1963 HOUSNER the Dynamic Behaviour of Water TanksDescription complète
Full description
This document tries to explain how the theory loading of facts can be viewed in the history of science
Descripción completa
Sistema de análisis nodal.
Predicting onset of liquid loading and dynamic behaviour of liquid loaded gas wells 2nd European Conference on Gas Well Deliquification
G. Alberts S. Belfroid E. Biezen W. Schiferli K. Veeken
TNO Science and Industry TNO Science and Industry NAM TNO Science and Industry NAM
Predicting onset of liquid loading
Introduction • Goal : prediction of behaviour of wet gas well • Prediction of the liquid loading point • Simulation of a loading well • Start-up/shut-in scenario’s • Investigation best loading mitigation strategies • Control of loading wells (f.i. Gas injection) • Models • Steady models (f.i. Turner) • Dynamic models (f.i. OLGA, TNO dedicated models) • Natural gas wells, laboratory data (TU Delft Air/Water)
2
Predicting onset of liquid loading
TNO Science and Industry, 25 September 2007
Simulation Well (loading) Well 2 Olga 70000
30
Production field data
Production data 60000
Wellhead pressure
25
Qproduction [m3/d]
20 40000 15 30000
Wellhead pressure
20000
10
Simulation (OLGA)
Wellhead pressure [bara]
50000
5
10000
Shutin and foam job 0 0
100000
200000
300000
400000
500000
600000
700000
800000
900000
0 1000000
t [s] 3
Predicting onset of liquid loading
TNO Science and Industry, 25 September 2007
Reservoir decline simulation Natural gas well 2 140
Liquid film mass [Sm3/day]; Liquid ratio (LGR) [e6Sm3/Sm3]
20
2 0 40000
0 50000
60000
70000
80000
90000
100000
110000
120000
Gas flow rate [Sm3/d] 5
Predicting onset of liquid loading
TNO Science and Industry, 25 September 2007
Liquid loading • Critical : Minimum gas flow velocity to lift liquid • Main parameters • Liquid content • Inclination angle • Gravity • Non-uniform film thickness • Condensation/production liquid • Entrainment • Well - reservoir interaction (2006) (small A factors) 6
Predicting onset of liquid loading
TNO Science and Industry, 25 September 2007
Air – Water experiments (TU Delft) E xpe rime nta l da ta TU De lft
Critica l gas ve locity [m/s ]
20
Gravity 15
10
5
0 0
7
Increased film thickness
20 40 60 80 Inclina tio n a ngle (90 = ho rizo nta l) [de gre e s ] Ref: Jos van ‘t Westenende
Predicting onset of liquid loading
TNO Science and Industry, 25 September 2007
Air - Water 25 Experimenta l da ta TU De lft OLGA Turner Fiedle rcorrecte d Turner
20 Critica l ga s velocity [m/s ]
Fiedle r
15
10
5
0 -10
8
0
10
Predicting onset of liquid loading
20 30 40 50 60 Inclina tion angle (90 = ho rizo ntal) [de gre e s ]
70
80
90
TNO Science and Industry, 25 September 2007
Test cases
9
ID [m]
Length [m]
Pwh [bar]
Gas Liquid
Max. Inclinations
Air Water
0.1
12
1
M=28.9
Varying (0 - 90°)
Natural gas Well 1
0.111
3743
14
M=18.6 LGR=22
40 ° Tail 90 °
Natural gas Well 2
0.074
3545
21
M=17.5 LGR=17
40 °
Predicting onset of liquid loading
TNO Science and Industry, 25 September 2007
Overview Liquid loading prediction (ratio prediction vs field data)
Angle
Field/experimental data
Turner Bottomhole @ angle
OLGA
Well 1
40
90000 Sm3/day
1.2
2.1
Well 2
40
45000 Sm3/day
1.0
1.6
Air -Water
0
13.3 m/s
1.1
0.3
30
17.3 m/s
1.1
1.1
60
15.8 m/s
1.1
1.3
± 20 %
± 110 %
Error 10
Predicting onset of liquid loading
TNO Science and Industry, 25 September 2007
Conclusions • The onset point of loading is not predicted correctly • Important parameters in the models: • entrainment • inclination angle • For practical purposes using a shape function suffices • Currently working on • adding inclination angle dependency in models • Validating use of shape function
11
Predicting onset of liquid loading
TNO Science and Industry, 25 September 2007
We would like to acknowledge the support of Shell and NAM
and their permission to publish the information in this presentation
and the TU Delft for supplying the air –water data
12
Predicting onset of liquid loading
TNO Science and Industry, 25 September 2007
Influence reservoir behavior on onset instability Turner Ratio vs A Factor 4.00
Instability sets in at early rate
3.50 3.00
TR (-)
2.50
y = 1.9313x-0.0953 R2 = 0.1162
2.00 1.50 1.00 0.50 0.00 0
10
20
Courtesy Shell 13
Predicting onset of liquid loading
30
40
50
60
A (bar^2/1000m^3/d)
70
80
90
100
From K. Veeken TNO Science and Industry, 25 September 2007
Influence reservoir behavior on onset instability • Tubing intake curve depends on LGR • In steady state no influence of reservoir IPR • Instability can set in left of minimum TPC • If variations exist in liquid content, the IPR becomes relevant
14
Predicting onset of liquid loading
TNO Science and Industry, 25 September 2007
Influence reservoir behavior on onset instability 2.5
Qmin [kg/s]
2
1.5 WGR=100; D WGR=50 Turner 1
0.5
0 0
1
2
3
4
5
Ares [bar2/(1e3 Sm3/day)]
15
Predicting onset of liquid loading
TNO Science and Industry, 25 September 2007
Air-Water 25 Expe rime ntal data TU De lft Film mode l (s te ady s tate ( TU De lft)) TNO Dyn. S imulator OLGA Turne r angle de pe nde ncy
Critica l ga s ve locity [m/s ]
20
15
10
5
0
16
0
10
20
Predicting onset of liquid loading
30
40 50 60 70 Inclination angle (90 = ve rtical) [de gre e s ]