Nokia 5G
5G Overview And Knowledge Sharing
Date:03-05-2018
2
1
© Nokia 20 2 018
5G
Overview LTE and 5G Comparison 5G Peak Throughput Performance : NR @ sub 6 GHz Performance : NR @ mmWave 5G Architecture With Nokia Components 5G18A Site solution
2
© Nokia 20 2 018
5G Overview
2
3
© Nokia 20 2 018
• Enhanced Mobile Broadband (eMBB) • Massive Machine-Type Communications (IoT) • Ultra-Reliable Low Latency Communication (URLLC)
(Source: Qualcomm) 4
© Nokia 20 2 018
Nokia Internal Use
5
© Nokia 20 2 018
Source: 3GPP 6
© Nokia 20 2 018
5G Frequency Bands
3.5 GHz
400 MHz
3 GHz
3.7 GHz
28 GHz GHz 10 GHz
6 GHz
continuous coverage, high mobility and reliability, interference limitation
Carrier BW Duplexing Cell size
n*
cmWave
© Nokia 20 2 018
90 GHz
30 GHz
mmWave
higher capacity and massive throughput, noise limitation
n * 100 MHz
1-2GHz
*
TDD Macro
Small
Ultra small
* - not support supported ed in 5G18A 5G18A 8
39
Nokia Internal Use
Different band Work Cases
* - not support supported ed in 5G18A 5G18A 9
© Nokia 20 2 018
LTE and 5G Comparison
2
10
© No Nokia 2018
11
© No Nokia 2018
12
© No Nokia 2018
13
© No Nokia 2018
Simulation from Some Assumptions
Some Reasons of 5G having higher Spectral Efficiency LTE PDCCH exist in every subframe, 5G introduce slot aggregation concept and it is not mandatory to have PDCCH in all TTI’s. 4G uses guard band of 10% where as in 5G use enhance technique F-OFDM which let 5G use more BW. 4G has 1 TBS where as in 5G use concept of CBG (code block group) which divide TBS in to small groups, as 5G use huge TBS and BLER is 10% which means with this TBS around 10% of data will be re transmitted where as with this technique techn ique in 5G UE will send NACK only for discarded group. 14
© No Nokia 2018
In 4G CRS is used to estimate channel and it is transmitted always in 4G whereas 5G tries to eliminate the use of CRS. In 5G user specific DMRS used which mean each use will have its own RS within its allocation, if there is no allocation there is no RS. In 5G SSB(PSS/SSS.PBCH) block is always transmitted and this always has its own RS which can be used for cell selection..later UE will use its own RS and will have no issue
15
© No Nokia 2018
16
© No Nokia 2018
17
© No Nokia 2018
18
© No Nokia 2018
5G Throughput
2
19
© No Nokia 2018
Overview Duplex scheme: TDD Large areas of unpaired spectrum easier to be found
Both uplink and downlink use OFDM • Simplified RF design • Eases selfbackhauling and device-to-device communication
20
© No Nokia 2018
Every subframe can be dynamically selected to carry UL or DL data. Flexible adaptation to DL/UL throughput requirements
Possibility to have control signals in every subframe for low latency scheduling. Support for selfcontained subframes
Nokia Internal Use
FDD as well, frequency but later on
Resource grid
12 subcarriers
Resource Element (RE) Resource Block (RB): 12 subcarriers x 1 symbol
14 OFDM symbols 1 slot (basic scheduling scheduling unit)
time
Multiple numerologies The most outstanding NR feature, when compared com pared to LTE, is the suport of multiple numerologies – multiple subcarrier subcarrier spacings
Subcarrier spacing is based on common 15 kHz base. Subcarrier spacing: f = 2 * 15 kHz where (mju) defines the numerology. numerology.
=0 =1 =2 =3 =4 21
f = 15 kHz f = 30 kHz f = 60 kHz f = 120 kHz f = 240 kHz
© Nokia 2018
=0 =1 =2 =3 =4 Nokia Internal Use
1 PRB = 180 kHz 1 PRB = 360 kHz 1 PRB = 720 kHz 1 PRB = 1.44 MHz 1 PRB = 2.88 MHz
LTE subcarrier spacing (15 kHz) is a subset of numerologies supported by NR ( = 0) – for compati compatibili bility ty
Multiple Multip le numerologies numerologies – slot duration 15 kHz
1 frame (10 ms) =10 subframes = 10 slots
60 kHz
1 subframe (1 ms) = 1 slot =14 OFDM symbols
30 kHz
1 frame (10 ms) =10 subframes = 20 slots
1 subframe subframe (1 ms) = 2 slots = 28 OFDM symbols
22
© Nokia 2018
Nokia Internal Use
1 frame (10 ms) =10 subframes s ubframes = 40 slots
1 subframe (1 ms) = 4 slots =56 OFDM symbols
120 kHz
1 frame (10 ms) =10 subframes = 80 slots
1 subframe (1 ms) = 8 slots =112 OFDM symbols
23
© No Nokia 2018
D : Downlink, U : Uplink, X : Flexible
24
© No Nokia 2018
Multiple numerologies – PRBs and carrier carrier frequency span
3GPP specifies the minimum and maximum bandwidth (limit: 400 MHz carrier) Numerology min #PRBs max #PRBs
subc. spacing
min system BW
max system BW
Nokia: 273 PRBs (100 MHz)
25
© Nokia 2018
Nokia Internal Use
Single User Peak Throughput (SU-MIMO) DL Pattern 1
Frame Structure Nokia 0.5ms 256 PRBs Nokia 0.5ms 256 PRBs
26
DL #layer
max DL TBS
SU-MIMO DL peak Tput (Gbps)
#slot of PRACH per 20ms
UL #layer
PUCCH format
max UL TBS
SU-MIMO UL peak Tput (Mbps)
Ud #slot (%)
2
409616
0.5529816
1
2
short
303240
166.782
0.27027027
4
819256
1.1469584
1
2
short
303240
166.782
0.27027027
Requirement Description
Requirement Description
Single UE DL peak >= 1.3Gpbs, 4 layers, 70% DL, 100MHz
Single UE UL peak >=175Mbps, 2 layers, 30% UL, 100MHz
© No Nokia 2018
DL Pattern 1 MU-MIMO DL peak Tput (Gbps)
#slot of PRACH per 40ms
UL #layer
PUCCH format
max UL TBS
MU-MIMO UL peak Tput (Mbps)
Dd:Ud (slot number)
Frame Structure
DL #layer
max DL TBS
Nokia 0.5ms* 256 PRBs
2
409616
4.4238528
1
2
short
303240
667.128
0.27027027
Nokia 0.5ms* 256 PRBs
4
819256
4.4239824
1
2
short
303240
667.128
0.27027027
Requirement Description
Requirement Description
Cell DL peak >= 4Gbps, 70% DL, 1 00MHz
Cell UL peak >= 700Mbps, 30% UL, 100MHz
*256QAM assumed, if 64QAM due to MUI, 75% of DL throughput is achieved in the best case
27
© No Nokia 2018
Confidential
Performance : NR @ sub 6 GHz
2
28
© No Nokia 2018
MIMO in 3GPP
7
29Nokia © No N2017 okia 2018 ©
• Conventional BS → remote radio head (RRH) → active antenna systems (AAS)
30
© No Nokia 2018
Note: TRXU is also name as TRX
31
• Conventional passive antenna array:
• 2D antenna array:
• 64 physical antenna elements
• 64 physical antenna elements
• 4 columns, 8 transceiver units
• 4 columns, 64 transceiver units
© No Nokia 2018
• The total number of transceiver units is a design parameter! • Complexity versus performance tradeoff
Physical Antenna Array
Sub-Array Virtualization
Full-Connection Virtualization
64 physical antennas 4 columns 8 rows 2 polarizations 32
© No Nokia 2018
Virtualization weights are phase-only array-response vectors, wideband, and assumed static
• The total number of transceiver units is a design parameter! • Complexity versus performance tradeoff Physical Antenna Array
Sub-Array Virtualization
Elevation Pattern of Virtualization Weights
Logical Port Arrangement
5
0
-5
-10 B d
16 transceiver units / logical antenna ports
-15
-20
-30 0
20
40
60
80
100
120
140
160
ZOD
64 physical antennas 4 columns 8 rows 2 polarizations 33
© No Nokia 2018
8 rows of physical antennas 2 rows of logical antenna ports
-25
Virtualization weight weight vectors are phase-only array-response vectors applied at RF
180
Virtualization weights are phase-only array-response vectors, wideband, and all aimed in the same direction
• The total number of transceiver units is a design parameter! • Complexity versus performance tradeoff Physical Antenna Array
Sub-Array Virtualization
Elevation Pattern of Virtualization Weights
Logical Port Arrangement
5
0
-5
-10 B d
16 transceiver units / logical antenna ports
-15
-20
-30 0
20
40
60
80
100
120
140
160
ZOD
64 physical antennas 4 columns 8 rows 2 polarizations 34
© No Nokia 2018
8 rows of physical antennas 2 rows of logical antenna ports 4 transceivers per column
-25
Virtualization weight weight vectors are phase-only array-response vectors applied at RF
180
Virtualization weights create the vertical sectors: top row points up (high sector), bottom row points down (low sector)
Antenna Array: Physical Array Configurations Array Configurations: • 8 rows rows of cro crossss-po poll elemen elements ts in all cases • 2, 4 or or 8 co colu lumn mns s • Colu Column mn spac spacing ing:: 0.5 0.5 wav wavelen elength gth • Row spa spacin cing: g: 0.8 0.8 wav wavele eleng ngth th
8 columns (8,8,2)
4 columns
128
(8,4,2)
2 columns
64
(8,2,2)
32
Physical Antenna Elements: • Azi Azimut muth h Be Beamw amwid idth= th=65 65de degre grees es • Ele lev vati tion on Beamwidth=65degrees • El Elem emen entt gai gain n = 8d 8dBi Bi • Fr Fron ont2 t2Ba Back ck = 30d 30dB B TXRU mapping: • Sub Sub-a -arra rray y met metho hodo dolo logy gy • With Within in a colu column: mn: sta static ticall ally y aggregate (e.g., at RF) disjoint selections of adjacent co-pol elements • Agg Aggrega regate te for for a fixed fixed elec electric trical al downtilt • Con Consid sider er 1,2, 1,2,4,8 4,8 Row Rows s of of 35 TXRUs per column © Nokia 2017 Nokia Confidential
16 Ports: 1 Row of TXRUs 32 Ports: 2 Rows of TXRUs
16 Ports: 2 Rows of TXRUs 32 Ports: 4 Rows of TXRUs
16 Ports: 4 Rows of TXRUs 32 Ports: 8 Rows of TXRUs
Antenna Array: TXRU (Logical) Configurations 8-Column Ph Physical Ar Array
4-Column Ph Physical Ar Array
2-C 2Column Ph Physical Array
(1,8,2)
(2,4,2)
(4,2,2)
(2,8,2)
(4,4,2)
(8,2,2)
16 Ports
32 Ports
36 © Nokia 2017 Nokia Confidential
Massive MIMO Techniques Techniques for the Downlink Dow nlink Antenna arrays with 16 and 32 TXRUs • LTE: Class A Codebooks - Rel-13 Codebook • 16 Ports and 32 Ports, Maximum Rank = 8 • (32 ports=Rel-13 extension CB approved in Rel-14)
- Rel-14 codebook • 16 Ports and 32 Ports, Maximum Rank = 2
• NR: Class-A-st Class-A-style yle Codebooks - NR Codebook Type I • 16 Ports and 32 Ports, Maximum Rank = 8
- NR Codebook Type II • 16 Ports and 32 Ports, Maximum Rank = 2
• Transmission Schemes: - SU-MIMO •
Rank adaptation
- MU-MIMO •
Rank adaptation: Rank 1 per UE preferred over max Rank 2 per UE
• Scenarios: 2GHz - 3D-UMi: ISD=200m - 3D-UMa: ISD=750m, 1500m - (Performance in B66 and B25 should be similar)
37 © Nokia 2017 Nokia Confidential
3GPP Scena Scenarios rios:: UMa vs. UMi UMi • In 3D chann channel el model, model, TR3 TR36.87 6.873, 3, UEs are are located located on floo floors rs 1-8 • In UM UMa, a, BS heig height ht is 25m ----- hig higher her than than UEs in any floo floors rs (3m for each each floo floor) r) • In UM UMi, i, BS he heig ight ht is 10 10m m --- can be lo lowe werr than than som some e UEs UEs • Th The e angu angula larr separ separati ation on in in UMi UMi is bet better ter tha than n UMa UMa
UMa
38 © Nokia 2017 Nokia Confidential
UMi
Geometrical considerations: 200m vs 750m • UE density density is uniform uniform in the horizont horizontal al plane but non-unifo non-uniform rm in the (elevati (elevation) on) angular angular domain • UEs closer closer to the eNB provid provide e better better angular angular separ separation ation in the the elevation elevation dimen dimension sion
39 © Nokia 2017 Nokia Confidential
Outline of Downlink Results
• Ca Case ses s Eval Evalua uated ted:: - 750m (UMa), 1500m (UMa) - Array configurations at at base: 8 column, 4 column, 2 -
column 16 ports and 32 ports at base 2RX and 4RX at UEs Class A codebook-based SU-MIMO and MU-MIMO w/ZF Full buffer traffic, traffic, 10 active UEs per sector
40 © Nokia 2017 Nokia Confidential
Best of NR vs Best of LTE, UE UEs wi with 2R 2RX & 4RX – 1500m ISD – Full Bu Buffer 16 TXRUs MEAN
Cell Edge
2RX
LTE
13
41Nokia © No N2017 okia 2018 ©
2RX
4RX
NR
LTE
NR
LTE
4RX
NR
LTE
• Gain Gain of NR ov over er LTE is ro roug ughl hly y 19 19-3 -34% 4% in Me Mean an SE SE,, 14 14%%-28 28% % in ce cell ll ed edge ge in Fu Full ll Bu Buff ffer er • Ga Gain ins s in bu burs rsty ty tr traf affi fic c wil willl be hi high gher er
NR
Best Be st of NR vs Be Best st of LTE (16 16--por ortt ant nten enna na ar arra ray y con onffig igur urat atio ions ns)) Cell Edge
Mean SE 2GHz, ISD=750, UE=2RX, Mean SE BS(1,8,2 BS( 1,8,2)) BS( BS(2,4,2 2,4,2)) BS( BS(4,2,2 4,2,2)) (bps/Hz) Best LTE 3.83 3.29 2.52
0 Best NR 5.17 4.35 3.17 5 Gain of NR over LTE 35% 32% 26% 7 = D2GHz, ISD=750, UE=4RX, Mean SE BS(1,8,2 BS(1 ,8,2)) BS(2 BS(2,4,2 ,4,2)) BS( BS(4,2,2 4,2,2)) S (bps/Hz) Best LTE 5.12 4.29 3.28 I Best NR Gain of NR over LTE
6.44 26%
5.45 27%
3.99 21%
2GHz, ISD=1500, UE=2RX, Mean SE SE (bps/H (bps/Hz) z) BS(1 BS(1,8,2 ,8,2)) BS(2 BS(2,4,2 ,4,2)) BS(4 BS(4,2,2) ,2,2) Best LTE 2.93 2 .4 9 1.86 Best NR 3.93 3.24 2.27 0 0 34% 30% 22% Gain of NR over LTE
5 1 =2GHz, ISD=1500, UE=4RX, Mean SE (bps/H (bps/Hz) z) BS( BS(1,8,2 1,8,2)) BS(2 BS(2,4,2 ,4,2)) BS( BS(4,2,2 4,2,2)) D Best LTE 3.96 3.32 2 .4 1 S I Best NR Gain of NR over LTE
14
42Nokia © No N2017 okia 2018 ©
4.99 26%
4.14 25%
2.88 19%
2GHz, ISD=750, UE=2RX, Cell Edge SE (1,8,2 (1, 8,2)) (2, (2,4,2 4,2)) (4, (4,2,2 2,2)) (bps/Hz) Best LTE 1.49 1.26 0.93 Best NR Gain of NR over LTE
1.89 27%
1.54 23%
1.10 19%
2GHz, ISD=750, UE=4RX, Cell Edge SE (1,8,2 (1, 8,2)) (2, (2,4,2 4,2)) (4, (4,2,2 2,2)) (bps/Hz) Best LTE 1.95 1.70 1.28 Best NR Gain of NR over LTE
2.45 25%
2.06 21%
1.47 15%
2GHz, ISD=1500, UE=2RX, Cell Edge SE (1,8,2) (1,8 ,2) (2,4 (2,4,2) ,2) (4,2 (4,2,2) ,2) (bps/Hz) Best LTE 0.79 0.83 0.63 Best NR Gain of NR over LTE
1.01 28%
0.99 19%
0.72 14%
2GHz, ISD=1500, UE=4RX, Cell Edge SE (1,8,2) (1,8 ,2) (2,4 (2,4,2) ,2) (4,2 (4,2,2) ,2) (bps/Hz) Best LLT TE 1.03 1.10 0.84 Best NR 1.27 1.32 0.96 Gain of NR over LTE 23% 20% 14%
• Full Full Bu Buff ffer er:: Ga Gain in of NR ov over er LTE is be betwe tween en 19 19% % an and d 35 35% % in Me Mean an SE SE,, 14 14-2 -28% 8% in ce cell ll ed edge ge.. • Ga Gain ins s in bu burs rsty ty tr traf affi fic c wil willl be hi high gher er
5G vs. 4G 2GHz
2GHz
G
20MHz 5.12 bps/Hz
20MHz
bps
1.5 x
102 Mbps cell
5G 3500 with throughput40 L cell massive MIMOTE2600 with 2x 2 MIMO beamforming
LTE 2GHz 750m ISD 16x4 eNB=(1,8,2)
15
43Nokia © No N2017 okia 2018 ©
x 7.73 bps/Hz * Hz
155 Mbps cell throu4g0h0p8u0t 0 cell thr
In Full Buffer, NR Codebooks show significant gains gain s over LTE LTE Codebooks Codeboo ks -
Mean UE throughput: 26%
-
Cell edge: 25%
5G 3500 with
NmRassive MIMO
2bGeaHmzo frmn ig 750m ISD 16x4 gNB = (1,8,2) * Includes 20% improvement due to lean carrier in NR
Performance : NR @ mmWave
19
44
© No Nokia 2018
Antenna Array Comparisons - Number of Elements Constant vs. Frequency 5dBi ant element gain, 7dBm AP Pout per element, 1dBm UE Pout per element, shown to scale 28 GHz 256 elements (8x16x2)
39 GHz 256 elements (8x16x2)
73 GHz 256 elements (8x16x2) 8 8 16
8
AP
2 TX TXRU RUss 16
Max EIRP ≈ 60.2 dBm 15% area relative to 28GHz 16
Max EIRP ≈ 60.2 dBm 52% area relative to 28GHz
Max EIRP ≈ 60.2 dBm
2 8 G H z , 3 2 e l e me n t s , ( 4 x 4 x 2 )
3 9 G H z , 3 2 e l e me n t s , ( 4 x 4 x 2 )
7 3 G H z , 3 2 e le me nt s , ( 4 x 4 x 2 ) 4
UE
4
4
2 TXRUs 4 4
24
45Nokia © No N2017 okia 2018 ©
Max EIRP ≈ 36.1 dBm
Max EIRP ≈ 36.1 dBm 52% area relative to 28GHz
4
Max EIRP ≈ 36.1 dBm 15% area relative to 28GHz
System Simulation Results for the Suburban Micro Environment Constantt Number Constan Number Antenna Elements for 28 GHz, 39 GHz and 73 GHz Cell Edge Throughput
Mean UE Throughput DOWNLINK DOWNLIN K - MEAN UE THROUGHPUT (Outdoor, No Foliage, UE=32)
DOWNLINK DOWNLIN K - CELL EDGE THROUGHPUT (Outdoor, No Foliage, UE=32)
565
270
560 561
560
561
250
256 250
555
Downlink
) s p b550 M ( t 545 u p h g u 540 o r h T
554
553 551
543 540
535
) s230 p b M ( t 210 u p h g u o r190 h T
250
227 224
222 216 205
189
170 530 529
525
30
40 ISD=100m
50 ISD=200m
60
30
50 ISD=200m
60
70
ISD=300m
UPLINK - CELL EDGE THROUGHPUT (Outdoor, (Outdoor, No Foliage, UE=32) 260
265
262 256
560
240 554
Uplink
40 ISD=100m
ISD=300m
UPLINK - MEAN UE THROUGHPUT (Outdoor, No Foliage, UE=32)
540 ) s p b 520 M ( t u p h500 g u o r h T480
150
70
553
549
547
220
540
513
509
488
) s p b 200 M ( t u p180 h g u o r160 h T
216 205
184
183
162
140
460
120 124
440
25
100 430
420
46Nokia © No N2017 ok17 ia 2018 © 20
30
40 ISD=100m
50 ISD=200m
ISD=300m
60
70
30
40 ISD=100m
50 ISD=200m
ISD=300m
60
70
Antenna Array Comparisons - Number of Elements Not Constant vs. Frequency 5dBi ant element gain, 7dBm AP Pout per element, 1dBm UE Pout per element, shown to scale 28 GHz 256 elements (8x16x2)
39 GHz 512 elements (16x16x2)
73 GHz 1024 elements (16x32x2)
16 8
AP
16 32
2 TX TXRU RUss
Max EIRP ≈ 72.2 dBm 59% area relative to 28GHz
16
Max EIRP ≈ 60.2 dBm 16
Max EIRP ≈ 66.2 dBm 103% area relative to 28GHz
28 GH z , 32 element s, ( 4 x 4x 2)
39 GHz, 32 elements, (4x4x2)
Room to grow…normalized array size is ~4.5dBm more than above
7 3 G H z , 3 2 e l e me n t s , ( 4 x 4 x 2 ) 4
UE
4
4
2 TXRUs 4
27
47Nokia © No N2017 okia 2018 ©
4
Max EIRP ≈ 36.1 dBm
Max EIRP ≈ 36.1 dBm 52% area relative to 28GHz
4
Max EIRP ≈ 36.1 dBm 15% area relative to 28GHz
System Simulation Results for the Suburban Micro Environment Cons Co nsta tant nt An Ante tenn nna a Ap Aper ertu ture re fo forr 28 28 GH GHz, z, 39 GH GHz z an and d 73 73 GHz GHz Cell Edge Throughput
Mean UE Throughput DOWNLINK DOWNLIN K - MEAN UE THROUGHPUT (Outdoor, No Foliage, UE=32)
DOWNLINK DOWNLIN K - CELL EDGE THROUGHPUT (Outdoor, No Foliage, UE=32) 280
570 270 565
Downlink
) s p b560 M ( t u p h555 g u o r h T
267
566 564 561
562 560
554
554
550
260
) s p b 250 M ( t u p h240 g u o r h T230
261
250
250
249
244 237
550
220
545
222 216
543
210
30
540
30
40 ISD=100m
50 ISD=200m
60
70
70
270 260
555 555
554
545
505
60
ISD=300m
UPLINK - CELL EDGE THROUGHPUT (Outdoor, (Outdoor, No Foliage, UE=32)
565
Uplink
50 ISD=200m
ISD=300m
UPLINK - MEAN UE THROUGHPUT (Outdoor, No Foliage, UE=32)
) s p535 b M ( t 525 u p h g u515 o r h T
40 ISD=100m
555
267
265
267
250
550 547
240
546
) s p b230 M ( t 220 u p h g210 u o r h200 T
513 509
233 227
216
190 190
495 495
485
28
48Nokia © No N2017 ok17 ia 2018 © 20
30
40 ISD=100m
50 ISD=200m
ISD=300m
60
70
180 170
183
183
30
40 ISD=100m
50 ISD=200m
ISD=300m
60
70
5G Architecture With Nokia Components
19
49
© No Nokia 2018
Next eneration ode •
3GPP defines gNB functionality: gNB
• •
A logical NG-RAN node providing NR user plane and control plane protocol terminations towards the UE (source 3GPP TS 38.300), gNB is divided into following logical entities:
gNB-CU
gNB-CU gNB -CU (CU – Cen Centra trall Unit) Unit)
• •
A logical node hosting RRC, SDAP and PDCP pr otocols, and which controls the operation of one or more gNB-DUs
•
The gNB-CU also terminates F1 interface connected with the gNB-DU (source 3GPP TS 38.401)
gNB-DU (DU – Distr Distributed ibuted Unit)
•
50
gNB
A logical node hosting RLC, MAC and PHY layers, and its operation, that is partly controlled by gNB-CU
•
One gNB-DU supports one or multiple cells. One cell is supported by only one g NB-DU
•
The gNB-DU terminates F1 interface connected with the gNB-CU (source 3GPP TS 38.401)
Nokia Internal Use
F1 1 .. n
gNB-DU
•
© No Nokia 2018
1
F1 3GPP based interface for gNB-DU<->gNB-CU connection NG-RAN Next Generation Radio Access Network NR New Radio
HW building blocks Physical Entities
Logical Entities gNB
Product Name
RAC NCIR
gNB-CU RAU gNB-DU
AirScale System Module
RU RAP
AirScale MAA*
(*) AirScale MAA AirScale Massive MIMO Adaptive Antenna 51
© No Nokia 2018
Nokia Internal Use
AirSCale MAA (RU) (RF part of gNB-DU) e m a N t c u d o r P
l a t n o e z g i r a r o e h v r o c o t c e S
AirScale System Module (RAU) (gNB-DU excl. RF part)
NCIR (RAC) (gNB-CU)
10GE
CPRI** CPRI One beam
NCIR AirScale System Module ASIK+ABIL
n o i t c n u F
• •
Adaptive antenna RF processing
y l i r a m i r h t p i s w e l a c S
• • • •
Number of cells Cell TX/RX antennas SU/MU-MIMO gNB-DU Peak L1 Throughput
ToR switch
Real Time Baseband • L1 • L2 RLC • L3 Control Plane Real Time (see Notes) • Transport • O&M Agent
Low Latency Fronthaul
AirFrame HW
Non-Real Time Baseband • L2 PDCP • L3 Control Plane • Transport • Central O&M
• • • •
Average cell throughput Number of cells Number of Active Users Number of Control Plane events per second
F1 High Latency Fronthaul F1- 3GPP based interface for gNB-DU<->gNB-CU connection connection
52
© No Nokia 2018
Nokia Internal Use
Backhaul
5G18A Site Solution
19
53
© No Nokia 2018
Cloud BTS
5G Classical BTS Non-Real Time Baseband
Non-Real Time Baseband
Non-Real Time Baseband
Real Time Baseband
Real Time Baseband
Real Time Baseband
RF Adaptive antenna
RF Adaptive antenna
RF Adaptive antenna
Scalability for high performance HetNets
Non cloud or virtualized
Cost efficient standalone solution for 5G
NSA – Non StandA StandAlone lone mode mode,, SA – Sta StandA ndAlo lone ne mod mode e 54
© No Nokia 2018
Cloud optimized BTS with Ethernet Radio
Nokia Internal Use
Radios connected directly to radio cloud. Capacity layer under LTE and indoor solution
Full Cloud BTS Real Time enabled Edge Cloud
RF Adaptive antenna
Small Cell BTS for 5G
Baseline 3GPP Rel15 March 18
NetAct
Rel-15 F1 option 2-1 PDCP-RLC 3.5 GHz R) 3GPP AEQA
CU AirFrame
EPC (CMM, CMG) (CMM 18.5)
NCIR
DU
DU 5G VNF
(Nokia 1H/18)
CPRI 9.8Gbps 28 GHz RU 3GPP AEUA
S1-U
(AirScale)
Rel-15 X2
4G eNodeB
55
© No Nokia 2018
Confidential
S1-MME
Introduction 5G18A Radio Units
ANALOG Beamforming
DIGITAL Beamforming
5GC000515 5GC000515 AEUA 28GHz Radio Unit 5GC000562 5GC000562 AEQA 3.5GHz Radio Unit
5GC000664 5GC000664 AEQD 3.7GHz Radio Unit
5GC000514 5GC000514 AEWA 39GHz Radio Unit
• UL/DL 2x2 SU-
MIMO • UL/DL 2x2 SU-MIMO • DL: 4x4 SU-MIMO / UL: 2x2 SU-
MIMO • 16UL/16DL MU-MIMO
3.5 GHz
400 MHz
3 GHz
3.7 GHz
28 GHz GHz 10 GHz
6 GHz
continuous coverage, high mobility and reliability, interference limitation
Carrier BW Duplexing Cell size
n*
cmWave
© No Nokia 2018
90 GHz
30 GHz
mmWave
higher capacity and massive throughput, noise limitation
n * 100 MHz
1-2GHz
*
TDD Macro
Small
Ultra small
* - not support supported ed in 5G18A 5G18A 56
39
Nokia Internal Use
5GC000275 ASIK, 5GC000276 ABIL, 5GC000623 AMIA ASIK & ABIL high capacity introduction • AirScale SM Indoor consist of • 1 AirScale Subrack AMIA • Common with 2G/3G/4G • 8 Slots • 1 …6 AirScale Capacity ABIL • Capacity Unit • 8x 100MHz MIMO layers depending on configurations • 2x QSFP+: 8x9.8 Gbps for CPRI fronthaul • 1…2 AirScale Common ASIK • Common Unit • 2x SFP10: for Backhaul interface • Sync IN and OUT, External Alarms and Controls, LMT • DC 48 V input • Installation options: 19 inch, pole and wall, outdoor cabinet [mm] • Dimensions 19” 3 U : H 128 x W 447 x D 400 [mm] • Weight: 10.1 kg minimum 23.5 kg maximum • Ingress protection IP20 temperature range -5 °C to 55 °C • Operational temperature
57
© No Nokia 2018
ABIL
AMIA
ASIK
58
© Nok ia ia 2018