EXAMPLES/NOTES: UNIFORM RECTILINEAR MOTION 1. Car A at a gasoline station stays there for 10 minutes after Car B passes at a constant speed of 40 miles per hour. How long will it take Car A to overtake Car B if it accelerates at 4 m/s !olution" #a #a $ #% !a $ !10 & !%
Consider B"
v=
s t
s Sb Tb= = v 17.88 m / s Sb =17.88 Tb
Consider A" 1
Sa =VoTa + aT ² ² =0 + 2
1 2
( ) 4
m s
2
( T a ) =2 Ta ² 2
'or !10"
(
S 10= vt =
17.88 m
!u%stitute"
Sa = S 10 + Sb
s
)(
600 s
) =10728 m
= 10728+ 17.88 T
2 T ²
Answer: T = 77.85 seconds (. A stone is thrown up from the ground with a velocity of )00ft/s. How long must one wait %efore dropping a second stone from the top of *00ft tower if the two stones are to pass each other (00ft from the top of the tower+
!olution" Consider 1 1
s =Vot − > ² 2
(
=
400 ft
300 ft
s
) ( (t )− 1 2
32.2 ft
s
2
)(
t ) 2
t = 17.19 s , 1.45 s Consider ( 1
s =Vot + g t 2 2
=0+
200
(
)
1 32.2 ft 2
s
2
( t ) 2
t =± 3.52 s
How long must one wait+ t $ 1,.1- seconds ).( seconds
Answer: !."7 seconds
= 10728+ 17.88 T
2 T ²
Answer: T = 77.85 seconds (. A stone is thrown up from the ground with a velocity of )00ft/s. How long must one wait %efore dropping a second stone from the top of *00ft tower if the two stones are to pass each other (00ft from the top of the tower+
!olution" Consider 1 1
s =Vot − > ² 2
(
=
400 ft
300 ft
s
) ( (t )− 1 2
32.2 ft
s
2
)(
t ) 2
t = 17.19 s , 1.45 s Consider ( 1
s =Vot + g t 2 2
=0+
200
(
)
1 32.2 ft 2
s
2
( t ) 2
t =± 3.52 s
How long must one wait+ t $ 1,.1- seconds ).( seconds
Answer: !."7 seconds
#ARIA$LE ACCELERATION 4
1. #he motion of a particle is given %y
t 3
s =2 t − + 2 t 2 where s is in 6
t in seconds . Compute the values of
v and
feet and
a when t =2 seconds .
t 3
4
s =2 t − + 2 t 2 6
1
v =8 t 3 − t 2 + 4 t 2
2
a =24 t −t + 4
@ t =2 seconds
ft 1 v =8 ( 2 )3− ( 2 )2+ 4 ( 2 ) v =70 sec 2 a =24 ( 2 )2−( 2 ) + 4 %
a =98
ft sec
2
(. A particle moves in a straight line according to the law in
s =t 3− 40 t where s is
m and t in seconds . a. hen
t = 5 seconds 2 compute
v .
%. 'ind the the averag average e velocity velocity durin during g the ) rd to 4th seconds. c. hen the the particle particle comes comes to stop2 stop2 what what is its accel accelerat eration+ ion+
s =t 3− 40 t
a. 2
v =3 t − 40 a =6 t
@ t =5 seconds
2
v =3 ( 5 ) −40
v ave =
%.
v =35
m sec
total total distanc distancee −96−(−93 ) −3 = = 4 −3 1 totaltime
rd
@ 3 second 3
s =( 3 ) −40 ( 3 )
s =−93 m
@ 4th second 3
s =( 4 )
if v =0
c. 0
− 40 ( 4 ) s =−96 m
2
=3 t − 40
t =3.65 seconds
v ave=−3
m sec
a =6 t =6 ( 3.65 ) %
a =21.9
m sec 2
). #he rectilinear motion of a given particle is given %y
m and
v is in
v −t 2 and
2
m sec . hen
t =0 2
s =0 2 and
a −t relations.
s = v 2− 9 ds dv =2 v dt dt v =2 va a=
1 2
a=
1 2
=
v− vo t v −(3 ) t 1
s = v o t + a t =( 3 ) t + 2
2
1
v = t + 3 2
()
1 1 2 2
1
2
t
2
s =3 t + t 4
s = v 2−9 where s is in v =3
m sec . 3etermine
s −t
MOTION CUR#ES 1. A particle starting with an initial velocity of *0 ft /s has a rectilinear motion with the constant deceleration of 10 ft/ s t $ - sec.
Solution:
2
. 3etermine the velocity and displacement at
For &nd :
(. An auto travelled 100 ft in 40sec. #he auto accelerates uniformly and decelerates uniformly at * ft/ s in fps.
2
2 starting from rest at A and coming to stop at B. 'ind the ma5imum speed
Solution:
A *5 *740 56 $ 0 *5 0 $ *740 56 *5 $ (40 *5 ) = '( 6
# '(
). An Auto starts from rest and reaches a speed of *0 ft/s in 1 sec. #he acceleration increases uniformly from 8ero for the 9rst - sec after which the acceleration reduces uniformly to 8ero in the ne5t * sec. Compute for the displacement in this 1 sec interval.
Solution:
PRO*ECTILE MOTION 1. A golf %all is 9red from the top of a cli: 0 m high with a velocity of 10 m/s directed at 4; to the hori8ontal. 'ind the range of the pro
1
?0 $ 10sin4;t ?
range t
x t $
=o cos> $
2
t1 $ ).-- s 7checked6 t( $ ?(. s
10cos4; $
range t
'or range"
10cos4; $ 'or t"
range
1
y $ =o sin
ө
t?
2
range t
(
gt
10cos4; $
3.99
R&n+e = '8.' ,
7 -.16 t (
(. @n 9gure -?*.102 a %all thrown down the incline strikes it at a distance s $ (4. ft. @f the %all rises to a ma5imum height h $ *4.4 ft a%ove the point of release. Compute its initial velocity and inclination >.
Hori8ontal motion"
√ 10
=
√ 10
x t
=o cos> $
3
1
=
y 254.5
y =80.48 ft .
x
'or ma5imum height"
254.5
H $ *4.4 ft.
x =241.44 ft .
2
y = =ertical otion" 1
y $ =o sin
ө
t?
2
2
V −( V o sin ө )
−2 ( 32.2 ) 2
(
gt
−( V o sinө ) 64.4 = −2 ( 32.2)
2
( V o sin ө ) $ 7(67)(.(67*4.46
241.44
?0.4 $ =o sin
V o sin ө =√ 64.4 2
241.44
2
?0.4 $ (41.44 tan
64.4 sin ө
(16.1) 241.44 64.4
'or
7 V o cos ө 6 ?
7)(.(67 V o 2 cos 2 ө 6
V o sin ө =64 .4
V o=
ө
ө:
t?
2
gt(
ө
?0.4 $ (41.44 tan
2
64.4 tan
ө
=1.33 ;
tan
ө
=−0.27 ;
ө
2
2
ө
=¿ ).0*; ө
=¿ ?1.11;
therefore2
V o=
64.4 sin ө
=
64.4 sin 53.06⁰
#o = 8(.57 -/
). 'ind the take?o: velocity that is
?
2
cos
(16.1) 241.44
tan
ө
2
1
?0.4 $ =o sin
?
2
sin ө
ө
ө
1 2
sing hori8ontal motion formula"
x t
=o cos> $
17.32
=o cos)0; $
t
17.32
t$
V o cos 30⁰
sing vertical motion formula" 1
y $ =o sin
ө
?((.($ =o sin
?((.($ =o sin
t?
30⁰
30⁰
2
gt(
1
t?
2
7)(.(6t(
17.32
7 V o cos 30⁰ 6 ?
1 2
17.32
7)(.(67 V o cos 30⁰ 6(
#o = . -/s
4. How high is the hill+
sing hori8ontal motion formula" =o cos> $
x t 500
100cos*0; $
t
500
t$
100 cos 60⁰
t $ 10 sec sing vertical motion formula"
1
y $ =o sin
y$ 100sin
ө
t?
60⁰
0 = 17!.27 -.
2
gt(
1
7106?
2
7)(.(67106 (
3INETICS 1. 3etermine that will give the %ody an acceleration of * ft/sec ( D $ 0.(0.
Σ Fx =ma R= ma = x− F
∗
322 6 3.22
= x − F
∗
322 6
716
3.22
4
= ∗ − 0.2∗ ! 5
Σ Fy =0 " = ! + y
7(6
3
= ! + ∗
322
5
!u%stituing ( in 1 we get"
P = 7''.7 4s.
(. 3etermine the acceleration of the system and tension in the chord. D $ 0.)0
Consider (00 E Block 'B3"
Σ Fv =ma R= ma = " −T 200
g
∗a= 200−T
Consider 100 E Block 'B3"
Σ Fx =ma
R= ma=T − F 100
g
∗a=T − 0.3∗100
& = 5.5" ,/sec ' T = 8"."7 N ). 'ind the acceleration of the system and tension in the %lock.
Consider )00 E Block 'B3"
Σ Fv =ma
R= ma=T −" 300
g
Consider 100 and (00 E Block 'B3"
∗a=T − 300
Σ Fx =ma R= ma ="x 1 + "x 2− F 1 − F 2−T
300
g
∗
3
3
0.2 4
5
5
5
∗a= ∗100 + ∗200 −
∗100 −
∗
0.3 4 5
∗200 −T
T = '(8 N & = 1! ,/sec '
.
1. hat is the tension in the card+ (. Acceleration of the %locks ). =elocity of B after ( seconds+
B 1-*.( E A -1 E Consider B
Consider A
#
#
#
1-*.( a
a
-1 E
R= ma1= T − " 196.2 9
'or
R= ma2 =981−2 T 981
a1=T −196.2
a1
9
" 1
1
1 2
2
2
= a t 1
1
!olve 1 and ( simultaneously"
=
2
a1 a2
a1= 2 a 2
T6ere-ore:
2
s =V o t + a2 t
2
5
a2 "
'or
s =V o t + a1 t 2
a2= 981−2 T
1
2
= a t
2.5
2
2
(
a1
T = !'7N
m = ".5
s
a2= 3.27
2
m 2
s
5
10
&A
&C
&$
3etermine0 theEtension 100 and acceleration of each %locks. Consider %lock A"
#1 aA
R= ma # R=T 1−"
10 E
150 9
Consider %lock B" #(
a # =T 1−150
1
R= ma $ R=" −T 2 100
aB
9
a $=100 −T 1
100 E
Consider %lock C" #(
R= ma%
aC
R=T 2−" 50
0E
9
a% =T 2−50
'or #1 and #("
#1
−T =ma
2 T 2
1
=T
2 T 2
1
)
(
A" 150 9
!A
a # =2 T 2−150
B"
10E 100 9
( a # +a $ )=100 −T
2
Friginal C" 50
100E
0E
9
( a # + a $ & )=12 −50
!A !B !BG
'or !A"
'or !BG" 1
S # =V o t + a # t 2 2
1
S $ & = a $ & 2
'or !B"
t 2
1
S $ = a $ t 2 2
1
S # = a # t 2 2
But
S $ =S $
G
1
+1
2
2
S $ = a $ & t 2
1 2
+ S #
1
2
¿ t (a # + a $ & )
t 2
a$
a # t 2
2
a $=( a # + a$ & )
Iuation 100 9.81
(
will now %e"
( a # +a $ & )=100−T
2
1 150 9.81
a # =2 T 2−150
#( $ 1(0
aA $ .)*
aBG $ ?,.4
) 50 9.81
( a # −a $ & ) =T −50 2
m sec2 m sec2
50 9.81
( a $ & − a # ) =T −50
T = 7( N
2
&A = 1(.58
m sec2
&$ = !."
m sec2
ASSINMENT NO. -?).* How fast must an automo%ile of the previous pro%lem move in the last minutes to o%tain an average speed of ) mph+ From the previous problem:
s = vt s 1=( 30 m'h ) ( 12 min )= 6 miles
s 2=( 40 m'h) ( 20 min )=13.33 miles s 3=( 30 m'h ) ( 8 min )=6.67 miles s T =26 miles
v=
t =40 min
26 miles 40 min(
a=
60 sec
=39 m'h= v o
1 min
v − v o 35 m'h−39 m'h −9 m'h = = =−30 m'h2 t 40 min 40 min
-?). Fn a certain stretch of track2 trains run at *0 mph. How far %ack of a stopped train should a warning torpedo %e placed to signal an oncoming train+ Assume that the %rakes are applied at once and retard the train at the uniform rate of 4 fps (.
v o =60 m'h=88 f's v 2= v o2 + 2 as 0
=88 + 2 ( 4 ) s 2
s = 468 ft .
-?).10A ship %eing launched slides down the ways with a constant acceleration. !he takes 4 seconds to slide the 9rst foot. How long will she take to slide down the ways if their length is -00 feet+ 1
s = v o t + a t 2 2
v o =0
1
s = a t 2 2
1
2
= a( 4 )
1
900
1
2
a =0.125 f's2
= ( 0.125 ) t
2
2
t =120 sec ¿ 2 min)tes -?).1(A stone is dropped down a well and seconds later the sound of the splash is heard. @f the velocity of sound is 11(0 fps2 what is the depth of the well+ 1
s = v o t + a t 2 2
For the stone,
For the sound,
1
s =( 0 ) t + (9.81 ) t 2
s = v t 2
s = 4.905 t 2
s =( 341.376 ) t 2
2
t 12=
s
t 2 =
4.905
s 341.376
t 1 +t 2=5 sec
(
√
s
) & 7 4.905
√
s 341.376
¿=5 sec
s =103.65 meters -?).14. A train moving with constant acceleration travels (4 ft during the 10 th sec of its motion and 1 ft during the 1( th sec of its motion. 'ind its initial velocity. !olution" S1oth $ (4 ft J t $ - sec to 10 sec S12th $ 1 ft J t $ 11 sec to 1( sec J S1oth" 1
s = v o t + a t 2 2
1
2
24
=v o ( 9 )+ (9 )t
24
=v o ( 10)+ a ( 10)
2
1 2
2
1
S9-10
24
¿ v o + a (19) 2
=v o + 9.5 a
7eI. 16
1
24
=9 v o + a (81 )
24
=10 v o + a ( 100)
2
1 2
J S12th: 1
s = v o t + a t 2 2
1
2
= v o (11)+ (11) t
18
2
1
2
= v o (12 )+ a ( 12 )
18
2
1
=12 v o + a (144)
18
2
1
=11 v o + a (121 )
18
2
1
S11-12
¿ v o + a (23 ) 2
= v o + 11.5 a
18
7eI. (6
sing the eI. 1 K ("
v o =52.5 f's
a =−3 f' s2
-?).1*. An auto A is moving at (0 fps and accelerating at fps ( to overtake an auto B which is )( ft ahead. @t auto B is moving at *0 fps and decelerating at ) fps(2 how soon will A pass B+ !olution" J Auto A"
J Auto B"
1
1
s = v o t + a t 2
s = v o t + a t 2
2
2
1
s =( 20 ) t + ( 5 ) t 2 2
1
7eI. (6
(6 !u%tract eI. ( from eI. 1" 384
2
=−40 t + 4 t
2
s −384 =( 60 ) t + (−3 ) t 2
7eI.
t =16 sec
-?).1. sin
#he rectilinear motion of a particle is governed %y the eIuation s = r
* t where r and * are constants. !how that the acceleration is a = - *
2
s.
!olution"
s =r sin *t
)= r
v =sin *t
d) =0 dv = cos *t
vd) + )d v v =*r cos *t
)= *r
v =cos *t
d) =0 dv =−sin *t
vd) + )dv 2
a =−* r sin *t
!ince
s =r sin *t 2
#herefore"
a =−* s
-?).(0 A ladder of length L moves with its ends in contact with a vertical wall and a hori8ontal Loor. @f a ladder starts from a vertical position and its lower end A moves along the Loor with a constant velocity v A2 show that the velocity of the upper end B is v B = – v A tan where is the angle %etween the ladder and the wall. hat does the minus sign mean+ @s it physically possi%le for the upper end B to remain in contact with the wall throughout the entire motion+ 5plain.
!olution"
g= √ + − 2
2
dy 1 1 dy V b= = ( (−2 , ) dt 2 - dt
But
=V a t +
#herefore"
hen M $ -0N2
dx = V a dt
V b= V b= .
− , -
V a =−V a tan
2 which is impossi%le.
-?).(( #he velocity of a particle moving along the 5?a5is is de9ned %y v$k5O ?45 & *52 where v is in fps2 5 is in feet2 and k is a constant. @f 5 $ 12 compute the value of the acceleration when 5 $ ( feet.
So49on: At 5 $ ( feet v $ 7167(6O ? 47(6 & *7(6 $ 4fps
dv dv dv dv a = =3 x ² − 8 x + 6 dt dt dt dt
v=
dv dt
a =3 x 2 v − 8 xv + 6 v !u%stituting v $ 4 fps.
a =( 3 ) (2 )2 ( 4 )−8 ( 2 ) ( 4 ) + 6 ( 4 ) Answer:
a =8 f's ²
ASSINMENT NO. ' 3etermine the acceleration of the ( %locks after touching each other. 3etermine the time at which the
300 !
%lock will touch the
100 !
%lock.
R= ma100=" sin / −f 100=" sin / − 0 ! 1
" a =" sin / − 0 ! 1 ! 1=100 cos 30 1 g 100 30 1 100 cos
¿
¿ 30 1 −0.2 ¿ 100 9.81
a100=3.206
m sec
2
a100=100 sin ¿
1
2
s = v o t + a100 t 2
1
s = ( 3.206 ) t 2
2 716
2
R= ma300=" sin / −f 300=" sin / − 0 ! 2 " a =" sin / − 0 ! 2 ! 2=300cos30 1 g 300 30 1
¿ ¿ 30 1 −0.1 ¿ 300 cos
300 9.81
a300= 4.055
a300=300 sin ¿
1
2
s + 1= v o t + a300 t 2
s=
1 2
( 4.055 ) t −1 2
2 7(6
m sec2
Iuating 716 and 7(6 3.206 2
t 2=
2
0.4245 t
4.055 2
t 2−1
=1
2
t =2.356
t =1 . 535 seconds
Acceleration after touch"
m at =a 100+ a300=3.206 + 4.055 at =7 . 261 sec 2 ASSINMENT NO. 1044. An elevator weighing )((0 l% starts from rest and acIuired an upward velocity of *00 ft per min in a distance of (0 ft. @f the acceleration is constant. hat is the tension in the elevator ca%le+ Piven"
T
$ )((0 l% !olGn" v $ *00 ft/min $ 10 ft/sec
v 2= 2 as
<
( 10 ) =2 a ( 20 ) 2
s $ (0 ft
;
a =2.5
QeIGd" #
ft sec2
" a =T −" g 3220 32.2
( 2.5 )=T −3220 T =3470 lb
104. A man weighing 1*1 l% is in an elevator moving upward with an acceleration of ft per sec (. 7a6 hat pressure does he e5ert on the Loor of the elevator+ 7%6 hat will the pressure %e if the elevator is descending with the same acceleration+
Piven"!olGn" man $ 1*1 l%
161
a $ ft/sec
(
QeIGd"
" a =T −" g
7a6
32.2
( 8 )=T −161
T =201 lb
−" 7a6 ressure he e5ert
7%6
g
a=T −"
−161 7%6 ressure if the elevator
32.2
( 8 )=T −161
T =121 lb
3escends with the same acceleration
104*. #he %lock in 'ig. ?104* reaches a velocity of 40 ft per sec in 100 ft2 starting from rest. Compute the coeRcient of kinetic friction %etween the %lock and the ground.
$ *0 l%
1*1 l% Piven"!olGn"
v 2= 2 as
v $ 40 ft/sec 2
s $ 100 ft
40
= 2 a (100 )
a =8
QeIGd" CoeRcient of kinetic
" a = − 0! g
'riction2 D
161 32.2
ft sec2
( 8 )=60 − 0 ( 161 )
0=0.124 104,. 3etermine the force that will give the %ody in 'ig. ?104, an acceleration of * ft per sec (. #he coeRcient of kinetic friction is 0.(0.
)(( l%
Piven"!olGn" a $ * ft/sec
(
" a = x − 0! g 322
D $ 0.(
32.2
( 6 )= 4 − ( 0.2 ) ! 5
4
= + 60
0.2 !
QeIGd" force2
y + ! −" =0 3
! =322 − 5
5
) 4
322 32.2
( 6 )= 4 − ( 0.2 ) 5
(
3 −
322
5
)
=135.22
10). Qeferring to 'ig. ?10(2 assume A weighs (00l% and B weighs 100l%. 3etermine the acceleration of the %odies if the coeRcient of kinetics friction is 0.10 %etween the ca%le and the 95ed drum.
B
A
'ig. ?10(
Piven"
" # =200 lb
0=0.10
" $=100 lb
!olution"
−T # =
200
T $−100 =
200 32.2
100 32.2
a
1
a
(
T # = e 0/ T $ T # T $
0.1 ( 3 )
=e
T # =1.37 T $
)
!u%stitute ) to 1"
−1.37 T $ =
200
200 32.2
a
4
'rom ("
T $−100 =
100 32.2
a
!u%stitute ( to 4" 200
−1.37 ( 100 + 3.11 a )=6.21 a
200
−1.37 − 4.261 a =6.21 a
a =6.02
ft sec
2
10. @f the pulleys in 'ig. ?10 are weightless and frictionless2 9nd the acceleration of the %ody A.
(00
A
)00 B.'ig. ?10 'or A"
−T = ma
200
−T =
200
aA
T =200−
(00 l%
200 32.2
200 32.2
a #
a #
1
'or B" #
−300=
2 T
#
aB
)00 l% Iuate 1 and ("
300
+
300 32.2
(
a # 2
)=2 T
300 32.2
(
a$
−
200
200 32.2
a # =5 . 85
300
a #=
+ 300 (
a #
32.2
2
)
2
ft sec2
10,. #he coeRcient of kinetic friction under %lock A in 'ig. ?10, is 0.)0 and under %lock B it is 0.(0. 'ind the acceleration of the system and the tension in each cord.
B (0 0l
A 10 0l
)00l%
)0o
At C2 300
)00 #( $
32.2
a ?????1
At B2 200 o
o
#( #1 (00sin)0 (00cos)0 70.(6 $ #( #1 1)4.*4 $ *.(1a ?????(
At A2
32.2
a
100 o
o
#1 100sin)0 100cos)0 70.)6 $
32.2
a
#1 ,.- $ ).11a ?????) #1 $ ,.- & ).11a
!u%stitute # 1 to (2 #( 7,.- & ).11a6 1)4.*4 $ *.(1a #( (10.*( $ -.)(a #( $ (10.*( & -.)(a ?????4
!u%stitute 4 to 1 300
)00 (10.*( & -.)(a $
32.2
a
-.) $ 1.*4a
a$ 4. !t"se#2
ans$
T = 75.28 !. >.8? = 2(.2
lb
T' = '(."' 2.!' >.8? = '55.!"
lb
ans.
ans.
10-. Compute the acceleration of %ody B and the tension in the cord supporting %ody A in 'ig. ?10-.
)00l% ! h $ 0.(0
(00l%
A )
4 @n %lock A2 200
(00 # $
32.2
aA
@n %lock B2 3
(# ?
5
4
7)006 ?
300
7)006 70.(06 $
5
300
(# (( $
32.2
aB
@n getting the acceleration for B2 !ince aA $ ( aB
200
( S (00 # $
aA T
32.2
300
&
?(( & (# $
32.2
70.6 aA
400 (( $ 0aA
1,( $ 00 7(aB6
aB / )(.( $ 1,(/1100
a$
= 5.(! -/sec '
&ns.
32.2
aB
10*1. Compute the time reIuired for the 100?l% %ody in 'ig. ?10*1 to move 10 ft starting from rest.
100 l% ! h$0.(0
0l% ) 4
'or 100?l% %lock2 3
#1 ?
5
100
71006 $
32.2
a1
'or 00?l% %lock2 4 5
3
706 ?
5
800
706 70.(06 # ( $
(#( #1 $ ma (#( #1 $ 0 (#( $ #1
!ince a( $ ( a1
a( $ (.( ft/sec( !olving for t 1 7100l%62
32.2
a(
1
!$
a1t(
2
1
10 $
2
7(.(6 t(
= '.""! sec.
ans.
10*). 3etermine the acceleration of each weight in 'ig. ?10*)2 assuming the pulleys to %e weightless and frictionless.
A
%
10 l% B
B 40 l%
'or A2 150
# 10 $
32.2
aA
'or B2 480
(# ? 40 $
32.2
aB
)00 l%
'or %2 300
)00 # $
32.2
aC
1
!ince aB$
2
1
aC ?
2
aA
'or #ension2 150 32.2
aA $ # ?10
1
7406 7
2
1
aC ?
2
aA6 $ (# ? 40
300 32.2
aC $ )00 #
# $ (1., l%
!olving for acceleration2 150
(1., 10 $
32.2
aA
aA $ 14.,4,* ft/sec(
aC
aC $ .,(*( ft/sec(
ans.
300
)00 (1., $
32.2
(7(1.,6 40 $ 40/)(.(a B
ans.
&$ = 1'.85775 -/sec ' or &$ = '.85775 -/sec ' >downw&rd?
&ns.
10*. 3etermine the ma5imum and minimum weights of the %ody C on @llustration ro%lem 104) that will keep C stationary. All other data remain unchanged. !olution"
1000 #
(B '$ 00 E$
(# B
1
aB $
2
00
'
'$
E
4 ΣFx = a g
'or A 1000
*00 1*0 # $
g
a#
'or B 800 1
(# 00 $
g
( a# ) 2
!olving for # # $ 40, l% 'or up plane impending motion of C"
ΣFx =0 # $ 40, $ * & 1*
; = 5!5 4 'or down plane impending motion of C
ΣFx =0 # $ 40, $ * ? 1*
; = 2' 4
*
10*,. @n the system of connected %locks in 'ig 10*,2 the coeRcient of kinetic friction is 0.(0 under %odies B and C. determine the acceleration of each %ody and the tension in the cord. !olution"
1000l% C B ! h $ 0.(0
! h $
00l% 400l%
A
4
) 4
3irection of motion" Assuming at rest #$ 400 Fn B2 Eet force $ (# $ 00 40 U ' $ 1( 7B rises6 Fn B2 Eet force $ *00 7#$4006 U ' $ 1*0 7 C falls6 ith C at rest2 !aG
$ (!%
ith B at rest !a V
$ !c
Eet motion $ !aG ? !aW $ !a 3i:erentiating "
$ (!%
)
? !c
aA $ (aB aC 1
aB $
2
(a# + a% )
4 ΣFx = a g 'or 400
400 # $
g
a#
'or B 1000
(# 40 1( $
g
a%
!olving
T = !8.'4 &A = .8 -@s ' &$ = !.57 -@s ' &C = '.2" -@s '
10*-. #wo %locks A and B each weighing -*.* l% and connected %y a rigid %ar of negligi%le weight move along the smooth surfaces shown in 'ig 10*-. #hey start from rest at the given position. 3etermine the acceleration of B at this instant. Hint" #o relate aA to aB2 use the method developed in @llus ro% on (.
!olution" =$
ds , dt
+xVa + -Vb=0
a$
dv dt
=a & 5aA & =% & Xa% $ 0 At start2 =a $ =% $ 0
− y aA $
x
ab
or if A% is down & down aA $
y ab $ x
8 6
ab
4 ΣFx = a g 'or A * $
96.6
8
32.2
6
ab $ 4a%
'or B 96.6
-*.* $
32.2
!olving
&$ = ." -@s '
a% $ )a%
&A = 5.7 -@s '
10,1. #he pulleys in the preceding pro%lem have %een assumed to %e frictionless and weightless. hat changes would there %e in the solutions of these pro%lems if the pulleys 7a6 had friction 7%6 had apprecia%le weight+ !olution"
>&?w6 -rcon 6e ensons on 6e o@@ose sdes o- 6e @944e0 wo94d e 9neB9&4. >?;6 &@@ro@r&e we+6 6e s9@@orn+ enson wo94d no eB9&4 wce 6e o9sde ensons.
SEAT;OR3 A %all is dropped from the tower of 0 ft. high at the same instant that a second %all is thrown upward from the ground with an initial velocity of 40 ft/sec. hen and where do they pass2 and with what velocities+
!FY#@FE"
1
h =v 0 t + g t 2 2
h =40 t −
1 2
1
2
− h= ( 32.2 ) t
80
2
( 32.2) t (1)
2
2
h =80− 16.1 t ( 2)
Iuate 7(6 and 716"
1 − 16.1 t =40 t − ( 32.2 ) t 2
80
2
2
v f =−24.4 2
ft sec
t =2 sec. v f =32.2 ( 2 ) 1
!u%stitute t to 716 and 7(6"
v f =64.4 1
h =80−16.1 ( 2 )2=15.6 meters ¿ thebottom
ft sec
&
s =80 −15 . 6 =64 . 4 meters ¿ theto'
v =v f + v f 1
v f − v o =at 2
2
v =64.4 −24.4
2
v f = 40−32.2 ( 2 )
v =40
2
ft sec
An automo%ile starting from rest speeds up to 40 ft/sec with a constant acceleration of 4 ft/sec ( run at this speed for a time and 9nally comes to rest with a deceleration of ft/sec (. @f the total distance travelled is 1000 ft2 9nd the total time reIuired.
!FY#@FE"
v −v o =a t 1
1
s 1= ( 4 ) (10 )2=200 ft . 2
40
=4 t
1
t 1 =10 sec.
v=
s2 t 2 s 1 + s 2+ s 3=1000
s 2= 40 t 2
200
+ s + 160=1000 2
s 2=640 ft .
= 40 t
640
v −v o =−at 3
2
t 2 =16 sec.
−40=−5 t
3
t 3 =8 sec. s 3=( 40 ) ( 8 )−
1 2
( 5) ( 8)
2
T t =t 1+ t 2 + t 3=10 + 16 + 8
s 3=160 ft . T t =34 sec.
#he velocity of a particle moving along the 5?a5is is de9ned %y v=&' (-)' 2*+' where v is in m/s and ' = meter and & $ 1. Compute the acceleration when ' $ (m.
!FY#@FE"
hen k $1
v =( 1 ) x 3− 4 x 2+ 6 x v = x3 −4 x 2 + 6 x
ads = vdv a =v
dv ds
a =( x 3−4 x2 + 6 x ) ( 2 x 2−8 x + 6 )
hen 5 $ ( m
a =[ ( 2 )3−( 4 )2 + 6 ( 2)][ 2 ( 2 )2−8 ( 2 )+ 6 ] a =[ 2 ] [ 4 ]
a =8 m / s
a$
6 √ v
2
when t $ ( sec v $ )* m/sec s $ )0 m. 3etermine s at t $ ) sec.
!FY#@FE"
dv dt
a=
6 √ v
dv
√ v
=
dv dt
=6 dt
−1
v
dv =6 dt
2
∫v
−1 2
dv =∫ 6 dt
1
v2 1
= 6 t + c
2
1
2v
2
=6 t + c
hen v $ )* m/sec t $ ( sec 1
( ) =6 ( 2 ) + c
2 36
2
c =0 #herefore2 1
2v
Fr
2
=6 t
v =18 t 2
v=
ds dt
ds =18 t 2 dt ds =18 t 2 dt ds =¿ ∫ 18 t 2 dt
∫¿ 3
s=
18 t 3
+c
s =6 t 3 + c
hen s $ )0 m t $ ( sec
=6 ( 2 ) + c
30
3
c =−18
#herefore2
s =6 t 3−18
hen t $ ) sec
s =6 ( 3 )3 −18
s =144 meters