∴ s = −t 3 + 4t 2 + 5t 19(iii) Velocity At speed of 2ms −1 , v = ±2 v =2 2 −3t + 8t + 5 = 2 3t 2 − 8t − 3 =0 (3t + 1)(t − 3) = 0 1
t = − or t = 3 ✓
= s|2 − s|t=0
3
3
2 3
2 2
2
3
3
3
(rej ∵ t > 0)
= [( ) − 4 ( ) + 4 ( )] − 0 27
3
−1
3
19(i)
t ≡ time after passing O: s|t=0 = 0 c2 = 0
32
3 4
3
Displacement s = ∫ v dt = t 3 − 4t 2 + 4t + c2
=
4
v|t=4 = 3 ( ) − 8 ( ) + 4
At rest: v =0 3t 2 − 8t + 4 = 0 (3t − 2)(t − 2) = 0 t=
3
Velocity Min velocity,
Initial velocity of 4m/s: v|t=0 =4 3(0)2 − 8(0) + c1 = 4 c1 =4 Velocity with c = 4: v = 3t 2 − 8t + 4
4
=
or v = −2 −3t 2 + 8t + 5 = −2 −3t 2 + 8t + 7 = 0 3t 2 − 8t − 7 = 0 t = = =
m✓
= 18(ii) Return to starting pt: s =0 3 2 t − 4t + 4t = 0 t(t 2 − 4t + 4) = 0 t(t − 2)2 =0 t = 0 (NA) or t = 2 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
= t=
8±√64−4(3)(−7) 2(3) 8±√148 6 8±√4×37 6 8±2√37 6 4±√37 3 4−√37 3
or t =
4+√37 3
✓
(rej ∵ t > 0)
sleightofmath.com
546
A math 360 sol (unofficial) 19(iv) Displacement s = ∫ v dt = −t 3 + 4t 2 + 5t + c2
Ex 20.1 20(ii) Displacement s = ∫ v dt 1
= − t 3 + 9t + c 3
t ≡ time after passing O: s|t=0 = 0 c2 = 0
t ≡ time from start: s|t=0 = 0 c=0
Velocity with c2 = 0: s = −t 3 + 4t 2 + 5t
Displacement with c = 0: 1
s = − t 3 + 9t 3
At displacement of 20 m: s = 20 −t 3 + 4t 2 + 5t = 20 3 2 t − 4t − 5t + 20 =0 2 (t − 4)(t − 5) =0 (t − 4)(t − √5)(t + √5) = 0
At starting pt again: s = 0: 1
− t 3 + 9t = 0 3
t 3 − 27t = 0 t(t 2 − 27) = 0 t(t + √27)(t − √27) = 0 t(t + 3√3)(t − 3√3) = 0 t = 0 or t = −3√3 or t = 3√3 (rej both ∵ t > 0) ✓
t = 4 or t = √5 or t = −√5 (rej ∵ t > 0) 20(i)
Velocity v = 9 − t2 = −t 2 + 9 At rest, v =0 2 −t + 9 =0 2 t −9 =0 (t + 3)(t − 3) = 0 t = −3 or t = 3 ✓ (rej ∵ t > 0)
20(iii) 18m from starting pt, s = 18 or
s
1 − t3 3 1 − t3 3 3
1 − t3 3 1 − t3 3 3
+ 9t
= 18
+ 9t − 18
=0
t − 27t + 54 =0 2 (t + 6)(t − 6t + 9) = 0 (t + 6)(t − 3)2 =0 t = −6 or t = 3 ✓ (rej ∵ t > 0) 21
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
= −18 + 9t
= −18
+ 9t − 18
=0
t − 27t − 54 =0 2 (t − 6)(t + 6t + 9) = 0 (t − 6)(t + 3)2 =0 t = 6 ✓ or t = −3 (rej ∵ t > 0)
max. speed ⇒ a = 0ms −2 ✓
547
A math 360 sol (unofficial)
Rev Ex 20 A1(iii) Displacement s|t=3 = 27(3) − 33 = 54 s|t=4 = 27(4) − 43 = 44
Rev Ex 20 A1(i)
Displacement s = 27t − t 3 = −t 3 + 27t
Distance travelled in fourth sec = |s|t=4 − s|t=3 | = |44 − 54| = 10cm ✓
Velocity v=
ds dt
= −3t 2 + 27 At rest: v 27 − 3t 2 t2 − 9 (t + 3)(t − 3) t = −3 or (rej ∵ t > 0)
A1(iv)
𝑣 = 27 − 3𝑡 2 =0 =0 =0 =0 t=3
−3
𝑂
3
t
Distance travelled in the first 4s 4
= ∫0 |v| dt 3
4
3
4
3
3
= ∫0 |v| dt + ∫3 |v| dt
Acceleration a=
𝑣
= ∫0 v dt + ∫3 −v dt
dv dt
= ∫0 v dt + ∫4 v dt
= −6t
= [s]30 Acceleration at rest: a|t=3 = −6(3) = −18ms −2 ✓ A1(ii) Displacement next at O: s −t 3 + 27t t 3 − 27t t(t 2 − 27) t(t + √27)(t − √27)
+[s]34
= 2s|t=3 −s|t=0
−s|t=4
= 2(54) −(0) = 64m ✓
−(44)
=0 =0 =0 =0 =0
t = 0 or t = −√27 or t = √27 (rej ∵ t > 0) Velocity Velocity when next at O, v|t=√27 = 27 − 3(√27)
2
= −54 cms −1 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
548
A math 360 sol (unofficial) A2(i)
Rev Ex 20
Velocity
A3(i)
v = 12 sin
t
Displacement 3t
s=
2
t2 +9
Velocity Speed of 8 m/s: |v| = 8 v = 8 or 12 sin sin
t
v
=8
2
t
sin
3
α ≈ 0.729 t 2
= −8
12 sin
2
=
2
ds
v=
t 2
t 2
t 2
≈ 0.729 t ≈ 1.46 ✓
(t2 +9)2 (t2 +9)⋅3
=
2 3
3t2 +27 −6t2 (t2 +9)2 27−3t2
= (t2
=π−α
+9)2 −3(t2 −9) (t2 +9)2
=
≈ 2.41 t ≈ 4.82 (NA)
v|t=1 = Acceleration a=
=
dv dt
6 25
−3(12 −9) (12 +9)2
ms −1 ✓
−3(e2 −9) A3(ii) v| t=3 = (32 2 = 0✓
t 1
= 12 cos ( ) 2 2
= 6 cos
−3t(2t)
(t2 +9)2
=
α ≈ 0.729
=α
d dt
=
= −8 =−
dt (t2 +9)⋅ (3t) −3t⋅(t2 +9)
+9)
t
∴ Particle comes to instantaneous rest when t = 3 ✓
2
a|t=1.46 = 6 cos (
1.46 2
≈ 4.47 ms
)
−2
✓
A3(iii) For positive velocity, v >0 −3(t2 −9) (t2 +9)2 2
A2(ii) Displacement s = ∫ v dt
>0
= −24 cos + c
−3(t − 9) > 0 t2 − 9 <0 (t + 3)(t − 3) < 0
t ≡ after leaving O: s|t=0 =0
+ − + −3 3
t
2
0
−24 cos + c1 = 0
⇒ −3 < t < 3
2
−24 + c c
∵ (t 2 + 9)2 > 0
=0 = 24
−3 < t < 3 and t ≥ 0 ∴0≤ t<3✓
Displacement with c = 24: t
s = −24 cos + 24 ✓
A4(i)
2
Displacement s = 12 sin(2t) − 6 Velocity v=
ds dt
= 12(cos 2t)(2) = 24 cos 2t ✓ Acceleration v=
dv dt
= 24(− sin 2t)(2) = −48 sin 2t ✓ © Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
549
A math 360 sol (unofficial)
Rev Ex 20
A4(ii) Displacement At fixed point: s =0 12 sin 2t − 6 = 0 sin 2t α=
=
π
A5(i)
1
Acceleration a=2−t = −t + 2 Velocity v = ∫ a dt
2
1
6
= − t 2 + 2t + c 2
2t = α π 2t = t
=
6 π
12
Initial Velocity of 6 m/s: v|t=0 = 6 c=6
s✓
A4(iii) −1 ≤ sin(2t) ≤ 1 −12 ≤ 12 sin(2t) ≤ 12 −18 ≤ 12 sin(2t) − 6 ≤ 6
Velocity with c = 6: 1
v = − t 2 + 2t + 6 2
Velocity when t = 5:
Max distance = |−18| = 18 m
1
v|t=5 = 10 − (25) + 6 2
= 3.5 ms −1 ✓
A4(iv) When s = 3: s =3 12 sin(2t) − 6 = 3 sin 2t
=
3
−(1)
4
A5(ii) Velocity At turning point: v =0 1
− t 2 + 2t + 6= 0 2
Speed when s = 3, |v| = |24 cos 2t| = |24√1 − sin2 2t| Sub (1) into (2):
t 2 − 4t − 12 =0 (t − 6)(t + 2) = 0 t = 6 or t = −2 (rej ∵ t > 0)
−(2)
3 2
|v| = |24√1 − ( ) |
Displacement s = ∫ v dt
4
7
= |24√ |
1
= − t 3 + t 2 + 6t + c2
16
= |24
6
√7 | 4
∵ t ≡ time after passing O, s|t=0 = 0 ⇒ c2 = 0
= 6√7 ms −1 ✓
1
∴ s = − t 3 + t 2 + 6t 6
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
550
A math 360 sol (unofficial) A5(ii)
𝑣 𝑣=
Rev Ex 20
1 − 𝑡2 2
−2 𝑂
6
+ 2𝑡 + 6
A6(ii) Displacement s = ∫ v dt = −2e−t + 3t 2 − 2t + c
𝑡
Start from rest: s|t=0 = 0 −2e0 + c = 0 c =2
Distance travelled 6
= ∫0 |v| dt 6
= ∫0 v dt
Displacement with c = 2: s = −2e−t + 3t 2 − 2t + 2
= s|t=6 −s|t=0 = [36] −[0] = 36m ✓ A6(i)
Acceleration a = 2(3 − e−t ) = 6 − 2e−t = −2e−t + 6
s|t=1 = −2e−(1) + 3(1)2 − 2(1) + 2 2 =− +3−2+2 e ≈ 2.26m ✓ B1(i)
Velocity 144
v = (2t+3)2 − 4k
Velocity v = ∫ a dt = 2e−t + 6t + c
Initial velocity of 12 m/s: v|t=0 = 12 144 (2(0)+3)2
Start from rest: v|t=0 = 0 2 + c= 0 c = −2 Velocity with c = −2: v = 2e−t + 6t − 2
− 4k = 12
16 − 4k −4k k
= 12 = −4 =1✓
B1(ii) Velocity with k = 1: 144
v = (2t+3)2 − 4
Velocity when t = 2: v|t=2 = 2e−(2) + 6(2) − 2 ≈ 10.3 ms −1 ✓
At rest, v 144 (2t+3)2 144 (2t+3)2 (2t+3)2
=0
−4
=0 =4 =
144
1 4
(2t + 3)2 = 36 2 4t + 12t + 9 = 36 2 4t + 12t − 27 = 0 (2t − 3)(2t + 9)= 0 t=
3 2
or
t=−
9 2
(rej ∵ t > 0)
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
551
A math 360 sol (unofficial)
Rev Ex 20
B1(iii) Velocity v = 144(2t + 3)−2 − 4
B2(ii) At rest, v =0 4e−t −
Acceleration a=
5
=0 2
dv
4e−t
=
dt
−t
e
=
−t
= ln
t
= − ln
= 144[−2(2t + 3)−3 ](2) 576 − (2t+3)3
=
2
5 1 10 1 10 1 10
≈ 2.30 ✓
1
Acceleration at t = : 2
a|t=1 = −
B2(iii) Acceleration
576 43
2
a=
= −9ms −2 ✓
=−
(2t+3)−1 (2)(−1)
72 2t+3
a|t=2.30 = −4e−(2.30) = −0.4 ms −2 ✓
] − 4t + c B3(i)
− 4t + c
∵ t ≡ time after leaving O, s|t=0 =0 −
72 3
v=
72
− 4t + 24
Acceleration
1
Displacement at t = :
a=
2
∴ s|t=1 = − 2
=−
72 1 2( )+3 2
72 4
1
− 4 ( ) + 24 2
− 2 + 24
Displacement 2
s = 4 − 4e−t − t 5
Velocity v=
ds dt
= 4e−t −
2 5
Initial velocity: v|t=0 = 4 −
dv dt
= 42 − 12t a|t=1 = 42 − 12(1) = 30ms −2 ✓
= 4m ✓ B2(i)
dt
v|t=1 = 42(1) − 6(1)2 = 36 ms −1 ✓
Displacement with c = 24: 2t+3
ds
= 42t − 6t 2
= 24
s=−
Displacement s = 21t 2 − 2t 3 Velocity
+c =0
c
dt
= −4e−t
Displacement s = ∫ v dt = 144 [
dv
B3(ii) Velocity For change in motion, v =0 2 42t − 6t = 0 t 2 − 7t =0 t(t − 7) =0 t=0 or t = 7 ✓ (rej ∵ t > 0)
2 5
= 3.6ms −1 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
552
A math 360 sol (unofficial)
Rev Ex 20
B3(iii) s|t=7 = 21(49) − 2(343) = 343 s|t=0 = 0 s|t=10 = 2100 − 2000 = 100
B4(ii) At rest, v =0 2 t − 8t + 7 =0 (t − 1)(t − 7) = 0 t = 1 or t = 7 𝑣 𝑂1
Distance 𝑣
𝑡
7
Point A:
𝑣 = −6𝑡 2 + 42
1
s|t=1 = − 4 + 7 3
7
𝑂
=3
𝑡
1 3
Point B: Total distance travelled for 1st 10s =
10 ∫0 |v| dt
=
7 ∫0 |v| dt 7
= ∫0 v dt 7
s|t=7 =
3
=− 10 + ∫7 |v| dt
− 4(49) + 49
98 3
Distance between A & B = s|t=1 − s|t=7 = 36m ✓
10
+ ∫7 −v dt 7
= ∫0 v dt
+ ∫10 v dt
= [s]70
7 +[s]10
B4(iii) Distance Distance travelled in 1st 9s 9
= 2s|t=7 − s|t=0 −s|t=10 = 2(343) − 0 = 586 ✓ B4(i)
343
= ∫ |v| dt
−100 = =
Velocity v = t 2 − 8t + 7 Displacement
=
0 1 7 9 ∫0 |v| dt + ∫1 |v| dt + ∫7 |v| dt 1 7 9 ∫0 v dt + ∫1 −v dt + ∫7 v dt 1 1 9 ∫0 v dt + ∫7 v dt + ∫7 v dt [s]10 +36 +[s]97
= = s|t=1 − s|t=0 +36
s = ∫ v dt
=
1
= t 3 − 4t 2 + 7t + c
10 3
− 0 +36
+s|t=9 − s|t=7 98
+ [−18 − (− )] 3
= 54 ✓
3
∵ t ≡ time after passing O, s|t=0 = 0 c=0 Displacement with c = 0: 1
s = t 3 − 4t 2 + 7t ✓ 3
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
553
A math 360 sol (unofficial)
Rev Ex 20
B4(iv) Displacement s=
1 3 t 3
B5(i)
2
− 4t + 7t
Velocity v = t 2 − 8t + 7 Acceleration a=
Velocity v = at 2 + b Initial Velocity of 3 m/s: v|t=0 = 3 ⇒b =3
dv dt
= 2t − 8
Velocity with b = 3: v = at 2 + 3
At zero acceleration: a =0 2t − 8 = 0 2t =8 t =4✓
Displacement s = ∫ v dt
Point O: s|t=0 = 0 Point C:
t ≡ time after passing O: s|t=0 = 0 ⇒c =0
1
= at 3 + 3t + c 3
1
s|t=4 = (4)3 − 4(4)2 + 7(4) 3
= −14
2
Displacement with c = 0:
3
Point B: s|t=7 = −
1
s = at 3 + 3t
98
3
3
Back at O after 3s: s|t=3 = 0 9a + 9 = 0 9a = −9 a = −1
OC = |s|t=4 | 2
= |−14 | 3
= 14
2 3
Velocity Velocity with a = −1: v = −t 2 + 3
BC = |s|t=4 − s|t=7 | = |(−
44 3
98
) − (− )| 3
= 18
Speed = |v|t=3 | = 6 ms −1 ✓
OC < BC ∴ OC is nearer to O ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
554
A math 360 sol (unofficial)
Rev Ex 20
B5(ii) At turning point, v =0 2 −t + 3 =0 (t + √3)(t − √3) = 0 t = −√3 or (rej ∵ t > 0)
B6(i)
t = √3
Acceleration 18 − 3t for 0 ≤ t ≤ 4 a={ t + 2 for t > 4 Velocity 0 ≤ t ≤ 4: V = ∫ a dt 3
= 18t − t 2 + c 2
Displacement Initial velocity of v m/s: V|t=0 = v c =v
1
s = − t 3 + 3t 3
3
1
s|t=√3 = − (√3) + 3√3 3
Velocity with c = v:
= 2 √3
3
V = 18t − t 2 + v
𝑣
−√3
𝑂
2
𝑣 = −𝑡 2 + 3 𝑡 √3
Velocity of 50 m/s when t = 4: V|t=4 = 50 3
18(4) − (4)2 + v = 50 2
Total Distance travelled between t = 0 and t = 3
48 + v v
3
= ∫0 |v| dt √3
= ∫0 |v| dt =
√3 ∫0 v dt √3
3
+ ∫√3|v| dt
B6(ii) 0 ≤ t ≤ 4: 3
V = 18t − t 2 + 2
3 + ∫√3 −v dt
2
√3
= ∫0 v dt
+ ∫3 v dt
= [s]√3 0
+[s]√3 3
= 2s|t=√3 −s|t=0
−s|t=3
= 2(2√3) −0
−0
= 50 =2✓
t > 4: 1 V = t 2 + 2t + c2 2 V|t=4 = 50: 1 2
= 4√3 ✓
(4)2 + 2(4) + c2 = 50
c2
= 34
t > 4: 1
V = t 2 + 2t + 34 2
Velocity at t = 5 = V|t=5 1 = (5)2 + 2(5) + 34 2 = 56.5 ms −1 ✓
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
555
A math 360 sol (unofficial)
Rev Ex 20
B6(iii) Check for turning point At turning pt, V = 0 0 ≤ t ≤ 4: V 18t −
3 2 t 2
=0
+2 =0
3t 2 − 36t − 4 = 0 36±√(−36)2 −4(3)(−4)
t =
2(3)
36 ± 8 √21 6
=
4
= 6 ± √21 3 4 = 6 − √21 < 0 (rej ∵ t > 0) 3 4 = 6 + √21 > 4 (rej ∵ t ≤ 4) 3 ∴ no turning pt t > 4: V 1 2 t 2 2
=0
+ 2t + 34
=0
t + 4t + 68 =0 [(t + 2)2 − (2)2 ] + 68 = 0 (t + 2)2 + 64 =0 ∴ no turning pt Distance 𝑉
𝑉=
1 2 𝑡 + 2𝑡 + 34 2
3 𝑉 = − 𝑡 2 + 18𝑡 + 2 2 𝑡 4
𝑂
Total distance travelled 5
= ∫0 |V| dt 4
5
= ∫0 |V| dt
+ ∫4 |V| dt
4
5
= ∫0 V dt 4
+ ∫4 V dt 5 1
3
= ∫0 (18t − t 2 + 2) dt + ∫4 ( t 2 + 2t + 34) dt 2
=
[9t 2
−
1 3 t 2
+ 2t]
2
4 0
= [144 − 32 + 8] − 0
1 + [ t3 + t2 6 125
+[
6
+ 34t]
5 4
+ 25 + 170]
−[
64 6
+ 16 + 136]
1
= 173 m ✓ 6
© Daniel & Samuel A-math tuition 📞9133 9982
sleightofmath.com
556