Scilab Textbook Companion for Utilization of Electrical Energy and Traction by J. B. Gupta, R. Manglik and R. Manglik 1 Created by Nitin Kumar B.TECH Electronics Engineering UTTARAKHAND TECHNICAL UNIVERSITY DEHRADUN College Teacher Arshad Khan Cross-Checked by K. V. P. Pradeep May 8, 2014
1
Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the ”Textbook Companion Project” section at the website http://scilab.in
Book Description Title: Utilization of Electrical Energy and Traction Author: J. B. Gupta, R. Manglik and R. Manglik Publisher: S. K. Kataria & Sons, New Delhi Edition: 1 Year: 2012 ISBN: 978-93-5014-222-6
1
Book Description Title: Utilization of Electrical Energy and Traction Author: J. B. Gupta, R. Manglik and R. Manglik Publisher: S. K. Kataria & Sons, New Delhi Edition: 1 Year: 2012 ISBN: 978-93-5014-222-6
1
Scilab numbering policy used in this document and the relation to the above book. Exa Example (Solved example) Eqn Equation (Particular equation of the above book) AP Appendix to Example(Scilab Code that is an Appednix to a particular
Example of the above book) For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.
2
Contents List of Scilab Codes
4
1 Electric heating
8
3 Electrolytic processes
20
4 Illumination
26
5 Refrigeration and Air conditioning
45
7 Train Movement and Energy Consumption
47
8 Electric Traction Motors
70
9 Control of Traction Motors
77
10 Braking Mechanical Consideration and Control Equipment
83
11 Power supply for electric traction
88
3
List of Scilab Codes Exa 1.1 Exa 1.2 Exa 1.3 Exa 1.4 Exa 1.5 Exa 1.6 Exa 1.7 Exa 1.8 Exa 1.9 Exa 1.10 Exa 1.11 Exa 1.12 Exa 1.13 Exa 1.14 Exa 3.1 Exa 3.2 Exa 3.3 Exa 3.4 Exa 3.5 Exa 3.6 Exa 3.7 Exa 3.8 Exa 3.9 Exa 3.10 Exa 4.1 Exa 4.2 Exa 4.3 Exa 4.4
power drawm . . . . . . . . . . . . . . diameter and length of wire . . . . . . design the heating element . . . . . . efficiency . . . . . . . . . . . . . . . . average kW and kVA and pf . . . . . average kW and kVA and pf . . . . . rating . . . . . . . . . . . . . . . . . . efficiency . . . . . . . . . . . . . . . . power absorbed and power factor . . . height . . . . . . . . . . . . . . . . . . frequency . . . . . . . . . . . . . . . . power required . . . . . . . . . . . . . voltage and current . . . . . . . . . . voltage and current . . . . . . . . . . ampere hours . . . . . . . . . . . . . . amount of copper . . . . . . . . . . . weight of copper . . . . . . . . . . . . thickness . . . . . . . . . . . . . . . . thickness . . . . . . . . . . . . . . . . current . . . . . . . . . . . . . . . . . energy consumption . . . . . . . . . . voltage . . . . . . . . . . . . . . . . . WEIGHT OF ALUMINIUM . . . . . quantity of electricity and ime taken . MSCP . . . . . . . . . . . . . . . . . . lumens per watt and MSCP . . . . . . average luminance . . . . . . . . . . . Illumination . . . . . . . . . . . . . . 4
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
8 9 9 10 11 12 13 14 15 16 16 17 18 18 20 20 21 21 22 22 23 24 24 25 26 26 27 27
Exa 4.5 Exa 4.7 Exa 4.8 Exa 4.9 Exa 4.10 Exa 4.11 Exa 4.12 Exa 4.13 Exa 4.14 Exa 4.15 Exa 4.16 Exa 4.17 Exa 4.18 Exa 4.19 Exa 4.20 Exa 4.21 Exa 4.22 Exa 4.23 Exa 4.24 Exa 4.25 Exa 4.26 Exa 4.27 Exa 4.28 Exa 4.29 Exa 4.30 Exa 4.31 Exa 5.1 Exa 5.2 Exa 7.1 Exa 7.2 Exa 7.3 Exa 7.4 Exa 7.5 Exa 7.6 Exa 7.7 Exa 7.8 Exa 7.9 Exa 7.10
average intensity of Illumination . . . . . . . . . . . . Illumination and lamp efficiency . . . . . . . . . . . . height and Illumination . . . . . . . . . . . . . . . . . candle power . . . . . . . . . . . . . . . . . . . . . . . distance . . . . . . . . . . . . . . . . . . . . . . . . . . total light flux and average Illumination . . . . . . . . maximum and minimum Illumination . . . . . . . . . Illumination . . . . . . . . . . . . . . . . . . . . . . . Illumination . . . . . . . . . . . . . . . . . . . . . . . Illumination . . . . . . . . . . . . . . . . . . . . . . . Illumination . . . . . . . . . . . . . . . . . . . . . . . spacing . . . . . . . . . . . . . . . . . . . . . . . . . . wattage . . . . . . . . . . . . . . . . . . . . . . . . . . candle power . . . . . . . . . . . . . . . . . . . . . . . capacitance . . . . . . . . . . . . . . . . . . . . . . . . compare diameter and length . . . . . . . . . . . . . . constants and change of candle power per volt . . . . . average Illumination . . . . . . . . . . . . . . . . . . . number location and wattage . . . . . . . . . . . . . . number rating and dipsotion of lamps . . . . . . . . . number rating and dipsotion of lamps . . . . . . . . . number and wattage . . . . . . . . . . . . . . . . . . . number spacing height and totl wattge . . . . . . . . . space height ratio . . . . . . . . . . . . . . . . . . . . Illumination . . . . . . . . . . . . . . . . . . . . . . . number and size . . . . . . . . . . . . . . . . . . . . . power . . . . . . . . . . . . . . . . . . . . . . . . . . . rating of heater . . . . . . . . . . . . . . . . . . . . . . distance average speed and scheduled speed . . . . . . plot the curve . . . . . . . . . . . . . . . . . . . . . . . speed . . . . . . . . . . . . . . . . . . . . . . . . . . . sceduled speed . . . . . . . . . . . . . . . . . . . . . . acceleration . . . . . . . . . . . . . . . . . . . . . . . . retardation . . . . . . . . . . . . . . . . . . . . . . . . duration of acceleration coasting and braking periods . torque . . . . . . . . . . . . . . . . . . . . . . . . . . . time taken and current . . . . . . . . . . . . . . . . . time taken and current . . . . . . . . . . . . . . . . . 5
28 28 29 30 30 31 31 32 33 33 34 34 35 35 36 37 37 38 39 39 40 41 41 42 43 44 45 46 47 48 49 49 50 51 51 52 52 53
Exa 7.11 Exa 7.12 Exa 7.13 Exa 7.14 Exa 7.15 Exa 7.16 Exa 7.17 Exa 7.18 Exa 7.19 Exa 7.20 Exa 7.21 Exa 7.22 Exa 7.23 Exa 7.24 Exa 7.25 Exa 7.26 Exa 7.27 Exa 8.1 Exa 8.2 Exa 8.3 Exa 8.4 Exa 8.5 Exa 8.6 Exa 8.7 Exa 8.8 Exa 8.9 Exa 8.10 Exa 9.1 Exa 9.2 Exa 9.3 Exa 9.4 Exa 9.5 Exa 9.6 Exa 10.1 Exa 10.2 Exa 10.3
acceleration coasting retardation and scheduled speed sceduled speed . . . . . . . . . . . . . . . . . . . . . . maximum power and distance travelled . . . . . . . . energy consumption . . . . . . . . . . . . . . . . . . . specific energy consumption . . . . . . . . . . . . . . . sceduled speed and specific energy consumption . . . . sceduled speed and specific energy consumption . . . . maximum power total energy consumption and specific energy consumption . . . . . . . . . . . . . . . . . . . maximum power and energy taken . . . . . . . . . . . maximum power and specific energy consumption . . . Schedule speed specific energy consumption total energy consumption and distance . . . . . . . . . . . . . . . . specific energy consumption . . . . . . . . . . . . . . . weight and number of axles . . . . . . . . . . . . . . . weight and number of axles . . . . . . . . . . . . . . . trailing weight and maximum gradiant . . . . . . . . . acceleration . . . . . . . . . . . . . . . . . . . . . . . . torque and weight . . . . . . . . . . . . . . . . . . . . speed armature current characterstic . . . . . . . . . . speed torque curve . . . . . . . . . . . . . . . . . . . . motor speed and current . . . . . . . . . . . . . . . . . speed and voltage . . . . . . . . . . . . . . . . . . . . current . . . . . . . . . . . . . . . . . . . . . . . . . . power delivered . . . . . . . . . . . . . . . . . . . . . . new characterstics . . . . . . . . . . . . . . . . . . . . motor speed . . . . . . . . . . . . . . . . . . . . . . . power input and tractive efforts . . . . . . . . . . . . . linear synchronous and vehicle speed . . . . . . . . . . energy lost and total energy . . . . . . . . . . . . . . . rheostatic losses and train speed . . . . . . . . . . . . efficiency and speed . . . . . . . . . . . . . . . . . . . time duration speed and rheostatic losses . . . . . . . diverter resistance . . . . . . . . . . . . . . . . . . . . speed and drawbar pull . . . . . . . . . . . . . . . . . braking torque . . . . . . . . . . . . . . . . . . . . . . resistance . . . . . . . . . . . . . . . . . . . . . . . . . electrical energy and average power . . . . . . . . . . . 6
54 55 56 57 57 58 59 60 61 62 63 64 65 66 66 67 68 70 71 71 72 72 73 74 74 75 76 77 78 79 79 81 81 83 84 84
Exa 10.4 Exa 10.5 Exa 10.6 Exa 11.1 Exa 11.2 Exa 11.3 Exa 11.4 Exa 11.5 Exa 11.6 Exa 11.7 Exa 11.8 Exa 11.9
energy returned . . . power . . . . . . . . . power . . . . . . . . . total length . . . . . . sag . . . . . . . . . . sag . . . . . . . . . . current . . . . . . . . potential . . . . . . . current . . . . . . . . voltage and kW . . . rating of the booster . voltage . . . . . . . .
. . . . . . . . . . . .
7
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
85 86 86 88 88 89 89 90 90 91 92 92
Chapter 1 Electric heating
Scilab code Exa 1.1 power drawm
1 2 3 4 5 6 7 8 9
/ / E x am pl e 1 . 1 p o we r d ra wn
clc ; clear ; close ; format ( ’ v ’ ,6) r 1 = 1 0 0 ; / / i n o hm s r 2 = r 1 ; / / i n ohms V = 2 5 0 ; // a c s up pl y i n v o l t s r p = ( ( 1 ) / ( ( 1 / r 1 ) + ( 1 / r 2 ) ) ) ; // e q u i v a l e n t r e s i s t a n c e i n
ohms 10 p p = ( ( V ^ 2 ) / r p ) ; / / po we r d ra wn i n w a t ts 11 disp ( ” p a r t ( a ) ” ) 12 disp ( p p , ” power drawn when e l em e nt s a r e i n p a r a l l e l , ( W)=” ) 13 r s = r 1 + r 2 ; // e q u i v a l e n t r e s i s t a n c e i n ohms 14 p s = ( ( V ^ 2 ) / r s ) ; / / po we r d ra wn i n w a t ts 15 disp ( ” p ar t ( b ) ” ) 16 disp ( p s , ” power drawn when e l em e nt s a r e i n s e r i e s , (W )=” )
8
Scilab code Exa 1.2 diameter and length of wire
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/ / Example 1 . 2 // d i a me t er and l e n g t h
clc ; clear ; close ; format ( ’ v ’ ,6) P = 2 . 5 ; / / p o we r i n kW V = 2 4 0 ; // i n v o l t s K = 1 ; // r a d i a t i n g e f f i c i e n c y e=0.9; / / e m i s s i v i t y p = 4 2 . 5 * 1 0 ^ - 6 ; // r e s i s t i v i t y in ohm−cm T 1 = 1 5 0 0 ; // i n d gr ee c e l s i u s T 2 = 4 5 0 ; // i n d eg re e c e l s i u s x = ( ( % p i * V ^ 2 ) / ( 4 * ( p * 1 0 ^ - 2 ) * P * 1 0 ^ 3 ) ) ;// H = ( ( 5 . 7 2 * K * e ) * ( ( ( T 1 + 2 7 3 ) / 1 0 0 ) ^ 4 - ( ( T 2 + 2 7 3 ) / 1 0 0 ) ^ 4 ) );
// 15 16 17 18 19
z = ( ( P * 1 0 ^ 3 ) / ( % p i * H ) ) ^ 2 ; // l = ( z * x ) ^ ( 1 / 3 ) ; // l e n g t h i n m et er d = ( ( sqrt ( z ) ) / l ) * 1 0 ^ 3 ; / / d i a m e t e r i n mm disp (l , ” l e n g t h i n m et er ” ) disp (d , ” d i a m e t e r i n mm” )
Scilab code Exa 1.3 design the heating element
1 2 3 4 5 6 7
// Example 1 . 3 // d e s i g n h e a t i n g e l em e nt
clc ; clear ; close ; format ( ’ v ’ ,7) V = 4 4 0 ; // v o l t s P = 2 0 ; // i n kW
9
8 9 10 11 12 13 14 15 16 17 18
T 1 = 1 2 0 0 ; // i n d eg r e e c e l s i u s T 2 = 7 0 0 ; // i n d eg re e c e l s i u s K = 0 . 6 ; // r a d i a t i n g e f f i c i e n c y e=0.9; / / e m i s s i v i t y t = 0 . 0 2 5 ; / / t h i c k n e s s i n mm p = 1 . 0 5 * 1 0 ^ - 6 ; // r e s i s i t i v i t y i n ohm − m e t e r P p = ( round ( P * 1 0 ^ 3 ) ) / 3 ; // p ower p er p ha se i n w at ts P v = ( V/ sqrt ( 3 ) ) ; // p h as e v o l t a g e R = P v ^ 2 / P p ; // r e s i s t a n c e o f s t r i p i n ohms x = ( ( R * t * 1 0 ^ - 3 ) / ( p ) ) ; // H = ( ( 5 . 7 2 * K * e ) * ( ( ( T 1 + 2 7 3 ) / 1 0 0 ) ^ 4 - ( ( T 2 + 2 7 3 ) / 1 0 0 ) ^ 4 ) );
// in W/mˆ2 19 20 21 22 23
y = ( ( P p ) / ( H * 2 ) ) ; // in mˆ2 w = sqrt ( y / x ) * 1 0 ^ 3 ; / / w i d t h i n mm l = x * w * 1 0 ^ - 3 ; // l e n g t h o f s t r i p i n m e t e r disp (w , ” w i d t h i n mm” ) disp (l , ” l e n g t h o f s t r i p i n m e t er ” )
Scilab code Exa 1.4 efficiency
1 / / Example 1 . 4 // l o a d i n g i n kW and e f f i c i e n c y
tank 2 3 4 5 6 7 8 9 10 11
clc ; clear ; close ; format ( ’ v ’ ,5) a = 6 ; / / a r e a i n mˆ 2 l = a / 6 ; // o ne s i d e o f t a nk i n m e t e r V = l * l * l ; / / v o lu me i n mˆ 2 e=90/100; // cap aci ty w h = 6 * e * 1 0 0 0 ; // w at er t o b e h ea te d d a i l y i n kg s = 4 2 0 0 ; / / s p e c i f i c h e a t o f w a t e r i n J /Kg / d e g r e e
celsius 12 t 1 = 6 5 ; // i n d eg r e e c e l s i u s 13 t 2 = 2 0 ; // i n d eg r e e c e l s i u s 10
o f t he
14 h r = w h * s * ( t 1 - t 2 ) * 1 0 ^ - 6 ; // h ea t r e q u i r e d t o r a i s e 15 16 17 18 19 20 21 22
t he
t e mp e r tu r e o f w at er h r 1 = h r / 3 . 6 ; / / h e a t r e q u i r e d i n kWh d = 6 . 3 ; // d i f f e r e n c e i n w at ts l = ( ( d * a * ( t 1 - t 2 ) * 2 4 ) / 1 0 0 0 ) ;// l o s s e s fro m t he s u r f a c e o f t h e t an k i n kWh e s = h r 1 + l ; / / e n e r g y s u p p l i e d i n kWh l k = e s / 2 4 ; / / l o a d i n g i n kW e f = ( h r 1 / e s ) * 1 0 0 ; // e f f i c i e n c y o f t h e t a n k i n percentage disp ( l k , ” l o a d i n g i n kW” ) disp ( e f , ” e f f i c i e n c y o f t h e t a n k i n p e r c e n t a g e ” )
Scilab code Exa 1.5 average kW and kVA and pf
1 / / Exam ple 1 . 5 / / a v e r a g e kW ,KVA i n p u t
, arc volt age , a rc r e s i s t a n c e and p f o f t he c u r r e n t drawn
2 3 4 5 6 7 8 9 10 11 12
clc ; clear ; close ; format ( ’ v ’ ,7) s h = 4 4 4 ; // s p e c i f i c h ea t o f s t e e l i n J /Kg/ C l h = 3 7 . 2 5 ; // l a t e n t h ea t i n kJ / kg m p = 1 3 7 0 ; // m e l ti ng p oi n t o f s t e e l C C t 1 = 1 9 . 1 ; / / i n i t i a l t e m p e r tu r e i n e = 0 . 5 ; // o v e r a l l e f f i c i e n c y i p = 5 7 0 0 ; / / i n p u t c u r r e n t i n a mp er es r s = 0 . 0 0 8 ; // r e s i s t a n c e o f t r a n sf o r m e r r e f e r r e d t o
s e c o n d a r y i n ohms 13 r r = 0 . 0 1 4 ; // r e c a t a nc e i n ohms 14 m = 4 . 3 ; // s t e e l i n t on ne s 15 e r s = ( ( m * 1 0 ^ 3 * ( ( s h * ( m p - t 1 ) ) + l h * 1 0 ^ 3 ) ) ) ;/ / e n er g y
r eq ui re d i n j o u l es 16 e r s h = e r s / ( 3 . 6 * 1 0 ^ 6 ) ; / / e n e r g y r e q u i r e d i n kWh 17 a t a = 1 ; // t im e t a ke n t o m e l t s t e e l i n h ou rs 11
18 a o = e r s h / a t a ; / / a v e r a g e o u tp u t i n kW 19 a i = a o / e ; / / a v e r a g e i n p u t i n kW 20 v d r = i p * r s ; // v o l t a g e d r o p due t o r e s i s t a n c e
of
f u rn a ce l e a d s 21 v d r 1 = i p * r r ; // v o l t a g e d ro p due t o r e a c t a n ce o f f u rn a ce l e a d s 22 v a = ( ( a i * 1 0 ^ 3 ) / ( 3 * i p ) ) - ( v d r ) ;/ / v o l t a g e r e s i s t i v e i n nature 23 r a c = v a / i p ; // a rc r e s i s t a n c e i n 24 o p p v = sqrt ( ( v a + v d r ) ^ 2 + v d r 1 ^ 2 ) ; // o pen c i r c u i t p ha se v ol ta ge i n v o l ts 25 k v a s = 3 * i p * o p p v * 1 0 ^ - 3 ; / / t o t a l kVA d ra wn 26 p f = ( ( v a + v d r ) / o p p v ) ; // p owe r f a c t o r 27 disp ( a i , ” a v e r a g e i n p u t i n kW” ) 28 disp ( v a , ” a r c v o l t a g e i n v o l t s ” ) 29 disp ( r a c , ” a r c r e s i s t a n c e i n ”) 30 disp ( p f , ” p f o f t he c u r r e n t drawn fro m t he s up pl y ( laggi ng )”) 31 disp ( k v a s , ” t o t a l kVA d ra wn i n kVA” )
Scilab code Exa 1.6 average kW and kVA and pf
1 / / Exam ple 1 . 6 / / a v e r a g e kW ,KVA i n p u t
, arc volt age , a rc r e s i s t a n c e and p f o f t he c u r r e n t drawn
2 3 4 5 6 7 8 9 10 11 12
clc ; clear ; close ; format ( ’ v ’ ,7) s h = 0 . 1 2 ; // s p e c i f i c h ea t o f s t e e l i n k c a l /Kg/ C l h = 8 . 8 9 ; // l a t e n t h ea t i n k c a l / kg C m p = 1 3 7 0 ; // m e l ti ng p oi n t o f s t e e l t 1 = 1 9 . 1 ; / / i n i t i a l t e m p e r tu r e i n C e = 0 . 5 ; // o v e r a l l e f f i c i e n c y i p = 5 7 0 0 ; / / i n p u t c u r r e n t i n a mp er es r s = 0 . 0 0 8 ; // r e s i s t a n c e o f t r a n sf o r m e r r e f e r r e d t o
12
s e c o n d a r y i n ohms 13 r r = 0 . 0 1 4 ; // r e c a t a nc e i n ohms 14 m = 4 . 3 ; // s t e e l i n t on ne s 15 e r s = ( ( m * 1 0 ^ 3 * ( ( s h * ( m p - t 1 ) ) + l h ) ) ) ;// e ne rg y r e q u i r e d
in j o ul e s 16 17 18 19 20
e r s h = e r s / ( 8 6 0 ) ; / / e n e r g y r e q u i r e d i n kWh a t a = 1 ; // t im e t a ke n t o m e l t s t e e l i n h ou rs a o = e r s h / a t a ; / / a v e r a g e o u tp u t i n kW a i = a o / e ; / / a v e r a g e i n p u t i n kW v d r = i p * r s ; // v o l t a g e d r o p due t o r e s i s t a n c e
of
f u rn a ce l e a d s 21 v d r 1 = i p * r r ; // v o l t a g e d ro p due t o r e a c t a n ce o f f u rn a ce l e a d s 22 v a = ( ( a i * 1 0 ^ 3 ) / ( 3 * i p ) ) - ( v d r ) ;/ / v o l t a g e r e s i s t i v e i n nature 23 r a c = v a / i p ; // a rc r e s i s t a n c e i n 24 o p p v = sqrt ( ( v a + v d r ) ^ 2 + v d r 1 ^ 2 ) ; // o pen c i r c u i t p ha se v ol ta ge i n v o l ts 25 k v a s = 3 * i p * o p p v * 1 0 ^ - 3 ; / / t o t a l kVA d ra wn 26 p f = ( ( v a + v d r ) / o p p v ) ; // p owe r f a c t o r 27 disp ( a i , ” a v e r a g e i n p u t i n kW” ) 28 disp ( v a , ” a r c v o l t a g e i n v o l t s ” ) 29 disp ( r a c , ” a r c r e s i s t a n c e i n ”) 30 disp ( p f , ” p f o f t he c u r r e n t drawn fro m t he s up pl y ( laggi ng )”) 31 disp ( k v a s , ” t o t a l kVA d ra wn i n kVA” )
Scilab code Exa 1.7 rating
1 2 3 4 5 6
/ / Example 1 . 7 // r a t i n g o f f u rn a n ce
clc ; clear ; close ; format ( ’ v ’ ,6) s h = 0 . 1 ; // s p e c i f i c
h ea t o f s t e e l i n k c a l /Kg/ C 13
7 8 9 10 11 12
l h = 2 6 . 6 7 ; // l a t e n t h ea t i n k c a l / kg m p = 5 5 5 ; // m e l t i n g p o in t o f s t e e l C C t 1 = 3 5 ; / / i n i t i a l t e m p e r tu r e i n e = 0 . 8 ; // o v e r a l l e f f i c i e n c y i p = 5 7 0 0 ; / / i n p u t c u r r e n t i n a mp er es r s = 0 . 0 0 8 ; // r e s i s t a n c e o f t r a n sf o r m e r r e f e r r e d t o
s e c o n d a r y i n ohms 13 r r = 0 . 0 1 4 ; // r e c a t a nc e i n ohms 14 m = 2 ; // s t e e l i n t on n es 15 e r s = ( ( m * 1 0 ^ 3 * ( ( s h * ( m p - t 1 ) ) + l h ) ) ) ;// e ne rg y r e q u i r e d
in j o ul e s 16 17 18 19 20
e r s h = e r s / ( 8 6 0 ) ; / / e n e r g y r e q u i r e d i n kWh a t a = 1 ; // t im e t a ke n t o m e l t s t e e l i n h ou rs a o = e r s h / a t a ; / / a v e r a g e o u tp u t i n kW a i = a o / e ; / / a v e r a g e i n p u t i n kW v d r = i p * r s ; // v o l t a g e d r o p due t o r e s i s t a n c e
of
f u rn a ce l e a d s 21 v d r 1 = i p * r r ; // v o l t a g e d ro p due t o r e a c t a n ce o f f u rn a ce l e a d s 22 v a = ( ( a i * 1 0 ^ 3 ) / ( 3 * i p ) ) - ( v d r ) ;/ / v o l t a g e r e s i s t i v e i n nature 23 r a c = v a / i p ; // a rc r e s i s t a n c e i n 24 o p p v = sqrt ( ( v a + v d r ) ^ 2 + v d r 1 ^ 2 ) ; // o pen c i r c u i t p ha se v ol ta ge i n v o l ts 25 k v a s = 3 * i p * o p p v * 1 0 ^ - 3 ; / / t o t a l kVA d ra wn 26 p f = ( ( v a + v d r ) / o p p v ) ; // p owe r f a c t o r 27 r f = a i / a t a ; / / i n kW 28 disp ( r f , ” r a t i n g o f f u rn a n c e i n kW” )
Scilab code Exa 1.8 efficiency
1 2 3 4
// Example 1 . 8 // e f f i c i e n c y o f f u r n an c e clc ; clear ; close ;
14
5 6 7 8 9 10 11
format ( ’ v ’ ,3) s h = 8 8 0 ; // s p e c i f i c h ea t o f s t e e l i n J /Kg/ C l h = 3 2 0 0 0 ; // l a t e n t h ea t i n J /kg m p = 6 6 0 ; // m e l t i n g p o in t o f s t e e l C C t 1 = 1 5 ; / / i n i t i a l t e m p e r tu r e i n i p = 5 7 0 0 ; / / i n p u t c u r r e n t i n a mp er es r s = 0 . 0 0 8 ; // r e s i s t a n c e o f t r a n sf o r m e r r e f e r r e d t o
s e c o n d a r y i n ohms 12 r r = 0 . 0 1 4 ; // r e c a t a nc e i n ohms 13 m = 1 . 8 ; / / I N KG 14 e r s = ( ( m * ( ( s h * ( m p - t 1 ) ) + l h ) ) ) ;// e ne rg y r e q u i r e d i n j o u l e s 15 e r s h = e r s / ( 3 . 6 * 1 0 ^ 6 ) ; / / e n e r g y r e q u i r e d i n kWh 16 T M = 1 0 ; //TIME TO MELT IN MINS 17 i p = 5 ; // i n pu t o f t he f u rn a n ce i n kW 18 e i = ( i p ) * ( T M / 6 0 ) ; / / e n e r g y i n p u t i n kWh 19 n = ( e r s h / e i ) * 1 0 0 ; // e f f i c i e n c y o f f ur na n c e i n percentage 20 disp (n , ” e f f i c i e n c y o f f u r n a n ce i n p e rc e nt a ge ” )
Scilab code Exa 1.9 power absorbed and power factor
1 2 3 4 5 6 7 8 9 10 11 12
/ / Example 1 . 9 // p ower a b so r be d and po we r f a c t o r
clc ; clear ; close ; format ( ’ v ’ ,8) v s = 1 0 ; // s ec on d a ry v o l t a g e i n v o l t s p = 5 0 0 ; / / p o w er d ra wn i n kW p f = 0 . 5 ; // i s = ( p * 1 0 ^ 3 ) / p f ; / / s e c on d a r y c u r r e n t i n a mp er es z s = v s / i s ; // i m pe de nc e o f s e co n da r y c i r c u i t i n o hms r s = z s * p f ; // r e s i s t a n c e o f s ec on da ry c i r c u i t i n ohms r e s = z s * ( sqrt ( 1 - p f ^ 2 ) ) ; // r e c t a n c e t a n c e o f s e c on d a ry
c i r c u i t i n ohms 15
13 r s 1 = 2 * r s ; // r e s i s t a c n e when h ea rt h i s f u l l i n 14 r e s 1 = r e s ; // r e a c t a nc e when h e ar th i s f u l l i n 15 z s 1 = ( sqrt ( r s 1 ^ 2 + r e s 1 ^ 2 ) ) ; / / i m pe da n ce o f s e c o n d a r y 16 17 18 19 20
c i r cu i t in p f 1 = r s 1 / z s 1 ; // p ower f a c t o r i s 1 = v s / z s 1 ; / / s e c on d a r y c u r r e n t i n a mp er es p d = i s 1 ^ 2 * r s 1 * 1 0 ^ - 4 ; / / p o w er d ra wn i n kW disp ( p f 1 , ” power f a c t o r i s ” ) disp ( p d , ” p o w e r d ra wn i n kW” )
Scilab code Exa 1.10 height
1 2 3 4 5 6 7 8 9 10 11 12
/ / Example 1 . 1 0 / / h e i g h t
clc ; clear ; close ; format ( ’ v ’ ,8) v s = 1 0 ; // s ec on d a ry v o l t a g e i n v o l t s p = 4 0 0 ; / / p o w er d ra wn i n kW p f = 0 . 6 ; // i s = ( p * 1 0 ^ 3 ) / p f ; / / s e c on d a r y c u r r e n t i n a mp er es z s = v s / i s ; // i m pe de nc e o f s e co n da r y c i r c u i t i n o hms r s = z s * p f ; // r e s i s t a n c e o f s ec on da ry c i r c u i t i n ohms r e s = z s * ( sqrt ( 1 - p f ^ 2 ) ) ; // r e c t a n c e t a n c e o f s e c on d a ry
c i r c u i t i n ohms 13 x = ( r s ) / r e s ; / / h e i g h t 14 disp (x , ”maximum h e at w i l l b e o b t a i n ed w it h t h e h e i g h t o f c ha rg e a s 3/ 4 o f h e i g h t o f h ea rt h ” )
Scilab code Exa 1.11 frequency
1 / / Example 1 . 1 1 / / f r e q u e n c y 2 clc ;
16
3 4 5 6 7 8 9
clear ; close ; format ( ’ v ’ ,5) p=5*10^-7;/ / s p e c i f i c r e s i s t a n c e i n −m r p = 1 ; // r e l a t i v e p e r m e a b i l i t y d p = 0 . 0 0 1 5 ; // d ep t h o f p e n e t r a t io n i n mter f = ( ( p * 1 0 ^ 7 ) / ( ( r p * ( d p ) ^ 2 ) * 4 * ( % p i ) ^ 2 ) ) * 1 0 ^ - 3 ;//
f r e q u e n c y i n kHz 10 disp (f , ” f r e q u e n c y i n kHz ” )
Scilab code Exa 1.12 power required
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/ / Example 1 . 1 2 / / p ower r e q u i r e d
clc ; clear ; close ; format ( ’ v ’ ,10) l = 0 . 5 ; / / l e n g t h i n m et er b = 0 . 2 5 ; // b r ea dh i n m et er h = 0 . 0 2 ; / / i n m e te r t 1 = 2 5 ; // t em pe r tu re C C t 2 = 1 2 5 ; // t em pe rt ur e t = 1 0 ; / / t im e i n m i nu te s f = 3 0 ; / / f r e q u e n c y i n 3 0 MHz w = 6 0 0 ; / / w e i gh t o f t h e wood i n kg /mˆ 3 s h = 1 5 0 0 ; / / s p e c i f i c h e a t i n J / Kg / C e = 5 0 ; // e f f i c i e n c y v p = l * b * h ; / / v ol um e i n mˆ 3 w p = v p * w ; / / w ei g ht o f p ly wo od i n kg h r = s h * w p * ( t 2 - t 1 ) ; // h ea t r e q u ir e d i n j o u l e s h r t = ( h r / ( 3 6 0 0 ) ) ; // h e at r e qu i r e d t o r a i s e t h e
t e m p e r tu r e o f p ly wo od i n Wh 20 p u = h r t / ( 1 / 6 ) ; // power u t i l i z e d i n w at ts 21 p i = ( p u / e ) * 1 0 0 ; // p ower i n pu t r e q u i r e d i n p e r ce n t ag e 22 disp ( p i , ” p ow er i n p u t r e q u i r e d , (W)=” ) 17
Scilab code Exa 1.13 voltage and current
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/ / Example 1 . 1 3 / / v o l t a g e
, c u r r e n t and f r e q u e n cy
clc ; clear ; close ; format ( ’ v ’ ,5) v l = 6 0 0 ; // i n v o l t s p = 2 0 0 ; / / po wer a b so r be d i n w a tt s p f = 0 . 0 5 ; / / po wer f a c t o r f = 3 0 * 1 0 ^ 6 ; / / f r e q u e n c y i n Hz ep=8.854*10^-12;// cons tant e r = 5 ; // a = 1 5 0 ; / / i n cm ˆ2 t = 0 . 0 2 ; // i n m et er c = ( ( e p * e r * a * 1 0 ^ - 4 ) / t ) ; // c a p a c i t an c e i n f a r a d s v r = ( sqrt ( p / ( 2 * % p i * f * c * p f ) ) ) ; // v o l t a g e i s r e qu i r e d i n
volts 16 17 18 19 20
i = p / ( v r * p f ) ; // c u r r e n t i n a mp er es f 2 = ( ( f * ( v r / v l ) ^ 2 ) ) * 1 0 ^ - 6 ;/ / f r e q u e n c y disp ( ceil ( v r ) , ” v o l t a g e i n v o l t s ” ) disp ( round ( i ) , ” c u r r e n t i n a mp er es ” ) disp ( f 2 , ” f r e q u e n c y i n MHz” )
i n Mhz
Scilab code Exa 1.14 voltage and current
1 // Example 1 . 1 4/ / v o l t a g e a c r o s s
current 2 clc ; 3 clear ; 4 close ;
18
e l e c t r o d e s and
5 6 7 8 9 10 11 12 13 14 15 16 17
format ( ’ v ’ ,6) p f = 0 . 0 4 ; / / po wer f a c t o r p = 1 0 0 0 ; / / i n w a t ts f = 1 0 * 1 0 ^ 6 ; / / i n MHz a 1 = . 0 0 4 ; / / a r e a i n mˆ 2 a 2 = 0 . 0 0 1 ; / / a r e a i n mˆ 2 t = 0 . 0 2 ; // t h i c k n e s s i n m et er t 1 = . 0 1 ; // t h i c k n e s s i n m et er t 2 = t - t 1 ; // t h i c k n e s s i n m et er e p = 8 . 8 5 4 * 1 0 ^ - 1 2 ; / / c o n s t a n t i n F/m e r = 5 ; // r e l a t i v e p e r m i t t i v i t y o f plywoo d e r 1 = 1 ; // r e l a t i v e p e r m i t t i v i t y i n a i r c = ( e p * ( ( ( a 1 * e r 1 ) / t ) + ( a 2 / ( ( t 1 / e r ) + ( t 2 / e r 1 ) ) ) ) ) ;//
c a p ac i t an c e i n f a r a d s 18 v r = ( sqrt ( p / ( 2 * % p i * f * c * p f ) ) ) ; // v o l t a g e
i s r e qu i r e d i n
volts 19 disp ( ” p a r t ( a ) ” ) 20 disp ( round ( v r ) , ” v o lt a g e a c r o s s t h e e l e c t r o d e s i n vo lt s ”) 21 i = p / ( v r * p f ) ; // c u r r e n t i n a mp er es 22 disp ( ” p a r t ( b ) ” ) 23 disp (i , ” c u r e e n t i n a mp er es i s ” )
19
Chapter 3 Electrolytic processes
Scilab code Exa 3.1 ampere hours
1 2 3 4 5 6 7 8 9 10 11 12 13
/ / Example 3 . 1 // a mp ere h ou r r e q u i r e d clc ; clear ; close ;
/ / g i v e n d at a : r = 5 ; / / i n cm
S=4*%pi*r^2; t = 0 . 0 0 5 ; // i n mm d=10.5; m=S*t*d*10^-3; Z=(0.001118*3600)/1000; Amr=m/Z; disp ( A m r , ” a m p er e h o u r r e q u i r e d , ( Ampere −hour )= ” )
Scilab code Exa 3.2 amount of copper
1 / / Example 3 . 2 // mass o f c o pp e r d e p o s i t e d 2 clc ;
20
3 4 5 6 7 8 9 10 11 12 13 14 15 16
clear ; close ;
/ / g i v e n d at a : m = 2 0 ; // in gm I=120; // in A t=10*60; / / i n s e c t1=5*60; / / i n s e c I1=100; // in A Cec=63.18/2; Cen=58.6/2; Z=m/(I*t); Z1=(Z*(Cec/Cen))*10^-3; m1=Z1*I1*t1; disp ( ” mass o f c o pp er d e ps o it e d i s ” + string ( m 1 ) + ” kg o r ” + string ( round ( m 1 * 1 0 ^ 3 ) ) + ”gm” )
Scilab code Exa 3.3 weight of copper
1 2 3 4 5 6 7 8 9 10
/ / Example 3 . 3 // mass o f c o pp e r d e p o s i t e d clc ; clear ; close ;
/ / g i v e n d at a :
Z = 1 . 0 4 4 * 1 0 ^ - 8 ; / / i n k g /C I=40; // in A t=1*60*60; / / i n s e c o n d s m1=Z*I*t; disp ( ” mass o f c o pp er d e ps o it e d i s ” + string ( m 1 ) + ” kg o r ” + string ( ( m 1 * 1 0 ^ 3 ) ) + ”gm” )
Scilab code Exa 3.4 thickness
1 // Example 3 . 4 // t h i c k n e s s
21
o f c op pe r d e p o s i t ed
2 3 4 5 6 7 8 9 10 11 12 13 14
clc ; clear ; close ;
/ / g i v e n d at a : A = 0 . 0 0 0 2 5 ; // in mˆ2 D = 8 9 0 0 ; // in kg/mˆ3 Z = 3 2 . 9 5 * 1 0 ^ - 8 ; / / i n k g /C I=1; // in A t=100*60; / / i n s e c o n d s m=Z*I*t;// in kg
v=m/D; T=(v/A)*10^3; disp (T , ” t h i c k n e s s
o f c o p p er d e p o s i t e d , T(mm) = ” )
Scilab code Exa 3.5 thickness
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Example 3 . 5 // t h i c k n e s s o f c op pe r d e p o s i t ed clc ; clear ; close ;
/ / g i v e n d at a : A = 0 . 0 0 0 2 5 ; // in mˆ2 D = 8 9 0 0 ; // in kg/mˆ3 Z = 3 2 . 9 5 * 1 0 ^ - 8 ; / / i n k g /C I=1.5; // in A t=60*60; / / i n s e c o n d s m=Z*I*t;// in kg
v=m/D; T=(v/A); disp ( ” T hi ck ne ss o f c o pp er d e po s it e d m or ” + string ( T * 1 0 ^ 3 ) + ”mm” )
Scilab code Exa 3.6 current
22
i s ” + string ( T ) + ”
1 2 3 4 5 6 7 8 9 10 11 12
/ / Example 3 . 6 // c u r r e n t clc ; clear ; close ;
/ / g i v e n d at a : m = 5 0 ; // i n gm t = 2 * 6 0 * 6 0 ; // i n s ec
E C E _ s i l v e r = 1 1 1 . 8 * 1 0 ^ - 8 ; // i n kg Cˆ −1 a t o m i c _ w e i g h t 1 = 1 0 8 ; // f o r s i l v e r a t o m i c _ w e i g h t 2 = 6 3 . 5 ; / / f o r c o pp e r v a l e n c y = 1 ; // f o r s i l v e r C e s = a t o m i c _ w e i g h t 1 / v a l e n c y ; // c he m i ca l e q u i v a l e n t o f
silver 13 C e c = a t o m i c _ w e i g h t 2 / 2 ; // c h e mi c a l e q u i v a l e n t o f
copper 14 Z = E C E _ s i l v e r * ( C e c / C e s ) ; 15 I = ( m * 1 0 ^ - 3 ) / ( Z * t ) ; 16 disp (I , ” c u r r e n t , I (A) = ” )
Scilab code Exa 3.7 energy consumption
1 2 3 4 5 6 7 8 9 10 11
/ / E xam ple 3 . 7 / / e n e r g y c o ns u mp t io n clc ; clear ; close ;
12 13
/ / g i v e n d at a : a = 5 0 0 ; // e l e c t r o l y t i c c e l l s I=6000; // in A t = 4 0 ; / / i n h o u r / w e ek Z = 3 2 . 8 1 * 1 0 ^ - 8 * 3 6 0 0 ; / / i n k g /A−h V = 0 . 2 5 ; // i n v o l t s A h = a * I * ( t * 5 2 ) ; // t o t a l number o f a mpere h ou r p e r annum A o = Z * A h * 1 0 ^ - 3 ; // a nn ua l o ut pu t i n t o nn e s E a = A h * V * 1 0 ^ - 3 ; / / e n e r g y c on su me d p e r annum i n kWh 23
14 E t = E a / A o ; 15 disp ( E t , ” e n e r g y c o n s u m p t i o n , E t ( kWh/ t o n n e ) = ” )
Scilab code Exa 3.8 voltage
1 2 3 4 5 6 7 8 9
/ / Example 3 . 8 // v o l t a g e clc ; clear ; close ;
/ / g i v e n d at a :
Z = 1 . 0 3 8 4 * 1 0 ^ - 8 ; / / i n k g /C V b y Z = 1 4 . 2 1 2 * 1 0 ^ 7 ; // i n j o u l e s V=VbyZ*Z; disp (V , ” v o l t a g e , V( v o l t s ) = ” )
Scilab code Exa 3.9 WEIGHT OF ALUMINIUM
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/ / E xam ple 3 . 9 / / m as s o f a lu mi ni um clc ; clear ; close ;
/ / g i v e n d at a :
E C E _ s i l v e r = 1 1 1 * 1 0 ^ - 8 ; / / i n k g /C C e w _ s i l v e r = 1 0 7 . 9 8 ; // c he m i ca l e q u i v a l e n t o f s i l v e r C e w _ a l = 2 7 / 3 ; // c h e m ic a l e q u i v a l e n t o f a lu mi ni um Z=(ECE_silver*Cew_al)/Cew_silver; C_efficiency=0.92; I=3000; // in A t=24*60*60; / / i n s e c o n d s m=Z*I*t*C_efficiency; disp (m , ” m as s o f a lu mi ni um , , m( k g ) = ” )
24
Scilab code Exa 3.10 quantity of electricity and ime taken
1 / / E xa mp le 3 . 1 0 / / q u a n t i t y
o f e l e c t r i c i t y a nd t i m e
taken 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
clc ; clear ; close ;
/ / g i v e n d at a : d=0.1; // in m l = . 2 5 ; // i n m T c = 2 ; // t h i c k n e s s o f c o at i ng i n mm D = 8 . 9 ; / / d e n s i t y o f m e ta l i n gm/CC C _ d e n s i t y = 1 6 0 ; / / i n A/ s q
I_efficiency=0.9; S=%pi*d*l; m=S*Tc*10^-3*D*10^3; Z = 3 0 . 4 3 * 1 0 ^ - 8 ; // i n kg /C Q = ( m / Z ) / 3 6 0 0 ; // i n A−h Q_dash=Q/I_efficiency; disp ( Q _ d a s h , ” q u a n ti t y o f e l e c t r i c i t y , Q d ash (A−h ) = ” ) 18 I = C _ d e n s i t y * S ; 19 t = Q _ d a s h / I ; 20 disp (t , ” t i m e r e q u i r e d , t ( h o u r s ) = ” )
25
Chapter 4 Illumination
Scilab code Exa 4.1 MSCP
1 2 3 4 5 6 7 8
// Example 4. 1 //MSCP
clc ; clear ; close ; format ( ’ v ’ ,3) F = 1 0 0 0 ; // i n t e n s i t y i n l um en s M S C P = F / ( 4 * % p i ) ; / / MSCP o f t h e l a m ps disp ( M S C P , ”MSCP o f t h e l am p i s ” )
Scilab code Exa 4.2 lumens per watt and MSCP
1 2 3 4 5 6 7
// Ex am pl e 4 . 2 //LUMES PER WATT AND MSCP
clc ; clear ; close ; format ( ’ v ’ ,4) V = 2 5 0 ; // i n v o l t s I = 0 . 8 ; / / i n a m p e r es
26
8 9 10 11 12 13 14
F = 3 0 0 0 ; // i n t e n s i t y i n l um en s w l = V * I ; // w a tt ag e o f la pms i n s w at ts l p w = F / w l ; // l u m en s p er w at ts i s M S C P = F / ( 4 * % p i ) ; / / MSCP o f t h e l a m ps M W = M S C P / w l ; //MSCP per wat ts disp ( l p w , ” l um en s p e r w at t i s ” ) disp ( M W , ”MSCP p e r w a tt o f t h e l am p i s ” )
Scilab code Exa 4.3 average luminance
1 2 3 4 5 6 7 8 9 10 11
/ / Example 4 . 3 // a v e ra g e l um in an e o f t h e s p h e r e
clc ; clear ; close ; format ( ’ v ’ ,6) d = 0 . 4 ; / / d i a m te r i n m et er p = 0 . 2 0 ; // i n p e r ce n t ag e a b s o r p ti o n F = 4 8 5 0 ; / / l u me n s F e = ( 1 - p ) * F ; // f l u x e mi tt ed by t he g l ob e i n l um en s s a = 4 * % p i * ( d / 2 ) ^ 2 ; // s u r f a c e a r ea i n mˆ2 a l s = F e / s a ; / / a v e r ag e l um ni n an ce o f s p h e r e i n l um en s /m
ˆ2 12 disp ( a l s , ” a v e r a g e l um n in an ce o f s p h e r e i n l um en s /mˆ 2 ”)
Scilab code Exa 4.4 Illumination
1 2 3 4 5 6
/ / Example 4 . 4 // i l l u m i n a t i o n
clc ; clear ; close ; format ( ’ v ’ ,7) P = 2 0 ; / / f i l a m e n t po we r i n w a tt s
27
7 8 9 10 11 12 13 14 15
h = 5 ; // h e i g h t i n m e te rs d = 4 ; / / d i a m t er i n m et er p = 0 . 5 0 ; // i n p e r ce n t ag e a b s o r p ti o n e f = 0 . 8 9 ; // e f f i c i e n c y i n w a tt s c p l = P / e f ; / / c a n d l e p ow er o f l amp i n CP L o p = 4 * % p i * c p l ; // l u , i n o u s o u tp u t i n l um en s F e = ( 1 - p ) * L o p ; // f l u x e mi tt ed by t he g l o b e i n l u m en s s a = % p i * ( d / 2 ) ^ 2 ; // s u r f a c e a r ea i n mˆ2 a l s = F e / s a ; / / a v e r ag e l um ni n an ce o f s p h e r e i n l um en s /m
ˆ2 16 disp ( a l s , ” a v e r a g e l um n in an ce o f s p h e r e i n l um en s /mˆ 2 ”)
Scilab code Exa 4.5 average intensity of Illumination
1 2 3 4 5 6 7 8 9 10 11
// Exa mpl e 4 . 5 //AVERAGE INTENSITY
clc ; clear ; close ; format ( ’ v ’ ,6) c p l = 1 0 0 ; // h = 5 ; / / i n m e te r th=60; / / i n d e g r e e F = 1 0 0 0 ; // i n t e n s i t y i n l um en s M S C P = F / ( 4 * % p i ) ; / / MSCP o f t h e l a m ps a i = ( ( c p l / h ^ 2 ) * c o s d ( 9 0 - t h ) ) ; // a v e ra g e i n t e n s i t y
of
illumination 12 disp ( round ( M S C P ) , ”MSCP o f a l am p i s , = ” ) 13 disp ( a i , ” a ve r a ge i n t e n s i t y o f i l l u m i n a t i o n
i s l ux ” )
Scilab code Exa 4.7 Illumination and lamp efficiency
1 // Example 4 . 7 // lamp e f f i c i e n c y and i l l u m i n a t i o n
28
2 3 4 5 6 7 8 9
clc ; clear ; close ; format ( ’ v ’ ,7) p = 5 0 0 ; / / lamp p ow er i n w a t ts m s c p = 1 2 5 0 ; // h=2.7; // in meters e a = ( m s c p ) / ( h ) ^ 2 ; // i l l u m i n a t i o n
d i r e c t l y b e l o w lamp
i n l ux 10 l e = ( 4 * % p i * m s c p ) / p ; // lamp e f f i c i e n c y i n l um en s / wa tt s 11 h 1 = 3 ; / / m e t e r s 12 e b = ( ( m s c p ) / ( h ^ 2 ) * ( 2 . 7 ^ 3 / ( h 1 ^ 2 + h ^ 2 ) ^ ( 3 / 2 ) ) ) ;//
i l l u m n i n a t i o n a t a p o in t 3 m et er s away o n t he h o r i z o n t a l p la ne v e r t i c a l l y b e l o w t h e l amp i n l ux 13 disp ( e a , ” i l l u m i n a t i o n d i r e c t l y b el ow lamp i n l ux ” ) 14 disp ( l e , ” lamp e f f i c i e n c y i n l um en s /W” ) 15 disp ( e b , ” i l l u m n i n a t i o n a t a p o in t 3 m et er s away on t h e h o r i z o n t a l p la ne v e r t i c a l l y b e l o w t he lamp i n lux”)
Scilab code Exa 4.8 height and Illumination
1 2 3 4 5 6 7 8 9 10 11 12
/ / Example 4 . 8 / / h e i g h t and i l l u m i n a t i o n
clc ; clear ; close ; format ( ’ v ’ ,7) l = 1 0 0 ; // i l l u m i n a t i o n a t a p o i n t
d i r e c t l y b el o w t he
l am p i n l u m e ns /mˆ 3 c p = 2 5 6 ; // h 1 = 1 . 2 ; / / i n m e t er s h = sqrt ( c p / l ) ; / / h e i g h t i n m e te r s x = sqrt ( h ^ 2 + h 1 ^ 2 ) ; // x 1 = h / x ; // e b = ( ( c p ) / ( h ^ 2 ) ) * ( x 1 ) ^ 3 ; // i l l u m n i n a t i o n a t a p o in t 29
1 . 2 m et er s away on t he h o r i z o n t a l p la n e v e r t i c a l l y b e l o w t h e l amp i n l ux 13 disp (h , ” h e i g ht i n m et er s i s ” ) 14 disp ( e b , ” i l l u m n i n a t i o n a t a p o in t 1 . 2 m et er s away on t h e h o r i z o n t a l p la ne v e r t i c a l l y b e l o w t h e l amp i n l ux ” )
Scilab code Exa 4.9 candle power
1 2 3 4 5 6 7 8 9 10 11 12
/ / Exam ple 4 . 9 / / c a n d l e p ow er o f lamp
clc ; clear ; close ; format ( ’ v ’ ,7) L 1 = 5 0 0 ; / / c a n d l e p ow er h 1 = 9 ; / / i n m e t er s d = 2 ; // d i s t a n c e i n m et er s I 2 = 2 0 ; // i l l u m i n a t i o n i n Lux x = sqrt ( h 1 ^ 2 + d ^ 2 ) ; / / f ro m p y t h a g o r a s t he or am C p x = ( ( I 2 - ( L 1 / h 1 ^ 2 ) ) * h 1 ^ 2 ) / ( ( h 1 / x ) ^ 3 ) ;/ / c a n d l e p ow er disp ( C p x , ” c a n d l e p ower o f lamp two i n CP” )
Scilab code Exa 4.10 distance
1 2 3 4 5 6 7 8 9
/ / E xa mp le 4 . 1 0 / / d i s t a n c e
clc ; clear ; close ; format ( ’ v ’ ,5) h1=10; // in meters e L = 1 ; //ASSUME E a = 1 / ( 1 0 ) ^ 2 ; // X=(((10^3)*eL)/10^2)*10*(1/Ea);
30
10 x = ( X ) ^ ( 2 / 3 ) ; // 11 y = sqrt ( x - 1 0 0 ) ; // 12 disp (y , ” d i s t a n ce i n m et er s i s ” )
Scilab code Exa 4.11 total light flux and average Illumination
1 // Example 4 . 1 1 // t o t a l
f l u x and a v er a ge l um in an e o f
t he s p h er e 2 3 4 5 6 7 8 9 10 11 12 13 14 15
clc ; clear ; close ; format ( ’ v ’ ,6) th=15; / / i n d e g r e e l=400; // can del a d = 8 ; / / m et er p = 0 . 8 0 ; // i n p e r ce n t ag e a b s o r p ti o n F e = p * 4 * % p i * l ; // f l u x e mi tt ed by t he g l o b e i n l u m en s d A = d * t a n d ( t h / 2 ) ; / / d i a m et e r i n d e g r e e s a = % p i * ( d A ) ^ 2 ; // s u r f a c e a r ea i n mˆ2 a l s = F e / s a ; // a v er a ge l um ni na nc e o f s p h er e i n l ux disp ( F e , ” t o t a l f l u x i n lu m en s ” ) disp ( a l s , ” a v er a g e l um ni na nc e o f s p h e r e i n l ux ” )
Scilab code Exa 4.12 maximum and minimum Illumination
1 2 3 4 5 6 7 8
/ / E xa mp le 4 . 1 2 / / maximum a nd minimum i l l u m i n a t i o n
clc ; clear ; close ; format ( ’ v ’ ,5 ) C P = 1 0 0 0 ; // h = 1 2 ; / / i n m e te r d = 2 4 ; / / d i a m t er i n m et er
31
9 m i l = C P / ( h ) ^ 2 ; / /maximum i l l u m i n a t i o n i n l u x 10 m a l = m i l * ( 1 2 / sqrt ( 1 2 ^ 2 + 1 2 ^ 2 ) ) ^ 3 ; //minimum
i l l u m i n a t i o n i n l ux 11 disp ( m i l , ”maximum i l l u m i n a t i o n i n l u x ” ) 12 disp ( m a l , ” minimum i l l u m i n a t i o n i n l u x ” )
Scilab code Exa 4.13 Illumination
1 2 3 4 5 6 7 8 9 10 11 12
/ / Exam ple 4 . 1 3 / / i l l u m i n a t i o n
13 14 15 16 17 18 19 20 21 22 23 24
clc ; clear ; close ; format ( ’ v ’ ,5 ) p = 6 0 ; // C P = 2 0 0 ; // h = 6 ; / / i n m e te r d = 1 0 ; / / d i a m t er i n m et er m i l = C P / ( h ) ^ 2 ; / /maximum i l l u m i n a t i o n i n l u x disp ( ” p a r t ( a ) . ” ) disp ( m i l , ” i l l u m i n a t i o n a t t h e c e n t r e o f t h e a re a w i t h o ut r e f l e c t o r i n l ux ” ) m a l = m i l * ( h /sqrt ( h ^ 2 + ( d / 2 ) ^ 2 ) ) ^ 3 ; //minimum
i l l u m i n a t i o n i n l ux t l = 4 * % p i * C P ; / / t o t a l l um en s t s = ( p / 1 0 0 ) * t l ; // t o t a l l u m en s r e a c h i n g t he s u r f a c e A = % p i * ( d / 2 ) ^ 2 ; // t o t a l s u r f a c e a r e a i n mˆ2 a l f = t s / A ; // a ve ra g e i l l u m i n a t i o n w it h r e f l e c t o r x = sqrt ( h ^ 2 + ( d / 2 ) ^ 2 ) ; // y = h / x ; // o m = 2 * % p i * ( 1 - y ) ; // i n s t e r a d i a n s t f r = C P * o m ; // t o t a l f l u x r e a c h i n g t he s u r f a c e a l w r = t f r / A ; // a ve ra g e i l l u m i n a t i o n w it ho ut r e f l e c t o r disp ( ” p a r t ( b ) . ” ) disp ( m a l , ” i l l u m i n a t i o n a t t h e e d g e o f t h e a re a w i t h o ut r e f l e c t o r i n l ux ” ) 32
25 disp ( a l f , ” a ve r ag e i l l u m i n a t i o n w i t h r e f l e c t o r i n l u x ”) 26 disp ( a l w r , ” a v e r a g e i l l u m i n a t i o n w i t h o ut r e f l e l c t o r i n l ux ” ) 27 // w i t h t h e r e f l e c t o r t h e i l l u m i n t a i o n a t t h e e d g e
and a t t h e end w i l l be t he same s i n c e t he r e f l e c t i o n d i r e c t s t h e l i g h t u n i f o r m i t y on t h e surface
Scilab code Exa 4.14 Illumination
1 / / Example 4 . 1 4 / / i l l u m i n a t i o n
u nd er e ac h lamp and
m id wa y b e t w e e n l a m p s 2 3 4 5 6 7 8 9 10
clc ; clear ; close ; format ( ’ v ’ ,5 ) C P = 1 0 0 ; // h = 6 ; / / i n m e te r d = 1 6 ; / / m et er x = sqrt ( h ^ 2 + d ^ 2 ) ; // e m = 2 * ( ( C P / h ^ 2 ) * ( h / ( d - h ) ) ^ 3 ) ;// i l l u m i n a t i o n
i n t he
m id dl e i n l ux 11 e e = ( ( C P / h ^ 2 ) * ( 1 + ( h / x ) ^ 3 ) ) ;// i l l u m i n a t i o n
i u n de r e ac h
lamp i n l u x 12 disp ( e e , ” i l l u m i n a t i o n u nd er e ac h lamp i n l u x ” ) 13 disp ( e m , ” i l l u m i n a t i o n i n t he m id d le i n l ux ” )
Scilab code Exa 4.15 Illumination
1 / / Example 4 . 1 5 / / i l l u m i n a t i o n
m id wa y b e t w e e n l a m p s 2 clc ;
33
u nd er e ac h lamp and
3 4 5 6 7 8 9 10 11
clear ; close ; format ( ’ v ’ ,7 ) C P = 8 0 0 ; // h = 1 0 ; / / i n m e te r d = 1 2 ; / / m et er x = sqrt ( h ^ 2 + d ^ 2 ) ; // x1 = sqrt ( h ^ 2 + ( d / 2 ) ^ 2 ) ; // e m = ( ( C P / h ^ 2 ) * ( 1 + ( h / x ) ^ 3 + ( h / x ) ^ 3 ) ) ;// i l l u m i n a t i o n
i u n de r e ac h l amp i n l u x 12 e e = 2 * ( ( C P / h ^ 2 ) * ( h / x 1 ) ^ 3 ) ; // i l l u m i n a t i o n a t t he c en tr el a mp i n l u x 13 disp ( e m , ” i l l u m i n a t i o n u nd er e ac h lamp i n l u x ” ) 14 disp ( e e , ” i l l u m i n a t i o n i n t he m id d le i n l ux ” )
Scilab code Exa 4.16 Illumination
1 2 3 4 5 6 7 8 9 10
/ / Exam ple 4 . 1 6 / / i l l u m i n a t i o n
midway b et we en l am ps
clc ; clear ; close ; format ( ’ v ’ ,5 ) C P = 4 0 0 ; // h = 1 0 ; / / i n m e te r d = 2 0 ; / / m et er x = sqrt ( d ^ 2 - h ^ 2 ) ; // e e = 4 * ( ( C P / h ^ 2 ) * ( h / x ) ^ 3 ) ; // i l l u m i n a t i o n
a t t he
c en tr el a mp i n l u x 11 disp ( e e , ” i l l u m i n a t i o n i n t he m id d le i n l ux ” )
Scilab code Exa 4.17 spacing
1 / / E xa mp le 4 . 1 7 / / d i s t a n c e
34
2 3 4 5 6 7 8 9 10 11 12 13 14
clc ; clear ; close ; format ( ’ v ’ ,5) cp=500; //cp h = 4 ; / / i n m e te r x = ( ( 2 * c p * h ^ 3 ) / h ^ 2 ) ; // y = ( ( c p * h ^ 3 ) / h ^ 2 ) ; // y 1 = c p / h ^ 2 ; // y 2 = y / 2 ; // y 2 1 = y 1 / 2 ; // d = sqrt ( ( ( ( x - y 2 ) / y 2 1 ) ^ ( 2 / 3 ) ) - h ^ 2 ) * 2 . 2 9 ; // disp (d , ” d i s t a n c e i s , ( m)=” )
Scilab code Exa 4.18 wattage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/ / E xa mp le 4 . 1 8 / / w a t t a g e o f l am p
clc ; clear ; close ; format ( ’ v ’ ,6) d = 6 ; / / i n m e te r h = 4 ; / / i n m e te r e f = 2 0 ; / / l um en s p e r w at t uc=0.5; // u t i l i z a t i o n c o e f f i c i e n t i l = 7 5 0 ; // i n l u x a = ( % p i / 4 ) * ( d ) ^ 2 ; // F = a * i l ; / / i n l u me n s t f = F / u c ; // t o t a l f l u x e mi t te d by t he lamp w a t t = t f / e f ; / / w at ta g e o f lamp disp ( w a t t , ” w a tt ag e o f lamp i n w at ts ” )
Scilab code Exa 4.19 candle power
35
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/ / E xa mp le 4 . 1 9 / / c a n d l e p ow er
17 18 19
clc ; clear ; close ; v l = 2 2 0 ; // v o l t a g e o f lamp w l = 6 0 ; / / w at ta g e o f lamp w l 1 = 7 5 ; / / i n w a t ts v 2 = 4 4 0 ; // i n v o l t s r 1 = ( ( v l ^ 2 ) / w l ) ; / / i n ohms r 2 = ( ( v l ^ 2 ) / w l 1 ) ; / / i n ohms i = ( v 2 / ( r 1 + r 2 ) ) ; / / i n a m p e r es v 1 = i * r 1 ; // v o l t s v 1 2 = i * r 2 ; // i n v o l t s c p 6 = ( ceil ( v 1 ) / v l ) ^4 * ( 1 00 ) ; / / c a n d l e p ow er c p 7 = ( v 1 2 / v l ) ^ 4 * ( 1 0 0 ) ; / / c a n d l e p ow er disp ( ceil ( c p 6 ) , ” p o t e n t i a l d ro p a c r o s s 60 wa tt l amps i n v o l t s ”) disp ( v 1 2 , ” p o t e n t i a l d r o p a c r o s s 75 wa t t l am ps i n vo lt s ”) disp ( round ( c p 6 ) , ” c a n d l e power o f 60 w at ts lampe i n perc enta ge ”) disp ( c p 7 , ” c a n d l e power o f 75 w at ts lampe i n perc enta ge ”)
20 / / a ns we r i s wrong i n t he book
Scilab code Exa 4.20 capacitance
1 2 3 4 5 6 7 8
/ / E xa mp le 4 . 2 0 / / c a p a c i t a n c e
clc ; clear ; close ; w = 8 4 ; // wat ts p f = 0 . 7 ; // p ow er f a c t o r v = 2 4 0 ; // i n v o l t s i = ( w ) / ( v * p f ) ; / / i n a mp er es
36
9 10 11 12 13 14
r v a = v * i * sqrt ( 1 - p f ^ 2 ) ; // r e l a t i v e v o l t −a m p e r e s c p f = 1 ; // c o r r e c t e d power f a c t o r r v a s = v * i * sqrt ( 1 - c p f ^ 2 ) ; // f = 5 0 ; // i n h e r t z c = ( ( r v a ) / ( 2 * % p i * f * ( v ) ^ 2 ) ) ;// i n f a r a d s disp ( c * 1 0 ^ 6 , ” c a p a c i t a n c e i n ( m ic ro −F) i s ” )
Scilab code Exa 4.21 compare diameter and length
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/ / E x am pl e 4 . 2 1 / / c om pa re d i a m e t e r a nd l e n g t h
clc ; clear ; close ; format ( ’ v ’ ,6) v 1 = 1 1 0 ; // i n v o l t s cp1=16; // in cp cp2=25; // in cp v 2 = 2 2 0 ; // i n v o l t s r i = ( ( c p 1 / c p 2 ) * ( v 2 / v 1 ) ) ; // r a t i o o f c u r en t s d r = ( r i ) ^ ( 2 / 3 ) ; // r a t i o o f d i am e t e r s d i = ( c p 1 / c p 2 ) * ( 1 / d r ) ; // r a t i o o f l e n g t h s disp ( d r , ” r a t i o o f d ia m e te r i s ” ) disp ( d i , ” r a t i o o f l e n g t h i s ” )
Scilab code Exa 4.22 constants and change of candle power per volt
1 / / Example 4 . 2 2 / / c o n s t a n t s and c ha ng e o f c a n d l e p ower
per v o lt 2 3 4 5 6
clc ; clear ; close ; format ( ’ v ’ ,9) c 1 = 7 1 . 5 ; / / c a n d e l p ow er
37
7 8 9 10 11 12 13 14 15 16 17 18 19 20
v 1 = 2 6 0 ; // i n v o l t s c 2 = 5 0 ; / / c a n d e l p ow er v 2 = 2 4 0 ; // i n v o l t s b = log ( c 1 / c 2 ) / ( log ( v 1 / v 2 ) ) ; // a = c 2 / ( v 2 ) ^ ( 4 . 5 ) ; // disp ( ” p a r t ( a ) . ” ) disp ( ” c o n s t a n ts a r e ” + string ( a ) + ” a n d ” + string ( b ) + ” ”) v = 2 5 0 ; // i n v o l t s p = 4 ; // c ha ng e i n p e r ce n t a ge d v c = a * b * ( ( v ) ^ ( b - 1 ) ) ; // i n c a n d le p er v o l t s d c = ( 1 + ( p / 1 0 0 ) ) ^ b ; // when v o l t a g e i n c r e a s e by 4% p c p = ( ( d c - 1 ) ) * 1 0 0 ; // p e r c e n t a g e c ha ng e i n c a n d l e p ower d c 1 = ( 1 - ( p / 1 0 0 ) ) ^ b ; / / when v o l t a g e f a l l s by 4% p c p 1 = ( ( d c 1 - 1 ) ) * 1 0 0 ; // p e r c e n t a g e c ha ng e i n c a n d l e
21 22 23 24 25
power disp ( ” p a r t ( b ) . ” ) disp ( d v c , ” c ha ng e o f c a nd l e power p er v o l t s ” ) // c ha ge i n c a nd l e p ower p er v o l t i s c a l c u l a t e d wrong i n t he book disp ( p c p , ” p e r c e n t a g e c ha ng e i n c a n d l e p ower when v o l t a g e i n c r e a s e by 4%” ) disp ( p c p 1 , ” p e r c e n t a g e c ha ng e i n c a n d l e p ower when v o l t a g e f a l l s by 4%” )
Scilab code Exa 4.23 average Illumination
1 2 3 4 5 6 7 8
/ / Example 4 . 2 3 / / a v e ra g e i l l u m i n a t i o n
clc ; clear ; close ; format ( ’ v ’ ,5) d p = 1 . 2 ; // d e p r e c i a t i o n f a c t o r u f = 0 . 6 ; // u t i l i a z a t i o n f a c t o r l = 1 5 ; // i n m et er s
38
9 10 11 12 13 14
b = 6 ; // i n m et er s n = 2 0 ; / / no . o f l am ps l w = 2 5 0 ; // mscp i n w a tt s a = l * b ; / / a r e a n i n mˆ 2 t l = n * l w * 4 * % p i ; / / / t o t a l l um en s l w p = ( ( t l * u f ) / d p ) ; // l u me ns r e a c h i n g on t h e w or ki ng
plane 15 e = l w p / a ; // i l l u m i n a t i o n on w or k in g p la n e i n l ux 16 disp (e , ” i l l u m i n a t i o n on w or ki ng p l a ne i n l ux ” )
Scilab code Exa 4.24 number location and wattage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/ / Exam ple 4 . 2 4 / / number , l o a c t i o n and w a tt a g e
17
clc ; clear ; close ; format ( ’ v ’ ,5) e f = 4 0 ; // e f f i c i e n c y i n l um en s / wa tt m i l = 8 0 ; / / m inimum i l l u m i n a t i o n i n l um en s /mˆ 2 d p = 0 . 8 ; // d e p r e c i a t i o n f a c t o r u f = 0 . 4 ; // u t i l i a z a t i o n f a c t o r l = 1 0 0 ; // i n m et er s b = 1 0 ; // i n m et er s a = l * b ; / / a r e a n i n mˆ 2 t l = a * m i l ; / / / t o t a l l um en s g l r = t l / ( u f * d p ) ; // g r o s s i l l u m i n a t i o n r e q u i r e d t w r = g l r / e f ; // t o t a l w at ta ge r e q u i r e d disp (42, ” number o f la mp s o f 1 50 w at t r a t i n g i n 2 ro ws ”) disp ( t w r , ” t o t a l w at ta ge i n w at ts ” )
Scilab code Exa 4.25 number rating and dipsotion of lamps
39
1 / / Example 4 . 2 5 / / n umber , r a t i n g and d i s p o s i t i o n
of
lamps 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
19
clc ; clear ; close ; format ( ’ v ’ ,6) h=4; // in meters wp=75; / / i n l u x e f = 1 4 ; // e f f i c i e n c y i n l um en s / wa tt d p = 0 . 2 ; // d e p r e c i a t i o n f a c t o r u f = 0 . 5 ; // u t i l i a z a t i o n f a c t o r l = 7 2 ; // i n m et er s b = 1 5 ; // i n m et er s a = l * b ; / / a r e a n i n mˆ 2 m f = 1 - d p ; / / m ai n te na n ce f a c t o r g l r = ( a * w p ) / ( u f * m f ) ; // g r o s s i l l u m i n a t i o n r e q u i r e d t w r = g l r / e f ; // t o t a l w at ta ge r e q u i r e d w e c = t w r / 8 0 ; / / w at ta g e o f e ac h l am ps disp (80, ” number o f la mp s o f 1 50 w at t r a t i n g i n 2 ro ws ”) disp ( ” w at ta ge o f e ac h lamp ” + string ( w e c ) + ” w at ts e q u i v a l e n t t o 2 00 w a tt s ” )
Scilab code Exa 4.26 number rating and dipsotion of lamps
1 / / Example 4 . 2 6 / / n umber , r a t i n g and d i s p o s i t i o n
lamps 2 3 4 5 6 7 8 9
clc ; clear ; close ; a = 3 0 * 3 0 ; // e = 7 5 ; // u f = 0 . 5 ; // d f = 1 - 0 . 2 ; // l e = 1 5 ; // e f f i c i e n c y
40
of
10 11 12 13 14 15
p h = ( a * e ) / ( u f * d f ) ; // W = p h / l e ; // e w = 3 0 0 ; //W N = W / e w ; // disp (N , ” t o t a l number o f la mp s i s ,= ( s ay 4 2) ” ) disp (W , ” w a t t a g e o f l a mp s i s , (W)=” )
Scilab code Exa 4.27 number and wattage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/ / Exam ple 4 . 2 7 / / number
19
and w a t ta g e
clc ; clear ; close ; format ( ’ v ’ ,6) h = 5 ; // i n m et er s el=100; / / i n l u x e f = 1 6 ; // e f f i c i e n c y i n l um en s / wa tt d p = 0 . 2 ; // d e p r e c i a t i o n f a c t o r u f = 0 . 4 ; // u t i l i a z a t i o n f a c t o r l = 6 0 ; // i n m et er s b = 1 5 ; // i n m et er s a = l * b ; / / a r e a n i n mˆ 2 g l r = ( a * e l ) / ( u f * ( 1 - d p ) ) ; // g r o s s i l l u m i n a t i o n r e q u i r e d n = 1 2 * 3 ; // t o t a l no . o f t w r = g l r / e f ; // t o t a l w at ta ge r e q u i r e d w e c = t w r / n ; / / w at ta g e o f e ac h lamp disp (n , ” number o f l am ps o f 15 0 wa tt r a t i n g i n 2 r ows ” ) disp ( ” w at ta ge o f e ac h lamp ” + string ( w e c ) + ” w at ts e q u i v a l e n t t o 5 00 w a tt s ” )
Scilab code Exa 4.28 number spacing height and totl wattge
41
1 / / E xa mp le 4 . 2 8 / / n um ber , s p a c i n g , m o un ti n g h e i g h t a nd
t o t a l w a tt a fe 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
clc ; clear ; close ; format ( ’ v ’ ,6) h = 5 ; // i n m et er s e l = 1 2 0 ; // i n l u x e f = 4 0 ; // e f f i c i e n c y i n l um en s / wa tt t w = 8 0 ; / / i n w a t ts d f = 1 . 4 ; // d e p r e c i a t i o n f a c t o r u f = 0 . 5 ; // u t i l i a z a t i o n f a c t o r l = 3 0 ; // i n m et er s b = 1 5 ; // i n m et er s a = l * b ; / / a r e a n i n mˆ 2 g l r = ( a * e l * d f ) / ( u f ) ; // g r o s s l um en s r e q u i r e d t w r = g l r / e f ; // t o t a l w at ta ge r e q u i r e d n t = t w r / t w ; // no . o f t ub es r e q u i r e d disp ( t w r , ” t o t a l w at ta ge r e q u ir e d i n w at ts ” ) disp ( ” n umber o f t ub es r e qu i r e d i s ” + string ( n t ) + ” e q u i v a l e n t t o 4 8 t ub es ” )
Scilab code Exa 4.29 space height ratio
1 2 3 4 5 6 7 8 9 10 11
/ / E xa mp le 4 . 2 9 / / n um ber o f l a mp s
clc ; clear ; close ; format ( ’ v ’ ,6) el=50; / / i n l u x d f = 1 . 3 ; // d e p r e c i a t i o n f a c t o r u f = 0 . 5 ; // u t i l i a z a t i o n f a c t o r l = 3 0 ; // i n m et er s b = 1 2 ; // i n m et er s a = l * b ; / / a r e a n i n mˆ 2
42
12 13 14 15 16 17
g l r = ( a * e l * d f ) / ( u f ) ; // g r o s s l um en s r e q u i r e d watt=[100,200,300,500,1000]; l u m = [ 1 6 1 5 , 3 6 5 0 , 4 7 0 0 , 9 9 5 0 , 2 1 5 0 0 ] ; // for i = 1 : 5 n ( i ) = g l r / ( l u m ( i ) ) ; // disp ( ” i f ” + string ( w a t t ( i ) ) + ” wa tt l am ps a r e u se d t he n number o f la mp s r e q u i r e d i s ” + string ( round ( n ( i ) ) ) + ” ” )
18 19 end
Scilab code Exa 4.30 Illumination
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/ / Example 4 . 3 0 / / i l l u m i n a t i o n on s u r f a c e
clc ; clear ; close ; format ( ’ v ’ ,6) e f = 1 7 . 4 ; // in mumens/wa tt d p = 1 . 2 ; // d e p r e c i a t i o n f a c t o r w l f = 1 . 3 ; // w as t e l i g h t f a c t o r u f = 0 . 4 ; // u t i l i a z a t i o n f a c t o r l = 5 0 ; // i n m et er s b = 1 6 ; // i n m et er s n = 1 6 ; / / no . o f l am ps l w = 1 0 0 0 ; / / m scp i n w a tt s a = l * b ; / / a r e a n i n mˆ 2 t l = n * l w * e f ; / / / t o t a l l um en s l w p = ( ( t l * u f ) / ( w l f * d p ) ) ; / / lu me ns r e a c h i n g on t h e
w o rk i ng p l a n e 17 e = l w p / a ; // i l l u m i n a t i o n on t he s u r f a c e i n l ume ns /mˆ2 18 disp (e , ” i l l u m i n a t i o n on t he s u r f a c e i n l um en s /mˆ2 ” )
43
Scilab code Exa 4.31 number and size
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/ / Example 4 . 3 1 / / s i z e and number o f p r o j e c t o r
clc ; clear ; close ; format ( ’ v ’ ,6) watt=[300,500,1000,1500]; l u m = [ 5 0 0 0 , 9 0 0 0 , 1 8 0 0 0 , 2 7 0 0 0 ] ; // e l = 5 0 ; // i n l u x d p = 0 . 8 ; // d e p r e c i a t i o n f a c t o r w l f = 0 . 5 ; // w as t e l i g h t f a c t o r u f = 1 . 2 ; // u t i l i a z a t i o n f a c t o r l = 6 0 ; // i n m et er s b = 1 5 ; // i n m et er s l w = 1 0 0 0 ; / / m scp i n w a tt s a = l * b ; / / a r e a n i n mˆ 2 t l = a * e l / / t o t a l l um en s l w p = ( ( t l * u f ) / ( w l f * d p ) ) ; / / lu me ns r e a c h i n g on t h e
w o rk i ng p l a n e n = l wp / l um ( 2) ; // number o f p r o j e c t o r r e q u i r e d a n g = 2 * a t a n d ( 4 . 5 / 8 ) ;/ / s i z e disp ( ceil ( n + 1 ) , ” number o f p r o j e c t o r s a re ,= ” ) disp ( w a t t ( 2 ) ,” w a t t a g e i s , (W)=” ) disp ( ceil ( a n g + 1 ) , ” beam a n g l e i s , ( d e g r e e )=” ) disp ( ” ” + string ( round ( n ) + 1 ) + ” p r o j e c t o r s o f ” + string ( w a t t ( 2 ) ) + ” w at ts e ac h w i th beam a n gl e o f ” + string ( round ( a n g + 1 ) ) + ” d eg re e w i l l be r e qu i r e d ” )
44
Chapter 5 Refrigeration and Air conditioning
Scilab code Exa 5.1 power
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/ / E xa mp le 5 . 1 : P ow er clc ; clear ; close ;
/ / g i v e n d at a : t 1 = 2 0 ; // i n d eg re e C t 2 = 5 ; // i n d eg r e e C
T=t1-t2; A = 3 0 0 0 ; // volume o f a i r t o be c o n di t i o n e d i n mˆ3 H t = 1 2 2 0 ; // i n J H1=A*Ht*T; m = 1 0 0 0 ; / / p e r mˆ 3 H l = 2 4 5 0 * 1 0 ^ 3 ; // l a t e n t h e at i n J / kg w = 5 ; ; // i n kg M=(w*A)/m; H2=T*Hl;/ / i n J H=(H1+H2); P = round ( H / ( 3 6 0 0 * 1 0 0 0 ) ) ; disp (P , ” P ow er r e q u i r e d , ( kW) = ” )
45
Scilab code Exa 5.2 rating of heater
1 2 3 4 5 6 7 8 9
/ / Example 5 . 2 : R at in g o f H e at e r clc ; clear ; close ;
/ / g i v e n d at a : t 1 = 2 5 ; // i n d eg re e C t 2 = 5 ; // i n d eg r e e C T=t1-t2; A = 6 * 5 * 4 * ( 6 0 / 1 5 ) ; // vo lume o f a i r t o b e c o n di t i o n e d
in mˆ3/hour 10 H t = 1 2 2 0 ; // i n J 11 12 13 14 15 16 17
H1=A*Ht*T; m = 1 0 0 0 ; / / p e r mˆ 3 H l = 8 3 6 * 1 0 ^ 3 ; // h ea t l o s s i n J /C/ h H2=T*Hl;// in J/hour H=(H1+H2); Rh = round ( H / ( 3 6 0 0 * 1 0 0 0 ) ) ; disp ( R h , ” R a t i n g o f h e a t e r , ( kW) =” )
46
Chapter 7 Train Movement and Energy Consumption
Scilab code Exa 7.1 distance average speed and scheduled speed
1 / / Exam ple 7 . 1 . / / d i s t a n c e , a v e r a g e s p e ed and s c h e d u l e d
speed 2 3 4 5 6 7 8 9 10 11 12
clc ; clear ; close ; format ( ’ v ’ ,6) a = 5 ; // a c e l e r a t i o n i n kmphps t1=30; / / i n s e c o n d s v m = a * t 1 ; //maximum spe ed in kmph t f r = 1 0 ; // t im e f o r f r e e r un ni ng i n mins b = 5 ; / / r e t a r d a t i o n i n kmphps t s = v m / b ; // t im e f o r r e t a r d a t i o n i n s ec on ds d t a = ( ( v m * t 1 ) / ( 2 * 3 6 0 0 ) ) ; // d i s t a n ce t r a v e l l e d
d ur in g
a c c e l e r a t i o n p er io d 13 d t f r = ( ( v m * t f r * 6 0 ) / ( 3 6 0 0 ) ) ;// d i s t a n ce
travell ed
d ur in g r e t a r d a t i o n p e ri o d 14 d t b p = d t a ; // d i s t a n ce t r a v e l l e d d u r in g b r e a k i ng p e ri o d 15 t d = d t a + d t f r + d t b p ; // t o t a l d i s t a n ce b et w ee n s t a t i o n s 16 disp ( ” p a r t ( a ) ” ) 47
17 18 19 20 21 22 23
disp ( t d , ” t o t a l d i s t a n ce b et we e n s t a t i o n i n km” ) T = [ 0 ; t 1 ; ( t 1 + ( t f r * 6 0 ) ) ; ( t 1 + ( t 1 + ( t f r * 6 0 ) ) ) ] ;// V = [ 0 ; v m ; v m ; 0 ] ; // plot2d ( T , V ) x l a b e l ( ” Time i n s e co n d s ” ) y l a b e l ( ” S pp ed i n Km p e r Ho ur ” ) v a = ( t d * 3 6 0 0 ) / ( t 1 + ( t f r * 6 0 ) + t s ) ;/ / a v e r ag e s p ee d i n
kmph 24 disp ( ” p ar t ( b ) ” ) 25 disp ( v a , ” a v e r a g e s p e ed i n kmph” ) 26 t s t = 5 ; / / s t o p t im e i n m in s 27 v s = ( t d * 3 6 0 0 ) / ( t 1 + ( t f r * 6 0 ) + t s + ( t s t * 6 0 ) ) ;/ / s h e d u l e d
s p e e d i n kmph 28 disp ( ” p a r t ( c ) ” ) 29 disp ( v s , ” s h e d u l e d s p ee d i n kmph” )
Scilab code Exa 7.2 plot the curve
/ / Exam ple 7 . 2 / / draw t h e c u r v e
1 2 3 4 5 6 7 8 9 10 11
12 13 14 15 16
clc ; clear ; close ; a = 1 . 7 ; / / a c e l e r a t i o n i n kmphps b = 3 . 3 ; //kmphps s = 1 4 0 0 ; //m v a = 4 2 ; //kmph t r = ( ( s * 1 0 ^ - 3 ) / v a ) * 3 6 0 0 ;/ / s e c o m d s k = ( ( 1 / ( 2 * a ) ) ) + ( ( 1 / ( 2 * b ) ) ) ;// v m = ( ( t r / ( 2 * k ) ) -sqrt ( ( ( t r ^ 2 ) / ( 4 * k ^ 2 ) ) - ( ( 3 60 0 * s * 1 0 ^ - 3 ) / k ) ) ) ; // in kmph t1=vm/a;// seco nds t3=vm/b;// seco nds t2=tr-(t1+t3);/ / s e c o n d s T=[0;(t1);(t1+t2);(t1+t2+t3)]; V=[0;vm;vm;0];
48
17 plot2d ( T , V ) ; 18 x l a b e l ( ” Time i n s e co n d s ” ) 19 y l a b e l ( ” S pp ed i n Km p e r Ho ur ” )
Scilab code Exa 7.3 speed
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/ / E xa m pl e 7 . 3 / / maximum s p e e d
clc ; clear ; close ; format ( ’ v ’ ,4) a = 2 . 4 ; / / a c e l e r a t i o n i n kmphps b = 3 . 2 ; / / r e t a r d a t i o n i n kmphps s = 1 . 5 ; // in km v s = 4 5 ; / / s h e d u l e s p e ed i n kmph t s = ( s * 3 6 0 0 ) / v s ; // s h e du l e t im e i n s e co n ds tst=20; // stop time t r = t s - t s t ; // a c t u a l t im e f o r ru n i n s ec o n d s k = ( ( 1 / ( 2 * a ) ) + ( 1 / ( 2 * b ) ) ) ;/ / c o n s t a n t v m = ( ( t r / ( 2 * k ) ) -sqrt ( ( ( t r ^ 2 ) / ( 4 * k ^ 2 ) ) - ( ( 3 6 0 0 * s ) / k ) ) ) ;
// i n kmph 15 disp ( v m , ”maximum sp eed in kmph” )
Scilab code Exa 7.4 sceduled speed
1 2 3 4 5 6 7 8
/ / Exam ple 7 . 4 / / s h e d u l e d s p e e d
clc ; clear ; close ; format ( ’ v ’ ,4) s = 1 . 5 ; // i n Km a = 0 . 8 ; / / a c e l e r a t i o n i n kmphps t s r = 2 6 ; // t im e f o r s to p i n s ec on d s
49
9 10 11 12 13 14 15 16 17 18 19 20
rm=1.3; / / r a t i o b = 3 . 2 ; / / r e t a r d a t i o n i n kmphps k = ( ( 1 / ( 2 * a ) ) + ( 1 / ( 2 * b ) ) ) ;/ / c o n s t a n t T=1; //assume v a 1 = ( 3 6 0 0 * s ) / T ; / / a v e r a g e s p p ed v m 1 = ( v a 1 * r m ) ; //maximum sp ee d vm = sqrt ( ( v m 1 - v a 1 ) / k ) ; //maximum sp eed in kmph v a = v m / 1 . 3 ; / / a c t u a s p e ed i n kmpj t a = ( 3 6 0 0 * s ) / v a ; // a c t u a l t im e i n s e co n ds t s = t a + t s r ; / / s h e d u l e t i me v s = ( s * 3 6 0 0 ) / t s ; / / s h e d u l e s p e e d i n kmph disp ( v s , ” s c h e d u l e s p e ed i n kmph ” )
Scilab code Exa 7.5 acceleration
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/ / Example 7 . 5 : A c c e l e r a t i o n clc ; clear ; close ;
/ / g i v e n d at a : S = 1 ; // i n km V s = 3 0 ; / / i n km/ h T s = ( S * 3 6 0 0 ) / V s ; // i n s ec D = 2 0 ; // d u r at io n o f s to p i n s ec T = T s - D ; // i n s ec V a = ( S * 3 6 0 0 ) / T ; / / A ve ra ge s p e e d i n km/ h V m = 1 . 2 5 * V a ; / / Maximum s p e e d i n km/ h b e t a 1 = 3 ; // b r ak i ng r e t a r d a t i o n i n km/ h/ s e c A=((Vm*T)-(S*3600))/Vm^2; B=1/(2*beta1); alfa=1/(2*(A-B)); disp ( a l f a , ” The A c c e l e r a t i o n , a l f a ( km/ h / s e c ) = ” )
50
Scilab code Exa 7.6 retardation
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/ / Example 7 . 6 : R e t a rd a t i o n clc ; clear ; close ;
/ / g i v e n d at a : format ( ’ v ’ ,6) S = 4 ; // i n km V s = 4 5 ; / / i n km/ h T s = ( S * 3 6 0 0 ) / V s ; // i n s ec D = 3 0 ; // d u r at io n o f s to p i n s ec T = T s - D ; // i n s ec V m = 7 0 ; / / Maximum s p e e d i n km/ h a l f a = 1 . 5 ; / / i n km/ h / s e c A=((Vm*T)-(S*3600))/Vm^2; B=1/(2*alfa); Beta=1/(2*(A-B)); disp ( B e t a , ” R e t a r d a t i o n ( km/ h / s e c ) = ” )
Scilab code Exa 7.7 duration of acceleration coasting and braking periods
1 / / Example 7 . 7 :
A c c e l e r a t i o n , C o a st i n g and B ra ki n g
periods 2 3 4 5 6 7 8 9 10 11 12
clc ; clear ; close ;
/ / g i v e n d at a : S = 1 . 6 ; // i n km V a = 4 0 ; / / i n km/ h V 1 = 6 4 ; / / i n km/ h a l f a = 2 . 0 ; // in km/p/ se c B e t a _ c = 0 . 1 6 ; / / i n km/ h / s e c B e t a = 3 . 2 ; / / i n km/ h / s e c t 1 = V 1 / a l f a ; // i n s ec 51
13 14 15 16 17 18 19 20
disp ( t 1 , ” D u r at i on o f A c c e l e r a t i o n , t 1 ( s e c ) = ” ) T = ( S * 3 6 0 0 ) / V a ; // i n s ec
// Formula : T=(V1/ a l f a ) +((V1−V2) / Be ta c )+(V2/Beta )
V2=(t1+(V1/Beta_c)-T)/((1/Beta_c)-(1/Beta)); t2=(V1-V2)/Beta_c; disp ( t 2 , ” D u r a t i o n o f c o a s t i n g , t 2 ( s e c ) = ” ) t3=V2/Beta; disp ( t 3 , ” D u r a t i o n o f b r a ki n g , t 3 ( s e c ) = ” )
Scilab code Exa 7.8 torque
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/ / E xam ple 7 . 8 : T or qu e clc ; clear ; close ;
/ / g i v e n d at a : W = 2 0 0 ; // w e ig ht o f t r a i n i n t on ne s D = 0 . 9 ; // d ia me te r i n m G = ( 1 / 2 0 0 ) * 1 0 0 ; // p e r c e n t a g e g r a d i e n t r = 5 0 ; / / i n N/ t o nn e g a m a = 4 ; // g ea r r a t i o e t a = 0 . 8 0 ; // g e a r i n g e f f i c i e n c y W e = 1 . 1 0 * W ; // i n t on ne V m = 4 8 ; / / maximum s p e e d i n km/ h t 1 = 3 0 ; // i n s ec a l f a = V m / t 1 ; / / i n km/ h / s e c
F t = ( 2 7 7 . 8 * W e * a l f a ) + ( 9 8 . 1 * W * G ) + ( W * r ) ;// t r a c t i v e
e f f e c t r eq ui re d i n N 17 T 1 = ( F t * D ) / ( e t a * 2 * g a m a ) ; // i n N−m 18 T = round ( T 1 / 8 ) ; 19 disp (T , ” T o rq ue d e v e l o p e d by e a c h m ot or , T (N−m ) = ” )
Scilab code Exa 7.9 time taken and current
52
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/ / Example 7 . 9 : Time t a ke n and c u r r e n t clc ; clear ; close ;
/ / g i v e n d at a : V = 3 0 0 0 ; // l i n e v o l t a g e i n v o l t s W = 2 0 0 ; // w e ig ht o f t r a i n i n t on ne s D = 0 . 9 ; // d ia me te r i n m G=(30/1000)*100;/ / p e r c e n t a g e g r a d i e n t r = 5 0 ; / / i n N/ t o nn e g a m a = 4 ; // g ea r r a t i o V m = 5 0 ; // in km/h e t a = 0 . 9 ; // g e a r i n g e f f i c i e n c y W e = 1 . 1 0 * W ; // i n t on ne T = 4 * 6 0 0 0 ; // i n N−m e t a _ m = 8 5 / 1 0 0 ; // e f f i c i e n c y o f motor Ft=(eta*T*2*gama)/D; A=(98.1*W*G)+(W*r); B=Ft-A; a l f a = B / ( 2 7 7 . 8 * W e ) ; // t r a c t i v e e f f e c t r e q u i r e d i n N t=Vm/alfa; disp (t , ” Time t a k e n , t ( s e c ) = ” ) P o = ( F t * V m ) / 3 6 0 0 ; // i n kw Pi=Po/eta_m; I t = ( P i * 1 0 0 0 ) / V ; // i n A I=It/4 disp (I , ” C u r r e n t d ra wn p e r m ot or , I (A) = ” )
Scilab code Exa 7.10 time taken and current
1 2 3 4 5
/ / Example 7 . 1 0 : C ur r en t and t im e t a ke n clc ; clear ; close ;
/ / g i v e n d at a : 53
6 7 8 9 10 11 12 13 14 15 16 17 18 19
V = 3 6 ; / / s p ee d i n km/ h W = 1 2 0 ; // i n t on ne G = 2 ; // i n p er c en t r = 2 * 9 . 8 1 ; // i n N/ t o n ne Ft=(98.1*W*G)+(W*r); e = 8 8 / 1 0 0 ; // e f f i c i e n c y o f m o t o r s and g ea r V L = 1 5 0 0 ; // l i n e v o l t a g e i n v o l t s Po=(Ft*V)/3600; Pi=Po/e; I=(Pi*1000)/VL; b c = ( ( 9 8 . 1 * ( 2 + ( 0 . 1 * 2 ) ) ) / ( 2 7 7 . 8 * 1 . 1 ) ) ;// in kmphps tt=V/bc;/ / i n s e c o n d s disp (I , ” c u r r e nt r e q u i r e d i n a mp er es i s ” ) disp ( round ( t t ) , ” t im e t ak en t o come t o r e s t i n s e co n d s i s ” )
Scilab code Exa 7.11 acceleration coasting retardation and scheduled speed
1 // Example 7 . 1 1 . / / a c c e l e r a t i o n , c o a s t i n g
and s c h e d u l ed s p ee d 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
clc ; clear ; close ; format ( ’ v ’ ,6)
/ / g i v e n d at a : t1=24; / / i n s e c t 2 = 6 9 ; // i n s ec t 3 = 1 1 ; // i n s ec V 1 = 4 8 ; / / i n km/ h alfa=V1/t1; disp ( ” p a r t ( a ) ” ) disp ( a l f a , ” A c c e l e r a t i o n ( km/ h / s e c ) = ” ) r = 5 8 ; / / i n N/ t o nn e G=0; Beta=r/(277.8*1.1);
54
retardation
17 18 19 20 21 22 23 24 25 26 27 28 29
disp ( ” p a r t ( b ) ” ) disp ( B e t a , ” R e t a r d a t i o n ( k mphps ) = ” ) V2=V1-(Beta*t2); S = round ( ( ( V 1 * t 1 ) / 7 2 0 0 ) + ( ( ( V 1 + V 2 ) * t 2 ) / 7 2 0 0 ) + ( ( V 2 * t 3 ) /7200)); D = 2 0 ; // d u r at io n o f s to p i n s ec Ts=t1+t2+t3+D; Vs = round ( ( S * 3 6 0 0 ) / T s ) ; disp ( ” p a r t ( c ) ” ) disp ( V s , ” S c h e d u l e t i me , Vs ( k mph ) = ” ) D 1 = 1 5 ; // when t he d u ra t io n o f s to p i n s e c Ts_dash=t1+t2+t3+D1; Vs_dash=(S*3600)/Ts_dash; disp (Vs_ dash , ” S c h e d u l e s p e e d , V S d a s h ( kmph ) = ” )
Scilab code Exa 7.12 sceduled speed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/ / Example 7 . 1 2 : S c h ed u l e s p ee d clc ; clear ; close ;
/ / g i v e n d at a : t1=30; / / i n s e c t 2 = 5 0 ; // i n s ec t 3 = 2 0 ; // i n s ec a l p h a = 2 ; //kmphps V 1 = a l p h a * ( t 1 ) ; / / i n km/ h r = 4 0 ; / / i n N/ t o nn e
G=1; b c = ( ( 9 8 . 1 + r ) ) / ( 2 7 7 . 8 * 1 . 1 ) ;// in kmphps V 2 = V 1 - ( b c * t 2 ) ; //km/hr S = ( ( ( V 1 * t 1 ) / 7 2 0 0 ) + ( ( ( V 1 + V 2 ) * t 2 ) / 7 2 0 0 ) + ( ( V 2 * t 3 ) / 7 2 00 ) ); 16 D = 3 0 ; // d u r at io n o f s to p i n s ec 17 T s = t 1 + t 2 + t 3 + D ;
55
18 V s = ( ( S * 3 6 0 0 ) / T s ) ; 19 disp ( V s , ” S c h e d u l e t i me , Vs ( k mph ) = ” )
Scilab code Exa 7.13 maximum power and distance travelled
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/ / E xam ple 7 . 1 3 : maximum p o we r a nd t o t a l d i s t a n c e clc ; clear ; close ; format ( ’ v ’ ,5)
/ / g i v e n d at a : w=250; / / i n t o n n e s
w e = ( 1 + ( 1 0 / 1 0 0 ) ) * w ; // e f e c t i v e w ei gh t i n t on ne s r = 5 * 9 . 8 1 ; / / i n N/ t o n n e G = 1 ; // t1=30; / / i n s e c t 2 = 7 0 ; // i n s ec a l p h a = 2 ; //kmphps V 1 = a l p h a * ( t 1 ) ; / / i n km/ h f t = ( 2 7 7 . 8 * w e * a l p h a ) + ( 9 8 . 1 * G * w ) + ( w * r ) ;/ / i n n e wt o ns p o = ( ( f t * V 1 ) / 3 6 0 0 ) ; / / maximum p o w er o u t p u t i n kW n = 0 . 9 7 ; // e f f i c i e n c y p i = p o / n ; // i n kW G=1; b c = ( ( 9 8 . 1 + r ) ) / ( 2 7 7 . 8 * 1 . 1 ) ;// in kmphps V 2 = V 1 - ( b c * t 2 ) ; //km/hr beta1=3; / / r e t a r d a t i o n t3=V2/beta1;/ / i n s e c o n d s S = ( ( ( V 1 * t 1 ) / 7 2 0 0 ) + ( ( ( V 1 + V 2 ) * t 2 ) / 7 2 0 0 ) + ( ( V 2 * t 3 ) / 7 2 00 ) ); 25 disp ( round ( p i ) , ” maximum p ow er d e v e l o p e d by t r a c t i o n m ot or i s (kW) ” ) 26 disp (S , ” t o t a l d i s t a n c e t r a v e l l e d by t r a i n i n km i s ” )
56
Scilab code Exa 7.14 energy consumption
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/ / E xam ple 7 . 1 4 : E ne rg y c o ns u mp t io n clc ; clear ; close ; format ( ’ v ’ ,8)
/ / g i v e n d at a : V m = 5 2 ; / / max s p e e d i n kmph t 3 = 1 5 . 8 ; // d u r a t i o n o f b ra ki ng i n s e c
D=(1/2)*Vm*(t3/3600); S = 1 4 0 0 ; // i n m S1=(S*10^-3)-D; r = 5 0 ; / / i n N/ t o n n e WeBY_W=1.1; E c = ( ( 0 . 0 1 0 7 2 * V m ^ 2 * W e B Y _ W ) / ( S * 1 0 ^ - 3 ) ) + ( 0 . 2 7 7 8 * r * ( S 1/ ( S*10^-3))); 15 disp ( E c , ” e n e r g y c o ns u mp t io n i n Wh i s ” )
Scilab code Exa 7.15 specific energy consumption
1 2 3 4 5 6 7 8 9 10 11
/ / Exam ple 7 . 1 5 : s p e c i f i c e n e r g y c o ns u mp t io n clc ; clear ; close ; format ( ’ v ’ ,9)
/ / g i v e n d at a : w=1; / / i n t o n n e s
w e = ( 1 + ( 1 0 / 1 0 0 ) ) * w ; // e f e c t i v e S = 1 5 2 5 ; / / i n m e t er s r = 5 2 . 6 / 1 0 0 0 ; / / i n N/ k g a l p h a = 0 . 3 6 6 ; //m/sˆ2
57
w ei gh t i n t on ne s
12 13 14 15 16 17 18 19
V 1 = 1 2 . 2 ; // i n m/ s t1=V1/alpha;/ / i n s e c o n d s f t = w e * a l p h a + r ; / / i n n e w t o ns t e r = ( ( 1 / 2 ) * f t * V 1 * t 1 ) / 3 6 0 0 ; / / i n w a tt − h o u r s s e o = t e r / ( w * S ) ; / / i n Wh/ k g−m n = 0 . 6 5 ; // e f f i c i e n c y s e c 1 = s e o / n // i n Wh/ kg−m disp ( s e c 1 , ” s p e c i f i c e n e r g y o n s u m p ti o n i n Wh/ k g−m” )
Scilab code Exa 7.16 sceduled speed and specific energy consumption
1 / / Example 7 . 1 6 :
S c he d ul e s pe ed and S p e c i f i c e ne rg y
consumption clc ; clear ; close ;
2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22
/ / g i v e n d at a : t1=30; / / i n s e c t 2 = 5 0 ; // i n s ec t 3 = 2 0 ; // i n s ec a l p h a = 2 ; //kmphps V 1 = a l p h a * ( t 1 ) ; / / i n km/ h r = 4 0 ; / / i n N/ t o nn e G=1; b c = ( ( 9 8 . 1 + r ) ) / ( 2 7 7 . 8 * 1 . 1 ) ;// in kmphps V 2 = V 1 - ( b c * t 2 ) ; //km/hr S = ( ( ( V 1 * t 1 ) / 7 2 0 0 ) + ( ( ( V 1 + V 2 ) * t 2 ) / 7 2 0 0 ) + ( ( V 2 * t 3 ) / 7 2 00 ) ); D = 1 5 ; // d u r at io n o f s to p i n s ec Ts=t1+t2+t3+D; Vs=((S*3600)/Ts); disp ( V s , ” S c h e d u l e s p e e d , Vs ( k mph ) = ” ) S1=(V1*t1)/7200;// in meters r = 5 0 ; / / i n N/ t o n n e WeBY_W=1.1;
58
23 G = 1 ; // 24 E c = ( ( 0 . 0 1 0 7 2 * V 1 ^ 2 * W e B Y _ W ) / ( S ) ) + ( 0 . 2 7 7 8 * ( 9 8 . 1 * G + r ) *( ( S1)/(S))); 25 N = 0 . 7 5 ; // 26 S e c = E c / 0 . 7 5 ; // 27 disp ( S e c , ” S p e c i f i c e n e r g y c o ns u mp t io n i n Wh/ t o nn e −km is”)
Scilab code Exa 7.17 sceduled speed and specific energy consumption
1 / / Exam ple 7 . 1 7 : S c h e d u l e s p e e d and s p e c i f i c
energy
consumption clc ; clear ; close ;
2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
/ / g i v e n d at a : t1=30; / / i n s e c t 2 = 5 0 ; // i n s ec t 3 = 2 0 ; // i n s ec a l p h a = 2 ; //kmphps V 1 = a l p h a * ( t 1 ) ; / / i n km/ h r = 4 0 ; / / i n N/ t o nn e G=-1; b c = ( ( - 9 8 . 1 + r ) ) / ( 2 7 7 . 8 * 1 . 1 ) ; // in kmphps V 2 = V 1 - ( b c * t 2 ) ; //km/hr S = ( ( ( V 1 * t 1 ) / 7 2 0 0 ) + ( ( ( V 1 + V 2 ) * t 2 ) / 7 2 0 0 ) + ( ( V 2 * t 3 ) / 7 2 00 ) ); D = 1 5 ; // d u r at io n o f s to p i n s ec Ts=t1+t2+t3+D; Vs=((S*3600)/Ts); disp ( V s , ” S c h e d u l e s p e e d , Vs ( k mph ) = ” ) S1=(V1*t1)/7200;// in meters r = 5 0 ; / / i n N/ t o n n e WeBY_W=1.1; E c = ( ( 0 . 0 1 0 7 2 * V 1 ^ 2 * W e B Y _ W ) / ( S ) ) + ( 0 . 2 7 7 8 * ( 9 8 . 1 * G + r ) *( (
59
S1)/(S))); 24 N = 0 . 7 5 ; // 25 S e c = E c / 0 . 7 5 ; // 26 disp ( S e c , ” S p e c i f i c is”)
e n e r g y c o ns u mp t io n i n Wh/ t o nn e −km
Scilab code Exa 7.18 maximum power total energy consumption and spe-
cific energy consumption 1 / / E xa mp le 7 . 1 8 . / / maximum p ow er , t o t a l
energy c o n s um p t i on a nd s p e c i f i c e n e r g y c o n s um p t i on
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
clc ; clear ; close ; format ( ’ v ’ ,6)
/ / g i v e n d at a : W=100; // in tonne W e = 1 . 1 * W ; // i n t o nn e S = 2 . 5 ; // d i s t a n c e i n km V a = 5 0 ; / / A v e ra g e s p e e d i n kmph Dr=(3600*S)/Va; a l f a = 1 ; / / i n km/ h / s e c B e t a = 2 ; / / i n km/ h / s e c T=180; r = 4 0 ; / / i n N/ t o n n e G=1; K=(1/(2*alfa))+(1/(2*Beta)); Vm = round ( ( T / ( 2 * K ) ) - sqrt ( ( T / ( 2 * K ) ) ^ 2 - ( ( 3 6 0 0 * S ) / K ) ) ) ;
// maximum spe ed 19 t 1 = V m / a l f a ; // a c c e l e r a t i o n p e r i o d 20 t 3 = V m / B e t a ; // b ra k i n g p e ri o d 21 t 2 = T - ( t 1 + t 3 ) ; // i n s ec 22 F t = ( 2 7 7 . 8 * W e * a l f a ) + ( 9 8 . 1 * W * G ) + ( W * r ) ; 23 P _ m a x = round ( ( F t * V m ) / 3 6 0 0 ) ; 24 disp ( ” p a r t ( a ) ” )
60
25 26 27 28 29 30
31 32 33 34 35 36
disp ( P _ m a x , ”Maximum power , ( kWh) = ” ) e = 6 0 / 1 0 0 ; // e f f i c i e n c y Ft=(277.8*We*alfa)+(98.1*W*G)+(W*r); Ft_dash=(98.1*W*G)+(W*r); P _ m a x = round ( ( F t * V m ) / 3 6 0 0 ) ; Et=((1/2)*Ft)*(Vm/3600)*(t1/3600)+((Ft_dash*Vm) /3600)*(t2/3600); Ec=Et/e; disp ( ” p ar t ( b ) ” ) disp ( E c , ” T o t a l E n e r g y C o ns u m pt i on , E c ( kWh ) = ” ) Sec=(Ec*1000)/(W*S); disp ( ” p a r t ( c ) ” ) disp ( S e c , ” S p e c i f i c E n er g y C on s um pt io n , ( Wh/ t o n n e −km) = ”)
Scilab code Exa 7.19 maximum power and energy taken
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/ / E x am pl e 7 . 1 9 . / /maximum p ow er a nd e n e r g y t a k e n clc ; clear ; close ;
/ / g i v e n d at a : format ( ’ v ’ , 7) W=203; // in tonne W e = 1 . 1 * W ; // i n t o nn e r=44; // N/tonne G = ( 1 / 5 0 0 ) * 1 0 0 ; // g r a d ie n t V m = 4 5 ; / / maximum s p e e d i n kmph t 1 = 3 0 ; // i n s ec a l f a = V m / t 1 ; / / i n kmph F t = ( 2 7 7 . 8 * W e * a l f a ) + ( 9 8 . 1 * W * G ) + ( W * r ) ;// i n N Po=(Ft*Vm)/3600; disp ( ” p a r t ( a ) ” ) disp ( P o , ”The maximum power output ,(kW) = ” ) e = 6 0 / 1 0 0 ; // e f f i c i e n c y
61
19 20 21 22
Et=(1/2)*((Ft*Vm)/3600)*(t1/3600); E=(Et/e); b) ” ) disp ( ” p a r t ( b) disp ( E , ” Th Th e e n e r g y t a k e n ( kW kWh ) = ” )
Scilab code Exa 7.20 maximum power and specific energy consumption
1 / / E xa x a mp m p le le 7 . 2 0 . maximum p o we we r a nd nd s p e c i f i c
energy
consumption 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
clc ; clear ; close ; format ( ’ v ’ ,7 , 7 )
/ / g i v e n d at at a : W=16; // in tonne nn e W e = 1 . 1 * W ; / / i n t o nn V s = 4 5 ; // in kmph nn e r = 4 0 ; / / i n N/ t o nn S = 2 . 8 ; / / i n km Ts=(S*3600)/Vs; T d = 3 0 ; / / i n s ec ec T=Ts-Td; kmph phps ps a l f a = 2 ; // in km B e t a = 3 . 2 ; / / i n kmphps K=(1/(2*alfa))+(1/(2*Beta)); V m = round ( ( T / ( 2 * K ) ) - sqrt ( ( T / ( 2 * K ) ) ^ 2 - ( ( 3 6 0 0 * S ) / K ) ) ) ;
// maximum spe ed 19 t 1 = V m / a l f a ; / / a c c e l e r a t i o n t i m e 20 t 3 = V m / B e t a ; / / d u ra r a t io i o n o f b ra ra ki ng 21 t 2 = T - ( t 1 + t 3 ) ; / / t i m e f f r e e r u n i n s ec ec 22 23 24 25 26
Ft=(277.8*We*alfa)+(W*r); P_max=(Ft*Vm)/3600; disp ( ” p a r t ( a ) ” ) ”Maximum power output , (kW (kW) = ” ) disp ( P _ m a x , ”Ma
/ / a ns n s we we r i s wro n g i n b o o k 62
27 28 29 30 31 32
r a g e s p e e d i n kmph V a = 5 0 ; / / A v e ra Dr=(3600*S)/Va; T=180; G=1; e=80/100; // e f f i c i e n c y D t = ( 1 / 2 ) * ( ( V m * t 3 ) / 3 6 0 0 ) ;/ / d i s t a n c e
t r a v e l l e d d ur u r in in g
b r ak a k i ng n g p e r i od o d i n km km 33 S 1 = S - D t ; / / d i s t a n c e t r a v e l l e d w it i t h p o w e r i n km km 34 35 36 37
So=(((0.01072*Vm^2)/S)*(We/W))+((0.2778*r*S1)/S); Sec=So/e; disp ( ” p a r t ( b ) ” ) n s u mp m p t io i o n , ( Wh Wh/ t o n ne n e −km) disp ( S e c , ” S p e c i f i c e n e r g y c o ns = ”)
38 / / a ns n s we we r i s
wro ng i n bo o k
Scilab code Exa 7.21 Schedul Schedulee speed specific energy consumption consumption total
energy consumption and distance 1 / / E xa xa mp mp le le 7 . 2 1 : S c h e d u l e s p ee ee d , s p e c i f i c
energy c on o n su s u mp m p ti t i oon n , t o t a l e n e r g y c o ns n s u mp m p t io io n and d i s t a n c e
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
clc ; clear ; close ;
/ / g i v e n d at at a : format ( ’ v ’ ,6 , 6 ) t1=30; / / i n s e c ec t 2 = 4 0 ; / / i n s ec t 3 = 3 0 ; / / i n s ec ec a l p h a = 2 ; //kmphps V 1 = a l p h a * ( t 1 ) ; / / i n km / h nn e r = 4 0 ; / / i n N/ t o nn G=1; kmph phps ps b c = ( ( 9 8 . 1 + r ) ) / ( 2 7 7 . 8 * 1 . 1 ) ;// in km V 2 = V 1 - ( b c * t 3 ) ; //km/hr Beta=2.5; // r e t a r d a t i o n
63
17 t 4 = V 2 / B e t a ; / / i n s e c o n d s 18 S = ( ( ( V 1 * t 1 ) / 7 2 0 0 ) + ( ( V 1 * t 2 ) / 3 6 0 0 ) + ( ( ( V 1 + V 2 ) * t 3 ) / 7 2 00 ) +((V2*t4)/7200)); 19 D = 1 5 ; / / d u r at a t io i o n o f s to t o p i n s ec ec 20 T s = t 1 + t 2 + t 3 + t 4 + D ; 21 V s = ( ( S * 3 6 0 0 ) / T s ) ; 22 disp ( ” p a r t ( a ) ” ) 23 disp ( V s , ” S c h e d u l e t i me m e , V s ( k mp mph ) = ” ) 24 disp ( ” p a r t ( b ) ” ) 25 S 1 = ( ( V 1 * t 1 ) / 7 2 0 0 ) + ( ( V 1 * t 2 ) / 3 6 0 0 ) ;// in km 26 W e B Y _ W = 1 . 1 ; 27 G = 1 ; / / 28 E c = ( ( 0 . 0 1 0 7 2 * V 1 ^ 2 * W e B Y _ W ) / ( S ) ) + ( 0 . 2 7 7 8 * ( 9 8 . 1 * G + r ) *( ( S1)/(S))); 29 N = 0 . 7 5 ; / / 30 S e c = E c / 0 . 7 5 ; / / 31 disp ( S e c , ” S p e c i f i c e n e r g y c o ns n s u mp m p t io i o n i n Wh Wh/ t o nn n n e −km is”) 32 disp ( ” p a r t ( c ) ” ) 33 W = 2 0 0 ; / / 34 t e c = ( S e c * W * S ) ; / / 35 disp ( t e c * 1 0 ^ - 3 , ” t o t a l e n e r g y c o ns n s u mp m p t io i o n i n kWh” ) 36 disp ( ” p a r t ( d ) ” ) 37 disp ( S , ” t o t a l d i s t a n c e t r a v e l l e d i n Km Km i s ” )
Scilab code Exa 7.22 specific energy consumption
1 2 3 4 5 6 7 8
/ / Ex E x a m pl pl e 7 . 2 2 : s p e c i f i c e n e r g y c o ns n s u mp m p t io io n clc ; clear ; close ;
/ / g i v e n d at at a : W=500; // t1=60; / / i n s e c t 2 = 5 * 6 0 ; / / i n s ec ec 64
9 10 11 12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28
t 3 = 3 * 6 0 ; // i n s ec a l p h a = 2 . 5 ; //kmphps V 1 = a l p h a * ( t 1 ) ; / / i n km/ h r = 2 5 ; / / i n N/ t o nn e G=1; b c = ( ( ( 9 8 . 1 * ( 8 / 1 0 0 0 ) * 1 0 0 ) + r ) ) / ( 2 7 7 . 8 * 1 . 1 ) ;// in kmphps V 2 = V 1 - ( b c * t 3 ) ; //km/hr B e t a = 3 ; // r e t a r d a t i o n t4=V2/Beta;/ / i n s e c o n d s S = ( ( ( V 1 * t 1 ) / 7 2 0 0 ) + ( ( V 1 * t 2 ) / 3 6 0 0 ) + ( ( ( V 1 + V 2 ) * t 3 ) / 7 2 00 ) +((V2*t4)/7200)); D = 1 5 ; // d u r at io n o f s to p i n s ec Ts=t1+t2+t3+t4+D; Vs=((S*3600)/Ts); S 1 = ( ( V 1 * t 1 ) / 7 2 0 0 ) + ( ( V 1 * t 2 ) / 3 6 0 0 ) ;// in km WeBY_W=1.1; G = 1 ; // Ec=((0.01072*V1^2*WeBY_W)/(S)) +(0.2778*((98.1*(8/1000)*100)+r)*((S1)/(S))); N = 0 . 8 0 ; // S e c = E c / N ; // disp ( S e c , ” S p e c i f i c e n e r g y c o ns u mp t io n i n Wh/ t o nn e −km is”)
Scilab code Exa 7.23 weight and number of axles
1 / / Example 7 . 2 3 : w e ig h t o f t h e l o c o m o t i v e abd number
o f a x le s 2 3 4 5 6 7 8
clc ; clear ; close ;
/ / g i v e n d at a : W l = 1 ; // W 1 = 4 0 0 ; // G = 2 ; // i n p e r c e n t a g e 65
9 10 11 12 13 14 15 16 17
m u = 0 . 2 ; // a l p h a = 1 ; // r = 4 0 ; // x = ( 2 7 7 . 8 * 1 . 1 * a l p h a + 9 8 . 1 * G + r ) / ( 9 . 8 1 * 1 0 0 0 ) ;// w l o = ( x * W 1 ) / ( m u - x ) ;/ / i n t o n n e s a l = 2 2 ; // a l l o w a b l e l o ad i n t o nn e s n a = w l o / a l ; // disp ( w l o , ” w ei gh t o f t he l o co m ot i ve i n t on ne s ” ) disp ( round ( n a ) , ” number o f a x l e s r e q u i r e d ” )
Scilab code Exa 7.24 weight and number of axles
1 / / Example 7 . 2 4 : w e ig h t o f t h e l o c o m o t i v e abd number
o f a x le s 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
clc ; clear ; close ;
/ / g i v e n d at a : W=12*30; // ton nes we=1.04*360;// ton nes r = 5 * 9 . 8 1 ; // G = 1 ; // i n p e r c e n t a g e m u = 0 . 2 ; // a l p h a = 0 . 8 ; // x = 1 3 . 8 8 2 ; // y = 0 . 0 4 1 ; // w l o = ( x ) / ( m u - y ) ;/ / i n t o n n e s a l = 2 0 ; // a l l o w a b l e l o ad i n t o nn e s n a = w l o / a l ; // disp ( w l o , ” w ei gh t o f t he l o co m ot i ve i n t on n e s ” ) disp ( ceil ( n a ) , ” number o f a x l e s r e q u i r e d ” )
Scilab code Exa 7.25 trailing weight and maximum gradiant
66
1 / / Exam ple 7 . 2 5 . / / t r a i l i n g
w e i g ht and maximum
gradiant 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
clc ; clear ; close ; format ( ’ v ’ ,6)
/ / g i v e n d at a : w1=100; // ton nes w=w1+500; // ton nes w e = 1 . 1 * w ; // e f f e c t i v e w ei gh t a l p h a = 1 ; // G = 1 ; // r = 4 5 ; //
f t = ( ( 2 7 7 . 8 * w e * a l p h a ) + ( 9 8 . 1 * w * G ) + ( w * r ) ) ;/ / i n n e w t o ns a d = 0 . 7 ; // a d e h s i v e p e r c e n t m u = ( f t ) / ( 1 0 0 * 1 0 ^ 3 * 9 . 8 1 * a d ) ; // w2=130; // ton nes a d 2 = w 2 * G ; // t a d w = w 1 * a d + a d 2 ;/ / t o n n e s tted=mu*tadw*9.81*1000;/ / n e w t o n e s W = t t e d / ( 2 7 7 . 8 * 1 . 1 * a l p h a + 9 8 . 1 * a l p h a + r ) ;/ / i n t o n n e s t r l w = W - ( a d 2 + w 1 ) ; // disp ( ” p a r t ( a ) ” ) disp ( round ( t r l w ) , ” t r a i l i g w e i g ht i n t o n n e s i s ” ) w 2 = w 1 + 5 0 0 + a d 2 ; // G 1 = ( ( t t e d / w 2 ) - ( 2 7 7 . 8* 1 . 1 + r ) ) * ( 1 / 9 8 . 1 ) ;// disp ( ” p a r t ( b ) ” ) disp ( G 1 , ” maximum g r a d i a n t i n p e r c e n t a g e i s ” )
Scilab code Exa 7.26 acceleration
1 2 3 4
/ / Example 7 . 2 6 ; a c c e l e r a t i o n clc ; clear ; close ;
67
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/ / g i v e n d at a : w1=100; // ton nes w=w1+500; // ton nes w e = 1 . 1 * w ; // e f f e c t i v e w ei gh t a l p h a = 1 ; // G = 1 ; // r = 4 5 ; //
f t = ( ( 2 7 7 . 8 * w e * a l p h a ) + ( 9 8 . 1 * w * G ) + ( w * r ) ) ;/ / i n n e w t o ns a d = 0 . 7 ; // a d e h s i v e p e r c e n t m u = ( f t ) / ( 1 0 0 * 1 0 ^ 3 * 9 . 8 1 * a d ) ; // w2=130; // ton nes a d 2 = w 2 * G ; // t a d w = w 1 * a d + a d 2 ;/ / t o n n e s tted=mu*tadw*9.81*1000;/ / n e w t o n e s W = t t e d / ( 2 7 7 . 8 * 1 . 1 * a l p h a + 9 8 . 1 * a l p h a + r ) ;/ / i n t o n n e s t r l w = W - ( a d 2 + w 1 ) ; // w 2 = w 1 + 5 0 0 + a d 2 ; // a c c = ( ( t t e d / w 2 ) - ( 9 8. 1 + r ) ) * ( 1 / ( 2 7 7 . 8 * 1 . 1 ) ) ;// in kmphps disp ( a c c , ” a c c e l e r a t i o n i n kmphps i s ” )
Scilab code Exa 7.27 torque and weight
1 2 3 4 5 6 7 8 9 10 11 12 13
/ / E xa mp le 7 . 2 7 : T or qu e a nd minimum w e i g h t clc ; clear ; close ;
/ / g i v e n d at a : N = 4 ; / / nu mb er o f m ot or W=250; // in tonne D = . 9 5 ; // d ia me te r i n m G = 1 ; // p e rc e nt a ge g r a d i e n t r = 4 0 ; / / i n N/ t o nn e e t a = 9 5 / 1 0 0 ; // g ea r e f f i c i e n c y g a m a = 3 ; // g ea r r a t i o
We=1.1*W;
68
14 15 16 17 18 19 20 21 22 23 24
V m = 4 0 ; // kmph t 1 = 2 0 ; // i n s e c o n d s alfa=Vm/t1; Ft=((277.8*We*alfa)+(98.1*W*G)+(W*r)); T=(Ft*D)/(eta*2*gama); Td = round ( T / N ) ; disp ( T d , ” T o rq ue d e v e l o p e d by e a c h m ot or , Td (Nm) = ” ) m u = 0 . 2 5 ; // ad he si ve c o e f f i c i e n t WL=(Ft/(9.81*1000))/mu; Dw = round ( W L / . 7 5 ) ; disp ( D w , ” Dead w e i g ht o f l o c o m o t i v e , ( t o n n e s ) = ” )
69
Chapter 8 Electric Traction Motors
Scilab code Exa 8.1 speed armature current characterstic
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/ / Exam ple 8 . 1 : Mot or s p e ed
clc ; clear ; close ; v = 2 3 0 ; // i n v o l t s r m = 0 . 3 ; / / i n o hm s I a = [ 5 ; 1 0 ; 1 5 ; 2 0 ; 2 5 ; 3 0 ; 3 5 ; 4 0 ] ; / / i n a m p e r es T = [ 2 0 ; 5 0 ; 1 0 0 ; 1 5 5 ; 2 1 5 ; 2 9 0 ; 3 6 0 ; 4 3 0 ] ; // for i = 1 : 8 e b ( i ) = v - ( I a ( i ) ) * rm ; // N ( i ) = ( 9 . 5 5 * e b ( i ) * I a ( i ) ) / ( T ( i ) ) ;// disp ( ” s pe e d i n rpm i s f o r c u r r e n t ” + string ( I a ( i ) a m p er es ” + string ( round ( N ( i ) ) ) + ” RPM” ) )+” end plot2d ( I a , N ) x l a b e l ( ”ARMATURE CURRENT , I a IN AMPS” ) y l a b e l ( ”SPEED ,N IN RPM” ) xtitle ( ”Spped −Armature c u r r e n t c h a r a c t e r i s t i c ” )
70
Scilab code Exa 8.2 speed torque curve
1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 16 17 18 19
/ / E xa m pl e 8 . 2 : SPEED−TORQUE GRAPH
clc ; clear ; close ; v = 6 0 0 ; // i n v o l t s r m = 0 . 8 ; / / i n o hm s N 1 = 6 0 0 ; // I a = [ 2 0 ; 4 0 ; 6 0 ; 8 0 ] ; / / i n a m p e re s EMF=[215;381;485;550] for i = 1 : 4 e b ( i ) = v - ( I a ( i ) ) * rm ; // N ( i ) = ( N 1 / E M F ( i ) ) * e b ( i ) ; // T ( i ) = ( 9 . 5 5 * e b ( i ) * I a ( i ) ) / ( N ( i ) ) ;// disp ( ” s pe e d i n rpm i s f o r c u r r e n t ” + string ( I a ( i ) )+” a m p er es ” + string ( round ( N ( i ) ) ) + ” RPM and To rqu e i n N−m i s ” + string ( T ( i ) ) + ” ” ) end plot2d ( T , N ) x l a b e l ( ”TORQUE ,T IN Nm” ) y l a b e l ( ”SPEED ,N IN RPM” ) xtitle ( ”Speed − t o rq u e c ur ve ” )
Scilab code Exa 8.3 motor speed and current
1 2 3 4 5 6 7 8 9
/ / Exam ple 8 . 3 : Mot or s p e ed a nd c u r r e n t drawn clc ; clear ; close ;
/ / g i v e n d at a : N 1 = 6 4 0 ; // i n rpm I 1 = 1 5 ; // i n A I2 = sqrt ( ( 2 ) * sqrt ( 2 ) * I 1 ^ 2 ) ; N2 = round ( ( 2 * I 1 * N 1 ) / I 2 ) ;
71
10 disp ( I 2 , ” C u r r e n t d ra wn , I 2 ( A) = ” ) 11 disp ( N 2 , ” M o to r s p e e d , N 2 ( rpm ) = ” )
Scilab code Exa 8.4 speed and voltage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/ / Example 8 . 4 : s p ee d and v o l t a g e
clc ; clear ; close ; n 1 = 7 0 0 ; //rpm n 2 = 7 5 0 ; //rpm r m = 0 . 3 ; / / i n o hm s v = 5 0 0 ; // i n v o l t s ib=50; //amperes e b 1 = v - ( i b * r m ) ; // i n v o l t s e b 2 = e b 1 ; // N = ( ( v - ( 2 * ( i b * r m ) ) ) / ( ( e b 1 / n 1 ) + ( e b 2 / n 2 ) ) ) ;// p d v 1 = ( ( e b 1 / n 1 ) * N ) + i b * r m ; // i n v o l t s p d v 2 = ( ( e b 1 / n 2 ) * N ) + i b * r m ; // i n v o l t s disp ( round ( N ) , ” s p ee d i n rpm i s ” ) disp ( round ( p d v 1 ) , ”PD a c r o s s m a chi n e 1 i n v o l t s disp ( round ( p d v 2 ) , ”PD a c r o s s m a chi n e 2 i n v o l t s
Scilab code Exa 8.5 current
1 2 3 4 5 6 7 8
/ / E xam ple 8 . 5 : C u rr e nt drawn clc ; clear ; close ; format ( ’ v ’ ,5)
/ / g i v e n d at a : V = 5 0 0 ; // i n v o l t s V m = 4 0 ; / / i n kmph 72
i s ”) i s ”)
9 10 11 12 13 14 15 16 17
18 19 20 21
F t = 1 8 0 0 ; // i n N R m = 0 . 4 ; / / i n ohm L m = 3 2 0 0 ; // l o s s e s p er motor i n wa t t Mo=(Ft*Vm*1000)/3600; C l = 3 2 0 0 ; // c o n s a ta n t l o s s e s i n wa t t
/ / f o r m u l s : Mi=Po+C l+ C l o s s e s / / C l o s s e s = I ˆ 2 ∗Rm //Mi=V∗ I // I1 =(V+s q r t (Vˆ2 − (4 ∗Rm∗ (Mo+Cl ) ) ) ) /( 2 ∗Rm) ; l e a v i n g a s g i v e s a v er y h ig h v al ue I 1 = ( V - sqrt ( V ^ 2 - 4 * R m * ( M o + C l ) ) ) / ( 2 * R m ) ; disp ( I 1 , ” C u r r en t d ra wn by e a c h m ot or , ( A ) =” ) ; It=I1*2; disp ( I t , ” T o t a l c u r r e n t drawn , ( A) = ” )
Scilab code Exa 8.6 power delivered
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/ / Exam ple 8 . 6 . / / p ow er d e l i v e r e d clc ; clear ; close ;
/ / g i v e n d at a : format ( ’ v ’ ,6) F t = 3 5 3 0 0 ; // i n N V = 4 8 ; / / i n kmph
Po=((Ft*V*1000)/3600)*10^-3; Ft1=55180; // in N P d = P o * sqrt ( F t 1 / F t ) ; disp ( ” p a r t ( a ) ” ) disp ( P d , ” p o we r d e l i v e r e d (kW) = ” ) Pd1=Po*(Ft1/Ft); disp ( ” p a r t ( b ) ” ) disp ( P d 1 , ” p o we r d e l i v e r e d (kW) = ” )
73
Scilab code Exa 8.7 new characterstics
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Example 8 . 7 : s pe ed and t r a c t i v e
16
clc ; clear ; close ; I a = [ 6 0 ; 1 2 0 ; 1 8 0 ; 2 4 0 ; 3 0 0 ; 3 6 0 ] ; / / i n a mp er es s p 1 = [ 8 0 ; 5 0 ; 4 5 ; 4 2 ; 3 8 ; 3 5 ] ; // in kmph tf1=[1.7;5;10;14;16;20];// inn ewto ns d1=0.85; // in meters d 2 = 0 . 9 ; / / i n m e t er s y 1 = 7 1 / 2 1 ; // y 2 = 7 4 / 1 9 ; // for i = 1 : 6 V ( i ) = ( ( d 2 / d 1 ) * ( y 1 / y 2 ) ) * s p 1 ( i ) ;// i n kmph t f 2 ( i ) = ( ( d 1 / d 2 ) * ( y 2 / y 1 ) ) * ( t f 1 ( i ) ) ;/ / i n n e w t on s disp ( ” f o r a rm at ur e c u r r e nt ” + string ( I a ( i ) ) + ” a m p er es , s pe e d i s ” + string ( V ( i ) ) + ” kmph and t r a c t i v e e f f o r i n t h o u s a n d n e w to n s i s ” + string ( t f 2 ( i ) ) + ” ” ) end
Scilab code Exa 8.8 motor speed
1 2 3 4 5 6 7 8
/ / Example 8 . 8 : s p ee d
eff ort
clc ; clear ; close ; n 1 = 5 0 0 ; / / i n rpm d 1 = 9 0 ; / / i n cm d 2 = 8 6 ; / / i n cm v = 6 0 0 ; // i n v o l t s
74
9 10 11 12 13 14 15 16 17 18 19 20
vd=0.1; //drop e b 1 = v - ( v d * v ) ; // i n v o l t s A = [ 9 0 - 86 ;9 0 9 0] ; // B = [ 2 4 0 ; 5 4 0 0 0 ] ; // X = A \ B ; // V 1 = X ( 1 , 1 ) ; // i n v o l t s V 2 = X ( 2 . 1 ) ; // i n v o l t s N 1 = n 1 * ( V 1 - ( v d * v ) ) / ( e b 1 ) ; // N 2 = N 1 * ( d 1 / d 2 ) ; // disp ( round ( N 1 ) , ” s pe ed i n rpm i s ” ) disp ( round ( N 2 ) , ” s p ee d i n rpm i s ” )
/ /N2 i s c a l c u l a t e d wrong i n t he book
Scilab code Exa 8.9 power input and tractive efforts
/ / Example 8 . 9 ; p ower i n p u t and t r a c t i v e
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17
18
e ff or t s
clc ; clear ; close ; i a = 3 5 0 ; //A i b = 3 0 5 ; //A v = 6 0 0 ; //V p a = ( v * i a ) / 1 0 0 0 ; //kW p b = ( v * i b ) / 1 0 0 0 ; //kW disp ( ” ( i ) When m ot or s a r e c o nn ec te d i n p a r a l l e l and t r a i n s p ee d i s 40 kmph” ) disp ( p a , ” p o we r i n p u t t o m ot or A i s , ( kW)=” ) disp ( p b , ” p o we r i n p u t t o m ot or B i s , ( kW)=” ) fta=1625; //kg ftb=1480; //kg disp ( f t a , ” t r a c t i v e e f f o r o f motor A i s , ( kg )=” ) disp ( f t b , ” t r a c t i v e e f f o r o f motor B i s , ( kg )=” ) disp ( ” ( i i ) When m ot or s a r e c o n ne c t ed i n s e r i e s and c u r r e nt i s 4 00A” ) r m = 0 . 0 8 ; //ohm
75
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
i = 4 0 0 ; //A e b a = v - ( i * r m ) ; //V a b b = e b a ; //V v a = 3 8 . 5 ; //V v b = 3 6 . 7 ; //V v x = ( ( v - 2 * ( i * r m ) ) * ( ( v a * v b ) / ( v a + v b ) ) ) / e b a ;// V a = ( ( e b a / v a ) * v x ) + ( i * r m ) ; //V V b = ( ( e b a / v b ) * v x ) + ( i * r m ) ; //V p a 1 = ( V a * i ) / 1 0 0 0 ; //kW p b 1 = ( V b * i ) / 1 0 0 0 ; //kW disp ( p a 1 , ” p o we r i n p u t t o m ot or A i s , ( kW)=” ) disp ( p b 1 , ” p o we r i n p u t t o m ot or B i s , ( kW)=” ) fta1=1960; //kg ftb1=2060; //kg disp ( f t a 1 , ” t r a c t i v e e f f o r o f motor A i s , ( kg )=” ) disp ( f t b 1 , ” t r a c t i v e e f f o r o f motor B i s , ( kg )=” )
Scilab code Exa 8.10 linear synchronous and vehicle speed
1 2 3 4 5 6 7 8 9 10 11
// Example 8 . 1 0 ; l i n e a r s yn ch ro n ou s v e l o c i t y
clc ; clear ; close ; f=50; //hz t = 0 . 5 ; / / i n m e te r s = 0 . 2 5 ; // v s = 2 * f * t * ( 3 6 0 0 / 1 0 0 0 ) ; //kmph v c = v s * ( 1 - s ) ; //kmph disp ( v s , ” l i n e a r s yn ch ro no u s v e l o c i t y disp ( v c , ” v e h i c l e s p ee d i n kmph i s ” )
76
i n kmph i s ” )
Chapter 9 Control of Traction Motors
Scilab code Exa 9.1 energy lost and total energy
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
// Example 9 . 1 . / / e ne rg y l o s t and t o t a l e ne rg y clc ; clear ; close ;
/ / g i v e n d at a : format ( ’ v ’ ,7) V = 6 0 0 ; // i n v o l t s I=350; // in A T s = 2 0 ; // i n s ec R = 0 . 1 5 ; / / i n ohm E_bse=(V/2)-(I*R); E_bp=V-(I*R); Tse=(E_bse/E_bp)*Ts; Tp=Ts-Tse; Vd=V-(2*I*R); Ed1=(Vd/2)*I*(Tse/3600); Ed2=((V/2)/2)*2*I*(Tp/3600); El=(Ed1+Ed2)*10^-3; disp ( ” p a r t ( a ) ” ) disp ( E l , ” E ne rg y l o s t i n s t a r t i n g )
77
r h e s t a t , E l (kWh) = ”
21 22 23 24 25 26 27
El_1=(2*(I^2)*R*Ts)/(3600*1000); disp ( ” p a r t ( b ) ” ) m ot or s , E l (kWh) = ” ) disp ( E l _ 1 , ” E n er gy l o s t i n
/ / a ns w e r i s wrong i n
p ar t b i n t he t ex tb oo k
Et=((V*I*Tse)+(2*V*I*Tp))/(3600*1000); disp ( ” p a r t ( c ) ” ) disp ( E t , ” T o t a l E n er g y , E t ( kWh ) = ” )
Scilab code Exa 9.2 rheostatic losses and train speed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/ / Example 9 . 2 . r h e o s t a t i c l o s s e s and t r a i n s pe ed clc ; clear ; close ;
/ / g i v e n d at a : format ( ’ v ’ ,7) V = 6 0 0 ; // i n v o l t s I=300; // in A T s = 1 5 ; // i n s ec R = 0 . 1 ; / / i n ohm E_bse=(V/2)-(I*R); E_bp=V-(I*R); Tse=(E_bse/E_bp)*Ts; Tp=Ts-Tse; Vd=V-(2*I*R); E d 1 = ( round ( ( V d / 2 ) * I * ( T s e / 3 6 0 0 ) ) * 1 0 ^ - 3 ) ; // disp ( ” p a r t ( i ) ” ) disp ( E d 1 , ” r h e o s t a t i c i n s e r i e s , Ed1 (kWh) = ” ) Ed2=((V/2)/2)*2*I*(Tp/3600)*10^-3; disp ( E d 2 , ” r h e o s t a t i c i n p a r a l l e l , Ed2 (kWh) = ” ) V m = 2 9 ; / / i n kmph alfa=Vm/Ts; S=alfa*Tse; disp ( ” p a r t ( i i ) ” ) disp (S , ” S peed a t t he end o f s e r i e s p er i od , S (km/ h) =
78
”)
Scilab code Exa 9.3 efficiency and speed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
// Example 9 . 3 . e f f i c i e n c y and s pe ed clc ; clear ; close ;
/ / g i v e n d at a : format ( ’ v ’ ,5) V = 6 0 0 ; // i n v o l t s I=200; // in A T s = 2 0 ; // i n s ec R = 0 . 1 ; / / i n ohm E_bse=(V/2)-(I*R); E_bp=V-(I*R); Tse=(E_bse/E_bp)*Ts; Tp=Ts-Tse; Vd=V-(2*I*R); Mi=((V*I*Tse)/(2*3600))+((V*I*Tp)/3600); Er=((Vd/4)*I*(Tse/3600))+(((V/2)/2)*I*(Tp/3600)); El=(I^2*R*Ts)/(3600); Mo=Mi-Er-El; eta=(Mo/Mi)*100; disp ( ” p a r t ( a ) ” ) disp ( e t a , ” S t a r t i n g e f f i c i e n c y , ( %) = ” ) V m = 8 0 ; / / i n kmph alfa=Vm/Ts; S=alfa*Tse; disp ( ” p a r t ( b ) ” ) disp (S , ” s p e e d , S ( kmph ) = ” )
Scilab code Exa 9.4 time duration speed and rheostatic losses
79
1 // Example 9 . 4 t im e d u r at i o n
, s pe ed and r h e o s t a t i c
losses 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
clc clear ; close ;
23 24 25 26 27 28 29 30 31 32
33
/ / g i v e n d at a : format ( ’ v ’ ,6) W = 1 5 0 ; // i n t on ne W e = 1 . 1 * W ; // i n t on ne s V m = 3 0 ; //kmph V = 6 0 0 ; // i n v o l t s r=10; // N/tonne I=300; // in A R = 0 . 1 ; / / i n ohm F t = 4 * 1 5 0 0 0 ; // i n N G = 1 ; // g r a d i e n t i n % a l f a = ( F t - ( W * r ) - ( 9 8. 1 * W * G ) ) / ( 2 7 7 . 8 * W e ) ; Ts=Vm/alfa; E_bse=(V/2)-(I*R); E_bp=V-(I*R); Tse=(E_bse/E_bp)*Ts; disp ( ” p a r t ( a ) ” ) disp ( T s , ” D u r at i on o f s t a r t i n g p e ri o d , Ts ( s e c o nd s ) = ” ) disp ( T s e , ” D u r at i on f o r S e r i e s r un ni ng , Tse ( s e c o n ds ) = ”) s p t r = a l f a * T s e ; // in kmph disp ( ” p a r t ( b ) ” ) disp ( s p t r , ” s pe ed o f t r a i n a t t r a n s i t i o n i n kmph i s ” ) s p t r = a l f a * T s e ; // in kmph r l s = ( ( V - ( 2 * I * R ) ) / 2 ) * ( 2 * I ) * ( T s e / 3 6 0 0 ) ;/ / w a t t s h o u r s r l p = ( ( V / 2 ) / 2 ) * ( 4 * I ) * ( ( T s - T s e ) / 3 6 0 0 ) ;/ / w a t t s h o u r s t l = r l s + r l p ; // disp ( ” p a r t ( c ) ” ) disp ( r l s , ” r h e o s t a t l o s s e s d u ri ng s e r i e s o p e r a t i o n i n W− h o u r s ” ) disp ( r l p , ” r h e o s t a t l o s s e s d ur in g p a r a l l e l o p er a t i o n i n W− h o u r s ” )
80
34 disp ( t l , ” t o t a l
l o s s e s i n W− h ou rs i s ” )
Scilab code Exa 9.5 diverter resistance
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/ / Example 9 . 5 : d i v e r t e r r e s i s t a n c e
clc ; clear ; close ; format ( ’ v ’ ,6) n f = 1 ; // n 2 = 1 . 2 5 * n f ; // o f = 1 ; // o f 2 = n f / n 2 ; // i s e f = 1 ; // i s e 2 = 0 . 6 6 6 6 7 ; // i a 2 = ( 1 / i s e 2 ) ; // i d i v = i a 2 - i s e 2 ; // r d i v = i s e 2 / i d i v ; // disp ( r d i v * 1 0 0 , ” d i v e r t e r r e s i s t a n c e
r eq u ir e d as p e rc e n t ag e o f t he f i e l d r e s i s t a n c e i s ” ) 16 / / a ns we r i s wrong i n t he t ex t bo o k
Scilab code Exa 9.6 speed and drawbar pull
1 2 3 4 5 6 7 8 9
/ / Example 9 . 6 : draw c h r a c t e r s t i c s
clc ; clear ; close ; format ( ’ v ’ ,6) I a = [ 6 0 ; 8 0 ; 1 0 0 ; 1 2 0 ; 1 6 0 ; 1 8 0 ] ; // i n a mp er es s p 1 = [ 4 7 . 4 ; 4 0 . 3 ; 3 5 . 8 ; 3 3 . 9 ; 2 9 . 8 ; 2 8 . 5 ] ; // in kmph d p k = [ 4 4 0 ; 7 0 0 ; 9 7 0 ; 1 2 4 5 ; 1 8 0 0 ; 2 3 6 0 ] ;/ / i n k g s p 2 = [ 5 8 . 1 ; 5 0 ; 4 5 ; 4 0 . 3 ; 3 5 ; 3 2 ] ; //
81
10 for i = 1 : 6 d p k1 ( i ) = ( ( d pk ( i ) ) * ( s p1 ( i ) ) ) / ( s p2 ( i ) ) ;// 11 12 disp ( ” f o r c u r r e n t ” + string ( I a ( i ) ) + ” a mp er es , s pe ed i n kmph i s ” + string ( s p 2 ( i ) ) +” and dra wb ar p u l l i n k g i s ” + string ( d p k 1 ( i ) ) + ” ” ) 13 end
82
Chapter 10 Braking Mechanical Consideration and Control Equipment
Scilab code Exa 10.1 braking torque
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/ / Exam ple 1 0 . 1 : b r a k i n g t o r q u e
clc ; clear ; close ; I = [ 5 0 ; 1 0 0 ; 1 5 0 ; 2 0 0 ; 2 5 0 ] ; // sp=[73.6;48;41.1;37.3;35.2]; T=[150;525;930;1335;1750]; v = 6 0 0 ; // i n v o l t s r m = 0 . 6 ; // e b = v - ( I ( 2 ) * r m ) ; // i n v o l t s r h = 3 ; // in ohms t r = r h + r m ; // in ohms i = e b / t r ; / / i n a m p e r es t r = T ( 3 ) ; // disp ( t r , ” b r a ki ng t or qu e i s (N−m) ” )
83
Scilab code Exa 10.2 resistance
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/ / Example 1 0 . 2 : r e i s t a n c e
clc ; clear ; close ; I = [ 2 0 ; 4 0 ; 6 0 ; 8 0 ] ; // e m f = [ 2 1 5 ; 3 8 1 ; 4 8 5 ; 5 5 0 ] ; // i n v o l t s e m f 2 = [ 2 0 2 ; 3 5 7 ; 4 5 5 ; 5 1 6 ] ; // l t = 4 0 * 9 . 8 1 ; // i n N−m N = 6 0 0 ; //rpm i l = l t * ( 2 * % p i * ( N / 6 0 ) ) ;/ / i n W i a = 5 6 ; / / i n a mp er es f ro m c u r v e v a = 4 4 0 ; // i n v o l t s fro m g ra ph t r = v a / i a ; / / i n ohms t m = 0 . 8 ; / / i n o hm s e r = t r - t m ; // in ohms disp ( e r , ” e x t e r n a l r e s i s t a n c e t o be c on ne ct ed a c r o s s t he motor d u ri n g b re ak i s i n ohm” )
Scilab code Exa 10.3 electrical energy and average power
1 2 3 4 5 6 7 8 9 10
/ / Example 1 0 . 3 : E l e c t r i c a l e ne rg y and a v er a ge power clc ; clear ; close ;
/ / g i v e n d at a : format ( ’ v ’ ,6) W=400; // in tonne W e = 1 . 1 * W ; // i n t o nn e S = 2 ; // d i s t a n c e i n km G = 2 ; // g r a d i en t i n % 84
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
eta=75/100; // e f f i c i e n c y D = 2 ; / / d i s t a n c e i n km km V 1 = 4 0 ; / / i n km V 2 = 2 0 ; / / i n km r = 4 0 ; //N/tonne E a = ( 0 . 0 1 0 7 2 * W e * ( V 1 ^ 2 - V 2 ^ 2 ) ) * 1 0 ^ - 3 ;/ / i n kWh Ft=(W *r) -(98.1*W*G) ; M=(-Ft*S*1000)/(1000*3600); e r gy gy a v a i l a b l e E t = E a + M ; / / t o t a l e n er Ee=eta*Et; e r g y , E e ( kW kWh ) = ” ) disp ( E e , ” E l e c t r i c a l e n er e r a ge g e s pe p e ed ed A s = ( V 1 + V 2 ) / 2 ; / / a v er A t = D / A s ; / / A ve v e ra r a ge g e t im i m e t a ke ke n P = round ( E e / A t ) ; disp ( P , ” A v e r a g e p o we we r , P ( kW kW) = ” )
Scilab code Exa 10.4 energy returned
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/ / Ex Ex a m p l e 1 0 . 4 : E n er e r g y r e t ur u r n e d t o t he he l i n e clc ; clear ; close ;
/ / g i v e n d at at a : W = 2 3 4 0 ; / / i n t o n ne ne nn e W e = 1 . 1 * W ; / / i n t o nn G=100/80; // g r a d i en t i n % eta=70/100; // e f f i c i e n c y V 1 = 6 0 ; / / i n km V 2 = 3 6 ; / / i n km r = 5 * 9 . 8 1 ; //N/tonne ec t = 5 * 6 0 ; / / i n s ec
E a = ( 0 . 0 1 0 7 2 * W e * ( V 1 ^ 2 - V 2 ^ 2 ) ) * 1 0 ^ - 3 ;/ / i n kWh Ft=(W *r) -(98.1*W*G) ; / / t r a c t i v e e f f o r t i n N D = ( ( V 1 + V 2 ) / 2 ) * ( 1 0 0 0 / 3 6 0 0 ) * t ;/ / d i s t a n c e m o v e d i n m M=(-Ft*D)/(1000*3600);
85
18 E t = E a + M ; 19 E l = e t a * E t ; 20 disp ( E l , ” E n er e r gy g y r e t u r n e d t o t h e l i n e , E l ( kWh ) = ” )
Scilab code Exa 10.5 power
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/ / Ex Ex a m p l e 1 0 . 5 : E n er e r g y r e t ur u r n e d t o t he he l i n e clc ; clear ; close ;
/ / g i v e n d at at a : W=500; // in tonne en t i n % G = ( 2 0 * 1 0 0 ) / 1 0 0 0 ; / / g r a d i en eta=75/100; // e f f i c i e n c y V = 4 0 ; / / i n kmph r = 4 0 ; //N/tonne Ft=(W *r) -(98.1*W*G) ; / / t r a c t i v e e f f o r t i n N kW P = ( - F t * V ) / 3 6 0 0 ; / / P o w e r a v a i l a b l e i n kW P f = round ( P * e t a ) ; o w er e r f e d i n t o t h e l i n e , P f (kW) = ” ) disp ( P f , ” p ow
Scilab code Exa 10.6 power
1 2 3 4 5 6 7 8 9 10
/ / Ex E x a m pl pl e 1 0 . 6 : P o w e r g e n e r a t e d clc ; clear ; close ;
/ / g i v e n d at at a : O D = 6 4 0 ; / / v o l t a g e r e p r e s e n t b y p ha h a so s o r OD o hm R = 0 . 5 ; / / r e a c t o r i n oh Ia=OD/R; V=400; // i n v o l t s h a se s e a n g le l e i n d e g re re e a l f a = 3 8 . 6 6 ; / / P ha
86
11 P = ( V * I a * c o s d ( a l f a ) ) * 1 0 ^ - 3 ; 12 disp ( P , ” P ow o w eerr g e n e r a t e d , P (k (kW) = ” )
87
Chapter 11 Power supply for electric traction
Scilab code Exa 11.1 total length
1 2 3 4 5 6 7 8 9 10 11
/ / Exam ple 1 1 . 1 : T o t a l L en gt h clc ; clear ; close ;
/ / g i v e n d at a : l = 2 0 ; // i n m w = 0 . 5 ; // w ei gh t p er m e t e r i n kg T = 5 0 0 ; // T en si on a p p li e d i n kg del=(w*l^2)/(2*T); two_S=2*(l+(2/3)*(del^2/l)); disp ( t w o _ S , ” T o t a l L e ng t h (m) = ” )
Scilab code Exa 11.2 sag
1 / / Exam ple 1 1 . 2 : S ag 2 clc ;
88
3 4 5 6 7 8 9 10 11 12 13
clear ; close ;
/ / g i v e n d at a : format ( ’ v ’ ,5) l = 3 0 ; // i n m et er w = 0 . 7 2 ; // w ei gh t p er m et e r i n kg E = 6 4 0 ; / / i n k g /cm ˆ2 d = 1 ; // d i am et er i n cm
T=E*(%pi/4)*d^2; del=((w*l^2)/(2*T))*100; disp ( d e l , ” s a g ( cm ) = ” )
Scilab code Exa 11.3 sag
1 2 3 4 5 6 7 8 9 10 11 12 13
/ / Exam ple 1 1 . 3 : S ag clc ; clear ; close ;
/ / g i v e n d at a : l = 3 0 ; // i n m et er w 1 = 0 . 9 ; // a v e ra g e w ei gh t o f c a t e n a ry w ir e i n kg /m w 2 = 1 . 2 // a ve ra g e w ei gh t o f t r o l l e y w ir e i n kg /m w 3 = ( 2 0 / 1 0 0 ) * w 2 // a v e ra g e w e ig h t o f d r op p er and f i t t i n g s in kg/m
w=w1+w2+w3; T = 1 0 0 0 ; // i n kg del=((w*l^2)/(2*T)); disp ( d e l , ” s a g (m) = ” )
Scilab code Exa 11.4 current
1 / / Exam ple 1 1 . 4 : C u rr e n t 2 clc ;
89
3 4 5 6 7 8 9 10
clear ; close ;
/ / g i v e n d at a : I = 3 0 0 ; // i n A R = 0 . 0 8 ; / / i n ohm V d = 6 ; // v o l t a g e d ro p i n v o l t s I_dash=((R*(I/2))-Vd)/R; disp ( I _ d a s h , ” C u r r e n t ( A) = ” )
Scilab code Exa 11.5 potential
1 2 3 4 5 6 7 8 9 10 11 12
/ / Exam ple 1 1 . 5 : C u rr e n t clc ; clear ; close ;
/ / g i v e n d at a : a = 7 ; // f a r end v o l t a g e i n v o l t s i = 1 2 5 ; // i n A r = 0 . 0 2 ; / / i n ohm l = 3 ; // i n km
p=(i*r*l^2)/2; I = ( ( p - a ) / ( r * l ) ) ; // disp (p , ” p o t e n t i a l o f t h e t r a ck a t t h a f a r end o f t h e s ec ti on in v o lt s i s ”) 13 disp (I , ” C ur re nt c a r r i e d by − v e f e e d e r , I (A) = ” )
Scilab code Exa 11.6 current
1 2 3 4 5
/ / Exam ple 1 1 . 6 : C u rr e n t clc ; clear ; close ;
/ / g i v e n d at a : 90
6 7 8 9 10 11 12 13 14 15
format ( ’ v ’ ,8) ix=200; //amperes r = 0 . 0 2 ; / / i n o hm s x = poly (0 , ” x ” ) ; p = - 1 9 + 1 2 * x + 0 * x ^ 2 ; // y = roots ( p ) ; //km i p x = i x * ( 3 - y ) ; / / i n a m p e r es i n x = 2 * i x ; / / i n a m p e r es i t = i p x + i n x ; / / i n a m p e r es disp ( i t , ” c u r r en t t hr ou gh n e g e t i v e b o o s t e r i n a mp er es is”)
Scilab code Exa 11.7 voltage and kW
1 / / Example 1 1 . 7 :
p o t e n t i a l d ro p a nd c a p a c i t y i f
booster 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
clc ; clear ; close ;
/ / g i v e n d at a : format ( ’ v ’ ,8) ix=250; //amperes v b = 2 ; // i n v o l t s r = 0 . 0 2 ; / / i n o hm s x = poly (0 , ” x ” ) ;
p = - 2 7 . 6 + 1 6 * x + 0 * x ^ 2 ; // y = roots ( p ) ; //km p c = v b + ( i x * r * ( 1 . 6 ) ^ 2 ) / 2 ; // i n v o l t s p d = ( ( i x * r * ( y ^ 2 ) ) / 2 ) ; // i n v o l t s t c ur r = ( 1 .6 * i x ) + ( ( i x * (3 .2 - y ) ) ) ; / / i n a m p e r es v n f = r * t c u r r ; // i n v o l t s b n b = v n f - v b ; // i n v o l t s c b = ( ( b n b * t c u r r ) / 1 0 0 0 ) ; / / i n kw disp ( p c , ”maximum p o t e n t i a l d ro p on any two p o i n t s on t he r a i l s i n v o l t s i s ” )
91
20 disp ( c b , ” c a p a c i ty o f b o o s t e r i n kW i s ” )
Scilab code Exa 11.8 rating of the booster
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/ / Example 1 1 . 8 : r a t i n g o f b o o s t e r clc ; clear ; close ;
/ / g i v e n d at a : format ( ’ v ’ ,8) i = 2 0 0 ; // A/km r = 0 . 0 1 ; // i n ohms/km x = poly (0 , ” x ” ) p = - 2 0 + 8 * x + 0 * x ^ 2 ; // y = roots ( p ) ; //km i 1 = 4 0 0 ; / / i n a m p er e s i 2 = ( 4 - y ) * i / / i n a m p e r es t c = i 1 + i 2 ; / / i n a m p e r es v c n = r * t c ; // i n v o l t s n b = v c n - 4 ; // i n v o l t s r b = ( t c * 1 0 ) / 1 0 0 0 ; // disp ( r b , ” r a t i n g o f t he b o o s t e r i n kW i s ” )
Scilab code Exa 11.9 voltage
1 2 3 4 5 6 7 8
/ / Exam ple 1 1 . 9 / / v o l t a g e
clc ; clear ; close ; format ( ’ v ’ ,5) v w = 6 0 ; // i n v o l t s v t = 1 2 ; // i n v o l t s t v = v w + v t ; // i n v o l t s
92