UNIVERSIDAD FRANCISCO GAVIDIA CENTRO REGIONAL DE OCCIDENTE FACULTAD DE INGENIERIA Y ARQUITECTURA CICLO II/ 2011
MATERIA: INVESTIGACIÓN DE OPERACIONES DOCENTE: ING. ROBERTO CARLOS SIGUENZA CONTENIDO: CASOS ESPECIALES. Objetivo: Conocer los casos especiales de programación lineal.
CASO 1. MODELOS CON SOLUCIÓN ÓPTIMA ÚNICA. El modelo es formulado por una empresa asesora de inversiones para elaborar la cartera de un cliente. Las variables X1 y X2 representan la cantidad de acciones Tipo 1 y 2 a comprar para satisfacer el objetivo establecido de maximizar el retorno anual de esa inversión o compra de acciones. El monto total disponible para invertir es de $80.000. El riesgo es una medida relativa de las dos inversiones alternativas. La acción Tipo 1 es una inversión más riesgosa. Limitando el riesgo total para la cartera, la firma inversora evita colocar montos excesivos de la cartera en inversiones de retorno potencialmente alto pero de alto riesgo. También se limita el monto de acciones de mayor riesgo.
Max 3X1+ 5X2 (Retorno anual en $) Sujeto a: 25 X1 + 50 X2 80.000 $ de fondos disponibles 0.5 X1 + 0.25 X2 700 riesgo máximo 1 X1 1.000 acciones Tipo 1 X1, X2 0 a) Graficar las restricciones: Restricción 1 : Cuando X1 = 0, entonces X2 = 1.600; Cuando X2 = 0, entonces X1 = 3.200 Una los puntos ( 3.200, 0) y ( 0, 1.600 ). El lado de la restricción “ < “ está bajo esa recta.
Restricción 2 : Cuando X1 = 0, entonces X2 = 2.800; Cuando X2 = 0, entonces X1 = 1.400 Una los puntos ( 1.400, 0) y ( 0 , 2.800). El lado de la restricción “ < “ está bajo esa recta. Restricción 3: X1 = 1.000 y X2 = 0 Es una recta que parte de la abscisa en el punto 1.000. El lado de la restricción “ < “ se tiene, a partir de esa recta, hacia el lado donde está el punto de
origen.
Sombree, o señale de alguna manera, el conjunto convexo llamado también región posible. (Ver Gráfico 1). b) Grafique la Función Objetivo asignándole un valor arbitrario. Este valor, preferiblemente, debe permitir que el objetivo se muestre en la región solución. Por ejemplo, puede ser utilizado el valor 3.000. Los puntos de corte en los ejes, para graficarla, son los puntos ( 1.000, 0 ) y ( 0, 600). La Función Objetivo se grafica con línea de color, en este caso, para diferenciarla de las restricciones.
c) Mueva la Función Objetivo, paralelamente a sí misma en la dirección que incrementa su valor (hacia arriba en este caso), hasta que toque el último (los últimos, si los toca al mismo tiempo) punto extremo de la región solución. d) En ese punto extremo final, b en este caso, resuelva el par de ecuaciones que se interceptan. En este caso son las ecuaciones 1 y 2. Utilice cualquiera de los métodos para resolver pares de ecuaciones lineales con dos variables. e) Alternativamente, para determinar la solución óptima, puede calcular las coordenadas a todos los puntos extremos: a, b, c y d y e, en el conjunto convexo de soluciones. Luego evalúa la Función Objetivo en cada uno de ellos. El punto extremo que proporcione el mayor valor será el punto extremo ó ptimo. f) En ambos casos se obtiene la solución óptima en el punto extremo b con coordenadas (800, 1.200). Así, la solución óptima es X1 = 800 y X2 = 1.200. Resolviendo en la Función Objetivo: Max 3X1+ 5X2 Se obtiene: 3(800) + 5(1.200) = 8.400
CASO 2. MODELOS CON SOLUCIONES ÓPTIMAS ALTERNAS O MÚLTIPLES. Max 6X1+ 2X2 (Beneficio) Sujeto a: 3 X1 + X2 4 8 horas de trabajo 3 X1 + 4 X2 120 unidades de materia Prima 3 X1 + X2 36 horas de supervisión. X1, X2 0 El modelo es formulado por una empresa que desea determinar la cantidad de unidades de producto 1 ( X1) y producto 2 (X2) a fabricar para satisfacer el objetivo establecido de maximizar el beneficio. El monto total disponible de horas de trabajo para este período es de 48. La disponibilidad de materia prima es de 120 unidades y la cantidad mínima de horas disponibles para supervisión es de 36 horas. Graficar las restricciones y obtener el espacio de solución. (Ver Gráfico 3). Los puntos extremos del conjunto convexo son: A(16,0), B(8,24), C(8/3,28) y D(12,0). Dos puntos extremos proporcionan el máximo valor del objetivo, los puntos A y B. Esto permite afirmar que existen soluciones óptimas Alternas para este modelo. Son óptimos todos los puntos sobre el segmento de línea AB que limita el conjunto convexo de solución y corresponden a la primera restricción. Si Usted utiliza el método de graficar la Función Objetivo con un valor arbitrario, 48 por ejemplo, podrá observar que la línea es completamente paralela a la primera y tercera restricción. Al desplazarla paralelamente hacia su optimización, hacia arriba porque se está maximizando, finalmente caerá completamente sobre la primera restricción, de horas de trabajo, antes de salir totalmente fuera de la región solución. Dos puntos extremos estarían limitando el crecimiento del objetivo, el punto B y el punto A. “Cualquier recta que tenga ratio de coeficientes igual al de otra recta, es paralela a esa otra recta”
La ventaja que presentan los modelos con este Tipo de solución es que se puede elegir cualquiera de las soluciones óptimas, porque todas presentan el mismo valor óptimo para el objetivo. P or ejemplo, si una de las soluciones tiene valores fraccionales para las variables y no puede trabajarse con valores fraccionales, el que toma la decisión seleccionará una solución con valores enteros.
CASO 3. MODELOS SIN SOLUCIÓN POSIBLE. No se definirán los elementos del modelo porque no habrá una solución posible para tomar alguna decisión. (Ver gráfico 4) Max 40 X1 + 30 X2 Sujeto a: 2/5 X1 + ½ X2 20 1/5 X2 5 3/5 X1 + 3/10 X2 21 X1 30 X2 15 X1, X2 0 Puede observarse en el Gráfico 4, que mientras las 3 primeras restricciones delimitan un espacio en común, las 2 últimas delimitan otro espacio común para ellas. Por lo tanto, no hay una región de puntos comunes que satisfagan ambos conjuntos de restricciones y el modelo no tendrá solución posible. En estos casos es necesario determinar cuáles son las restricciones inconsistentes para el modelo. Es deci r, cuáles son realmente válidas para el modelo. Observe que si las variables X1 y X2 toman el valor mínimo que pueden tomar en las dos últimas restricciones, es decir X1 = 30 y X2 = 15 entonces la tercera restricción no se cumpliría. Esto es una inconsistencia. Estos modelos no deben existir en el mundo real (14). Si el sistema modelado trabaja, entonces el modelo debe representarlo de tal manera que permita obtener una solución posible.
CASO 4. MODELOS QUE PRESENTAN SOLUCIÓN CON VALOR INFINITO. Max X1+ 2X2 Sujeto a: -4 X1 + 3 X2 3 X1 - X2 3 X1, X2 0 No se definirán los elementos del modelo porque no habrá una solución para tomar alguna decisión. En el gráfico 5 el conjunto convexo llamado región solución, que contiene todas las soluciones posibles, es un espacio abierto. Tiene tres puntos extremos A, B y C, pero ninguno delimita el crecimiento del objetivo. Esta función puede tomar valores infinitos ya que las variables conforman puntos con valores infinitos dentro de la región solución y ninguno de ellos le proporciona un valor finito óptimo. Por lo tanto, existiendo restricciones, no es lógico encontrar un objetivo de valor infinito. En estos casos debe buscarse dentro del sistema, la restricción o las restricciones que se omitieron en el modelo y que limitarían las variables de decisión a valores factibles.
CASO 5. MODELOS CON ESPACIO DE SOLUCION NO ACOTADO Y SOLUCION DE VALOR FINITO. Min 0.06 X1+ 0.05 X2 (costos) Sujeto a: 0.30 X1 + 0.20 X2 500 Proteína 0.15 X1 + 0.30 X2 300 Grasa X1, X2 0 El modelo es formulado para una guardería de perros que se destaca por dar una alimentación balanceada a las mascotas. El alimento lo elabora mezclando 2 marcas conocidas de alimentos que llamaremos X1 y X2. Se desea determinar la cantidad de gramos de X1 y X2 a mezclar en el alimento, con el objetivo establecido de minimizar los costos de la mezcla. Esta, debe contener al menos 500 gramos de proteínas y al menos 300 gramos de grasa por día. Los porcentajes de contenido de grasa y proteína de cada gramo de X1 y X2 se conocen y son usados en el modelo. El espacio de solución obtenido se muestra en el Gráfico 6. Se observa una región abierta con las soluciones posibles y puntos extremos A, B, C. Esto indica que pueden existir combinaciones de cantidad de gramos de alimento X1 y X2 con valor infinito, en este caso los costos serían infinitos. Esto es posible porque no se está limitando directamente la cantidad de X1 y X2 en alguna restricción específica y las restricciones existentes son todas de Tipo “que”. Pero, mientras exista al menos una combinación con valor finito, en algún punto extremo que limite el valor del objetivo, a esa combinación se le considerará óptima. En los casos de región abierta de soluciones posibles, es conveniente entonces encontrar el valor óptimo con el procedimiento de graficar la Función Objetivo. Al graficar la Función Objetivo, con un valor arbitrario de 120, se observa que al desplazarla paralelamente hacia su optimización, hacia abajo porque se está minimizando, la línea cae sobre el punto B, antes de salir completamente de la región solución. A este punto se le considerará punto extremo óptimo. La solución óptima es Única con los valores: X1 = 1.500, X2 = 250 F.O. = 102.5
CASO 6. MODELOS CON SOLUCION DEGENERADA
Min 2500 X + 2200 Y (costos) Sujeto a: X + Y 10 Empleados temporales 300 X + 400 Y 3.400 cartas 80 X + 50 Y 680 paquetes X, Y 0 El modelo es formulado por una oficina de correos que puede contratar hasta 10 empleados para manejar el correo. La oficina conoce que un empleado (hombre) puede manejar 300 cartas y 80 paquetes por día y una empleada (mujer) puede manejar 400 cartas y 50 paquetes en un día. No menos de 3.400 cartas y de 680 paquetes se esperan por día. A cada empleado hombre (X), se le paga Bs. 2.500 por día y a una empleada mujer ( Y) se le paga Bs. 2.200 por día. Se quiere determinar la cantidad de hombres (X) y mujeres (Y) que se deben contratar para satisfacer las restricciones y lograr el objetivo establecido de minimizar los costos de la nómina. El gráfico obtenido es el Gráfico 7. Se observa una región de soluciones posibles de un solo punto común para todas las restricciones y por lo tanto un único punto extremo A. Esto indica que existe una única combinación posible y además óptima, de cantidad de empleados X y Y que satisface las restricciones y optimiza el objetivo.